Nash Equilibria of a Two-Party Policy Competition Game

Speaker: Chuang-Chieh Lin (Joseph)
Tamkang University, TW

a joint work with

Chi-Jen Lu
Academia Sinica, TW

Po-An Chen
National Yang Ming Chiao Tung University, TW

17 May 2024

Authors

Chuang-Chieh Lin

Chi-Jen Lu

Po-An Chen

Outline

(1) Motivations
(2) The Setting
(3) Our Contribution

4 Concluding Remarks

Outline

(1) Motivations

(2) The Setting

The Inspiration (an EC'17 paper)

"[...] and that government of the people, by the people, for the people, shall not perish from the earth."

- Abraham Lincoln, 1863.

Previous Work (I): Distortion of Social Choice Rules

Previous Work (II): Two-Party Election Game

Party A

Party B

Previous Work (II): Two-Party Election Game

- Parties are players.
- Strategies: their candidates (or policies).
- A candidate beats the other candidates from other candidates of other parties with uncertainty.
- The payoff of each party: expected utility its supporters can get.

Previous Work (II): Two-Party Election Game (contd.)

- Party A : m candidates, party $B: n$ candidates.
- Candidate A_{i} can bring social utility $u\left(A_{i}\right)=u_{A}\left(A_{i}\right)+u_{B}\left(A_{i}\right) \in[0, \beta]$ for some real $\beta \geq 0$.
- $p_{i, j}: \operatorname{Pr}\left[A_{i}\right.$ wins over $\left.B_{j}\right]$.
- E.g., Linear: $p_{i, j}:=\left(1+\left(u\left(A_{i}\right)-u\left(B_{j}\right)\right) / \beta\right) / 2$
- Payoff (reward) $r_{A}=p_{i, j} u_{A}\left(A_{i}\right)+\left(1-p_{i, j}\right) u_{A}\left(B_{j}\right)$.

Previous Work (II): Two-Party Election Game (contd.)

- Party A : m candidates, party $B: n$ candidates.
- Candidate A_{i} can bring social utility $u\left(A_{i}\right)=u_{A}\left(A_{i}\right)+u_{B}\left(A_{i}\right) \in[0, \beta]$ for some real $\beta \geq 0$.
- $p_{i, j}: \operatorname{Pr}\left[A_{i}\right.$ wins over $\left.B_{j}\right]$. more utility for all the people, more likely to win
- E.g., Linear: $p_{i, j}:=\left(1+\left(u\left(A_{i}\right)-u\left(B_{j}\right)\right) / \beta\right) / 2$
- Payoff (reward) $r_{A}=p_{i, j} u_{A}\left(A_{i}\right)+\left(1-p_{i, j}\right) u_{A}\left(B_{j}\right)$.

Outline

(1) Motivations

(2) The Setting

4) Concluding Remarks

Policies and Preferences

The Setting

- Policy vectors: $\mathbf{z}_{A}, \mathbf{z}_{B} \in S \subset \mathbb{R}^{k}$.
- $\left\|\mathbf{z}_{A}\right\| \leq 1$ and $\left\|\mathbf{z}_{B}\right\| \leq 1$.
- State (or profile): $\mathbf{z}:=\left(\mathbf{z}_{A}, \mathbf{z}_{B}\right)$.

The Setting

- Policy vectors: $\mathbf{z}_{A}, \mathbf{z}_{B} \in S \subset \mathbb{R}^{k}$.
- $\left\|\mathbf{z}_{A}\right\| \leq 1$ and $\left\|\mathbf{z}_{B}\right\| \leq 1$.
- State (or profile): $\mathbf{z}:=\left(\mathbf{z}_{A}, \mathbf{z}_{B}\right)$.
- V_{A} and V_{B} : the supporters of A and B.
- $V:=V_{A} \cup V_{B},|V|=n$.
- Preference vector of a voter $v \in V: \mathbf{q}_{v}$.
- $Q_{A}:=\sum_{v \in V_{A}} \mathbf{q}_{v}, Q_{B}:=\sum_{v \in V_{B}} \mathbf{q}_{v}$ and $Q:=Q_{A}+Q_{B}$.

