Auctions \&
 Mechanism Design Basics

Joseph Chuang-Chieh Lin
Dept. CSIE, Tamkang University, Taiwan

- We study about a kind of science of rule-making.
- To make it simple, we first consider single-item auctions.
- We will go over some basics about first-price auctions and second-price auctions.
- Also, we will talk about
- incentive guarantees,
- strong performance guarantees, and
- computational efficiency
in an auction.
- We will end the discussion with Myerson's Lemma.

Outline

Single-Item Auctions

Sealed-Bid Auctions
First-Price Auctions
Second-Price Auctions
Case Study: Sponsored Search Auctions
Myerson's Lemma
Single-Parameter Environments
The Lemma
Application to the Sponsored Search Auction

Outline

Single-Item Auctions

Sealed-Bid Auctions
First-Price Auctions
Second-Price Auctions
Case Study: Sponsored Search Auctions

Myerson's Lemma
Single-Parameter Environments
The Lemma
Application to the Sponsored Search Auction

Strategic bidders in an auction

- Consider a seller with a single item.
- For example, an antiquated furniture.

Strategic bidders in an auction

- Consider a seller with a single item.
- For example, an antiquated furniture.
- Assume that there are n bidders who are strategic.
- Bidders are interested in buying this furniture.

Strategic bidders in an auction

- Consider a seller with a single item.
- For example, an antiquated furniture.
- Assume that there are n bidders who are strategic.
- Bidders are interested in buying this furniture.
- We want to reason about bidder behavior in the auction.

Strategic bidders in an auction

- Consider a seller with a single item.
- For example, an antiquated furniture.
- Assume that there are n bidders who are strategic.
- Bidders are interested in buying this furniture.
- We want to reason about bidder behavior in the auction.
- Let's say each bidder i has a nonnegative valuation v_{i} for this item being sold.

Strategic bidders in an auction

- Consider a seller with a single item.
- For example, an antiquated furniture.
- Assume that there are n bidders who are strategic.
- Bidders are interested in buying this furniture.
- We want to reason about bidder behavior in the auction.
- Let's say each bidder i has a nonnegative valuation v_{i} for this item being sold.
- Her maximum willingness-to-pay for it.

Strategic bidders in an auction

- Consider a seller with a single item.
- For example, an antiquated furniture.
- Assume that there are n bidders who are strategic.
- Bidders are interested in buying this furniture.
- We want to reason about bidder behavior in the auction.
- Let's say each bidder i has a nonnegative valuation v_{i} for this item being sold.
- Her maximum willingness-to-pay for it.
- v_{i} is private.

Strategic bidders in an auction

- Consider a seller with a single item.
- For example, an antiquated furniture.
- Assume that there are n bidders who are strategic.
- Bidders are interested in buying this furniture.
- We want to reason about bidder behavior in the auction.
- Let's say each bidder i has a nonnegative valuation v_{i} for this item being sold.
- Her maximum willingness-to-pay for it.
- v_{i} is private.
- Unknown to the seller and other bidders.

What does a bidder want? What's her utility?

- Each bidder wants to acquire the item as cheaply as possible.

What does a bidder want? What's her utility?

- Each bidder wants to acquire the item as cheaply as possible.
- It would be great if

What does a bidder want? What's her utility?

- Each bidder wants to acquire the item as cheaply as possible.
- It would be great if the selling price is $\leq v_{i}$.

What does a bidder want? What's her utility?

- Each bidder wants to acquire the item as cheaply as possible.
- It would be great if the selling price is $\leq v_{i}$.
- What's the utility of bidder i?

What does a bidder want? What's her utility?

- Each bidder wants to acquire the item as cheaply as possible.
- It would be great if the selling price is $\leq v_{i}$.
- What's the utility of bidder i?
- If she loses \Rightarrow

What does a bidder want? What's her utility?

- Each bidder wants to acquire the item as cheaply as possible.
- It would be great if the selling price is $\leq v_{i}$.
- What's the utility of bidder i?
- If she loses $\Rightarrow 0$.

What does a bidder want? What's her utility?

- Each bidder wants to acquire the item as cheaply as possible.
- It would be great if the selling price is $\leq v_{i}$.
- What's the utility of bidder i?
- If she loses $\Rightarrow 0$.
- If she wins \Rightarrow

What does a bidder want? What's her utility?

- Each bidder wants to acquire the item as cheaply as possible.
- It would be great if the selling price is $\leq v_{i}$.
- What's the utility of bidder i?
- If she loses $\Rightarrow 0$.
- If she wins $\Rightarrow v_{i}-p$.

Outline

Single-Item Auctions

Sealed-Bid Auctions

First-Price Auctions
Second-Price Auctions
Case Study: Sponsored Search Auctions

Single-Parameter Environments
The Lemma
Application to the Sponsored Search Auction

Sealed-Bid Auctions

Sealed-Bid Auction

(i) Each bidder i privately communicates a bid b_{i} to the seller-in a sealed envelope.
(ii) The seller decides who gets the item (if any).
(iii) The seller decides the selling price.

Sealed-Bid Auctions

Sealed-Bid Auction

(i) Each bidder i privately communicates a bid b_{i} to the seller-in a sealed envelope.
(ii) The seller decides who gets the item (if any).
(iii) The seller decides the selling price.

- Step (ii): The selection rule. We consider giving the item to the highest bidder.

Outline

Single-Item Auctions

Sealed-Bid Auctions

First-Price Auctions
Second-Price Auctions
Case Study: Sponsored Search Auctions

Single-Parameter Environments
The Lemma
Application to the Sponsored Search Auction

First-Price auction

First-Price

The winning bidder pays her bid.

- But it's hard to reason about.

First-Price auction

First-Price

The winning bidder pays her bid.

- But it's hard to reason about.
- Why?

Issues of the First-Price Auctions

- For a bidder:

Issues of the First-Price Auctions

- For a bidder: Hard to figure how to bid.

Issues of the First-Price Auctions

- For a bidder: Hard to figure how to bid.
- For the seller:

Issues of the First-Price Auctions

- For a bidder: Hard to figure how to bid.
- For the seller: Hard to predict what will happen.

An Example

- Suppose that you are participating in the first-price auction.
- Your valuation for the item: the number of your birth month + the day of your birth.

An Example

- Suppose that you are participating in the first-price auction.
- Your valuation for the item: the number of your birth month + the day of your birth.
- Your valuation is between 2 and 43.

An Example

- Suppose that you are participating in the first-price auction.
- Your valuation for the item: the number of