The Setting

- Policy vectors: $\mathbf{z}_{A}, \mathbf{z}_{B} \in S \subset \mathbb{R}^{k}$.
- $\left\|\mathbf{z}_{A}\right\| \leq 1$ and $\left\|\mathbf{z}_{B}\right\| \leq 1$.
- State (or profile): $\mathbf{z}:=\left(\mathbf{z}_{A}, \mathbf{z}_{B}\right)$.
- V_{A} and V_{B} : the supporters of A and B.

$$
\text { - } V:=V_{A} \cup V_{B},|V|=n \text {. }
$$

- Preference vector of a voter $v \in V: \mathbf{q}_{v}$.
- $Q_{A}:=\sum_{v \in V_{A}} \mathbf{q}_{v}, Q_{B}:=\sum_{v \in V_{B}} \mathbf{q}_{v}$ and $Q:=Q_{A}+Q_{B}$.
- The utility

$$
\begin{aligned}
& u_{A}\left(\mathbf{z}_{A}\right)=\sum_{v \in V_{A}} \mathbf{z}_{A}^{\top} \mathbf{q}_{v}=\mathbf{z}_{A}^{\top} Q_{A}, u_{B}\left(\mathbf{z}_{A}\right)=\sum_{v \in V_{B}} \mathbf{z}_{A}^{\top} \mathbf{q}_{v}=\mathbf{z}_{A}^{\top} Q_{B} . \\
& u_{A}\left(\mathbf{z}_{B}\right)=\sum_{v \in V_{A}} \mathbf{z}_{B}^{\top} \mathbf{q}_{v}=\mathbf{z}_{B}^{\top} Q_{A}, u_{B}\left(\mathbf{z}_{B}\right)=\sum_{v \in V_{B}} \mathbf{z}_{B}^{\top} \mathbf{q}_{v}=\mathbf{z}_{B}^{\top} Q_{B} .
\end{aligned}
$$

The Setting (Winning Prob. \& Payoff)

- Winning probability:

$$
\begin{aligned}
& p_{A \succ B}=\frac{1}{2}+\frac{1}{4 k n}\left(\mathbf{z}_{A}-\mathbf{z}_{B}\right)^{\top} Q, \\
& p_{B \succ A}=\frac{1}{2}+\frac{1}{4 k n}\left(\mathbf{z}_{B}-\mathbf{z}_{A}\right)^{\top} Q .
\end{aligned}
$$

- $1 / 4 \mathrm{kn}$: a normalization factor.
- The payoffs:

$$
\begin{aligned}
R_{A}(\mathbf{z}) & =p_{A \succ B} \cdot \mathbf{z}_{A}^{\top} Q_{A}+p_{B \succ A} \cdot \mathbf{z}_{B}^{\top} Q_{A}, \\
R_{B}(\mathbf{z}) & =p_{B \succ A} \cdot \mathbf{z}_{B}^{\top} Q_{B}+p_{A \succ B} \cdot \mathbf{z}_{A}^{\top} Q_{B} .
\end{aligned}
$$

So, we can compute the gradients and Hessian...

$$
\begin{gathered}
\frac{\partial R_{A}(\mathbf{z})}{\partial \mathbf{z}_{A}}=\frac{1}{2} Q_{A}+\frac{\left(\mathbf{z}_{A}-\mathbf{z}_{B}\right)^{\top} Q}{4 k n} Q_{A}+\frac{\left(\mathbf{z}_{A}-\mathbf{z}_{B}\right)^{\top} Q_{A}}{4 k n} Q . \\
\frac{\partial R_{B}(\mathbf{z})}{\partial \mathbf{z}_{B}}=\frac{1}{2} Q_{B}+\frac{\left(\mathbf{z}_{B}-\mathbf{z}_{A}\right)^{\top} Q}{4 k n} Q_{B}+\frac{\left(\mathbf{z}_{B}-\mathbf{z}_{A}\right)^{\top} Q_{B}}{4 k n} Q . \\
\frac{\partial^{2} R_{A}(\mathbf{z})}{\partial \mathbf{z}_{A}^{2}}[i, j]=\frac{1}{4 k n}\left(Q[i] Q_{A}[j]+Q[j] Q_{A}[i]\right) \\
\frac{\partial^{2} R_{B}(\mathbf{z})}{\partial \mathbf{z}_{B}^{2}}[i, j]=\frac{1}{4 k n}\left(Q[i] Q_{B}[j]+Q[j] Q_{B}[i]\right) .
\end{gathered}
$$

Outline

(2) The Setting

(3) Our Contribution

4 Concluding Remarks

Our Contribution

[Nash 1950]

Every FINITE game has a mixed-strategy Nash equilibrium.

Our Contribution

In this work, we show that there exists a pure-strategy Nash equilibrium (PSNE) in the two-party policy competition game for

- the degenerate case: $k=1$
- the general case $k \geq 1$ under the consensus-reachable condition
- The two-party policy competition game is NOT a finite game.
- The above PSNE consists of dominant-strategies.

Claim of the Egoistic Property

Claim

The egoistic property must hold in the two-party policy competition game.

- $\mathbf{z}_{A}^{\top} Q_{A} \geq \mathbf{z}_{B}^{\top} Q_{A}$ and $\mathbf{z}_{B}^{\top} Q_{B} \geq \mathbf{z}_{A}^{\top} Q_{B}$.

The Degenerate Case: $k=1$

$$
\begin{aligned}
& R_{A}(\mathbf{z})=\frac{1}{2}\left(z_{A}+z_{B}\right) Q_{A}+\frac{1}{4} Q Q_{A}\left(z_{A}-z_{B}\right)^{2}, \\
& \quad \frac{\mathrm{~d} R_{A}(\mathbf{z})}{\mathrm{d} z_{A}}=\frac{1}{2} Q_{A}+\frac{1}{2 n} Q Q_{A}\left(z_{A}-z_{B}\right), \\
& \frac{\mathrm{d}^{2} R_{A}(\mathbf{z})}{\mathrm{d} z_{A}^{2}}=\frac{1}{2 n} Q Q_{A} .
\end{aligned}
$$

- If $Q Q_{A} \geq 0$ (resp., $Q Q_{A} \leq 0$), then $R_{A}(z)$ is convex (resp., concave).
$Q \geq 0, Q_{A} \geq 0$ plus the egoistic property $\Rightarrow \frac{d R_{A}(z)}{d z_{A}} \geq 0$.

The Degenerate Case: $k=1$

$$
\begin{aligned}
& R_{A}(\mathbf{z})=\frac{1}{2}\left(z_{A}+z_{B}\right) Q_{A}+\frac{1}{4} Q Q_{A}\left(z_{A}-z_{B}\right)^{2}, \\
& \quad \frac{\mathrm{~d} R_{A}(\mathbf{z})}{\mathrm{d} z_{A}}=\frac{1}{2} Q_{A}+\frac{1}{2 n} Q Q_{A}\left(z_{A}-z_{B}\right), \\
& \frac{\mathrm{d}^{2} R_{A}(\mathbf{z})}{\mathrm{d} z_{A}^{2}}=\frac{1}{2 n} Q Q_{A} .
\end{aligned}
$$

- If $Q Q_{A} \geq 0$ (resp., $Q Q_{A} \leq 0$), then $R_{A}(z)$ is convex (resp., concave). $Q \geq 0, Q_{A} \geq 0$ plus the egoistic property $\Rightarrow \frac{d R_{A}(z)}{d z_{A}} \geq 0$.
- The maximizers of R_{A} and R_{B} can be solved analytically case-by-case.

The General Case: $k \geq 1$

- It is sufficient for party A and B to consider the space $\operatorname{span}\left(\left\{Q_{A}, Q_{B}\right\}\right)$.

The General Case: $k \geq 1$ - Simplification by Polar Coordinates

- It is sufficient for party A and B to consider the space $\operatorname{span}\left(\left\{Q_{A}, Q_{B}\right\}\right)$.
- Represent \mathbf{z}_{A} (resp., \mathbf{z}_{B}) in terms of polar coordinates $\left(r_{A}, \theta_{A}\right)$ (resp., $\left.\left(r_{A}, \theta_{B}\right)\right)$.
- $r_{A}=\left\|\mathbf{z}_{A}\right\|, r_{B}=\left\|\mathbf{z}_{B}\right\|$
- θ_{A} (resp., θ_{B}) is the angle $\mathrm{b} / \mathrm{w} Q_{A}$ and \mathbf{z}_{A} (resp., Q_{B} and \mathbf{z}_{B}).

The General Case: $k \geq 1$ - Simplification by Polar Coordinates

- It is sufficient for party A and B to consider the space $\operatorname{span}\left(\left\{Q_{A}, Q_{B}\right\}\right)$.
- Represent \mathbf{z}_{A} (resp., \mathbf{z}_{B}) in terms of polar coordinates $\left(r_{A}, \theta_{A}\right)$ (resp., $\left.\left(r_{A}, \theta_{B}\right)\right)$.
- $r_{A}=\left\|\mathbf{z}_{A}\right\|, r_{B}=\left\|\mathbf{z}_{B}\right\|$
- θ_{A} (resp., θ_{B}) is the angle $\mathrm{b} / \mathrm{w} Q_{A}$ and \mathbf{z}_{A} (resp., Q_{B} and \mathbf{z}_{B}).

For any two vectors \mathbf{u}, \mathbf{v} in the Euclidean space \mathbb{R}^{k} for $k \geq 1$,

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\|\mathbf{u}\|\|\mathbf{v}\| \cos (\theta)
$$

where θ is the angle $\mathrm{b} / \mathrm{w} \mathbf{u}$ and \mathbf{v}.

A Good Condition

Consensus-Reachable

A two-party policy competition game is consensus-reachable if $Q_{A}^{\top} Q \geq 0$ and $Q_{B}^{\top} Q \geq 0$.

Gradients w.r.t. \mathbf{r}

$$
\begin{aligned}
& \frac{\partial}{\partial r_{A}} R_{A}(\mathbf{r}, \boldsymbol{\theta})=\frac{1}{2}\left\|Q_{A}\right\| \cos \left(\theta_{A}\right)+\frac{1}{4 k n}\left(\left(\mathbf{z}_{A}^{\top} Q-\mathbf{z}_{B}^{\top} Q\right)\left(\left\|Q_{A}\right\| \cos \left(\theta_{A}\right)\right)\right. \\
& \left.\quad+\left(\mathbf{z}_{A}^{\top} Q_{A}-\mathbf{z}_{B}^{\top} Q_{A}\right)\left(\|Q\| \cos \left(\rho_{A}-\theta_{A}\right)\right)\right) .
\end{aligned}
$$

and

$$
\frac{\partial^{2}}{\partial r_{A}^{2}} R_{A}(\mathbf{r}, \boldsymbol{\theta})=\frac{1}{4 k n}\left\|Q_{A}\right\|\|Q\| \cos \left(\theta_{A}\right) \cos \left(\rho_{A}-\theta_{A}\right),
$$

Gradients w.r.t. \mathbf{r}

$$
\begin{aligned}
& \frac{\partial}{\partial r_{A}} R_{A}(\mathbf{r}, \boldsymbol{\theta})=\frac{1}{2}\left\|Q_{A}\right\| \cos \left(\theta_{A}\right)+\frac{1}{4 k n}\left(\left(\mathbf{z}_{A}^{\top} Q-\mathbf{z}_{B}^{\top} Q\right)\left(\left\|Q_{A}\right\| \cos \left(\theta_{A}\right)\right)\right. \\
& \left.\quad+\left(\mathbf{z}_{A}^{\top} Q_{A}-\mathbf{z}_{B}^{\top} Q_{A}\right)\left(\|Q\| \cos \left(\rho_{A}-\theta_{A}\right)\right)\right) .
\end{aligned}
$$

and

$$
\frac{\partial^{2}}{\partial r_{A}^{2}} R_{A}(\mathbf{r}, \boldsymbol{\theta})=\frac{1}{4 k n}\left\|Q_{A}\right\|\|Q\| \cos \left(\theta_{A}\right) \cos \left(\rho_{A}-\theta_{A}\right),
$$

- $\frac{\partial^{2}}{\partial r_{A}^{2}} R_{A}(\mathbf{r}, \theta) \geq 0$ by the consensus-reachable condition (\therefore convex).

Gradients w.r.t. r (contd.)

- Compute $R_{A}\left(\left(0, r_{B}\right), \boldsymbol{\theta}\right)$ and $R_{A}\left(\left(1, r_{B}\right), \boldsymbol{\theta}\right)$ we will find that

$$
\begin{aligned}
R_{A}\left(\left(1, r_{B}\right), \boldsymbol{\theta}\right)= & R_{A}\left(\left(0, r_{B}\right), \boldsymbol{\theta}\right)+\frac{1}{2}\left\|Q_{A}\right\| \cos \left(\theta_{A}\right) \\
& +\frac{1}{4 k n}\left(\|Q\|\left\|Q_{A}\right\| \cos \left(\rho_{A}-\theta_{A}\right) \cos \left(\theta_{A}\right)\right. \\
& \left.-\mathbf{z}_{B}^{\top} Q\left\|Q_{A}\right\| \cos \left(\theta_{A}\right)-\mathbf{z}_{B}^{\top} Q_{A}\|Q\| \cos \left(\rho_{A}-\theta_{A}\right)\right) \\
\geq & R_{A}\left(\left(0, r_{B}\right), \boldsymbol{\theta}\right) .
\end{aligned}
$$

Gradients w.r.t. $\boldsymbol{\theta}$

- Assuming $\mathbf{r}=(1,1)$, we derive that

$$
R_{A}(\boldsymbol{\theta})=p\left(\theta_{A}\right)\left(\left\|Q_{A}\right\| \cos \left(\theta_{A}\right)\right)+\left(1-p\left(\theta_{A}\right)\right)\left(\left\|Q_{A}\right\| \cos \left(\rho_{A}-\theta_{A}\right)\right)
$$

where

$$
\begin{aligned}
p\left(\theta_{A}\right) & =p_{A \succ B}=\frac{1}{2}+\frac{1}{4 k n}\left(\mathbf{z}_{A}^{\top} Q-\mathbf{z}_{B}^{\top} Q\right) \\
& =\frac{1}{2}+\frac{1}{4 k n}\left(\|Q\| \cos \left(\rho_{A}-\theta_{A}\right)-\mathbf{z}_{B}^{\top} Q\right)
\end{aligned}
$$

and ρ_{A} is the angle between Q and Q_{A}.

Gradients w.r.t. $\boldsymbol{\theta}$ (contd.)

- It's straight-forward to derive

$$
p^{\prime}\left(\theta_{A}\right)=\frac{\|Q\|}{4 k n} \sin \left(\rho_{A}-\theta_{A}\right) \geq 0
$$

and

$$
p^{\prime \prime}\left(\theta_{A}\right)=-\frac{\|Q\|}{4 k n} \cos \left(\rho_{A}-\theta_{A}\right) \leq 0
$$

- Hence,

$$
\begin{aligned}
& R_{A}^{\prime}(\boldsymbol{\theta})=p^{\prime}\left(\theta_{A}\right)\left(\mathbf{z}_{A}^{\top} Q-\mathbf{z}_{B}^{\top} Q\right)-p\left(\theta_{A}\right) \sin \left(\theta_{A}\right)\left\|Q_{A}\right\| \\
& =\frac{\|Q\|}{4 k n} \sin \left(\rho_{A}-\theta_{A}\right)\left(\mathbf{z}_{A}^{\top} Q_{A}-\mathbf{z}_{B}^{\top} Q_{A}\right) \\
& -\frac{1}{2} \sin \left(\theta_{A}\right)\left\|Q_{A}\right\|-\frac{1}{4 k n}\left(\|Q\| \cos \left(\rho_{A}-\theta_{A}\right)-\mathbf{z}_{B}^{\top} Q\right) \sin \left(\theta_{A}\right)\left\|Q_{A}\right\|, \\
& R_{A}^{\prime \prime}\left(\boldsymbol{\theta}_{A}\right)= \\
& \quad p^{\prime \prime}\left(\theta_{A}\right)\left(\mathbf{z}_{A}^{\top} Q_{A}-\mathbf{z}_{B}^{\top} Q_{A}\right)-2 p^{\prime}\left(\theta_{A}\right)\left\|Q_{A}\right\| \sin \left(\theta_{A}\right) \\
& \quad-p\left(\theta_{A}\right) \cos \left(\theta_{A}\right)\left\|Q_{A}\right\| \leq 0 .
\end{aligned}
$$

Gradients w.r.t. $\boldsymbol{\theta}$ (contd.)

- By the mean value theorem we know that there exists $\theta_{A}^{*} \in\left[0, \rho_{A}\right]$ such that $R_{A}^{\prime}\left(\theta_{A}^{*}\right)=0$.
- $R_{A}\left(\theta_{A}\right)$ is continuous;
- $R_{A}^{\prime}(0) \geq 0$;
- $R_{A}^{\prime}\left(\rho_{A}\right) \leq 0$,

Then?

Gradients w.r.t. $\boldsymbol{\theta}$ (contd.)

- By the mean value theorem we know that there exists $\theta_{A}^{*} \in\left[0, \rho_{A}\right]$ such that $R_{A}^{\prime}\left(\theta_{A}^{*}\right)=0$.
- $R_{A}\left(\theta_{A}\right)$ is continuous;
- $R_{A}^{\prime}(0) \geq 0$;
- $R_{A}^{\prime}\left(\rho_{A}\right) \leq 0$,

Then?

Better Responses

Define the relation \succsim_{A} over θ_{A} as $\left(\theta^{\prime}, \theta_{B}\right) \succsim_{A}\left(\theta^{\prime \prime}, \theta_{B}\right)$ if $R_{A}\left(\theta^{\prime}, \theta_{B}\right) \geq R_{A}\left(\theta^{\prime \prime}, \theta_{B}\right)$.

Gradients w.r.t. $\boldsymbol{\theta}$ (quasi-concaveness)

Quasi-Concave

\succsim_{A} is quasi-concave on $\left[0, \rho_{A}\right]$ if for all $\boldsymbol{\theta}=\left(\theta_{A}, \theta_{B}\right)$, the set $\left\{\theta^{\prime} \in\left[0, \rho_{A}\right] \mid\left(\theta^{\prime}, \theta_{B}\right) \succsim_{A}\left(\theta_{A}, \theta_{B}\right)\right\}$ is convex.

Gradients w.r.t. $\boldsymbol{\theta}$ (quasi-concaveness)

Quasi-Concave

\succsim_{A} is quasi-concave on $\left[0, \rho_{A}\right]$ if for all $\boldsymbol{\theta}=\left(\theta_{A}, \theta_{B}\right)$, the set $\left\{\theta^{\prime} \in\left[0, \rho_{A}\right] \mid\left(\theta^{\prime}, \theta_{B}\right) \succsim_{A}\left(\theta_{A}, \theta_{B}\right)\right\}$ is convex.
$R_{A}(\theta)$

$R_{A}(\theta)$

Gradients w.r.t. $\boldsymbol{\theta}$ (Kakutani's Fixed-Point Theorem)

Theorem [Concluding]

Since

- $\left[0, \rho_{A}\right]$ is nonempty, compact and convex in \mathbb{R};
- $R_{A}(\theta)$ is continuous w.r.t. θ_{A};
- \succsim_{A} is quasi-concave on $\left[0, \rho_{A}\right]$

The two-party policy competition game has a pure-strategy Nash equilibrium (PSNE) under the consensus-reachable condition.

Outline

(1) Motivations

3 Our Contribution

(4) Concluding Remarks

Concluding Remarks

- The unsolved case:

Concluding Remarks

- The unsolved case:

- Update the policy using gradient ascent:

$$
\mathbf{z}_{A} \leftarrow \mathbf{z}_{A}+\eta \frac{\partial R_{A}(\mathbf{z})}{\partial \mathbf{z}_{A}}, \quad \mathbf{z}_{B} \leftarrow \mathbf{z}_{B}+\eta \frac{\partial R_{B}(\mathbf{z})}{\partial \mathbf{z}_{B}}
$$

where η is called learning rate

Thanks for your attention!
 Q \& A

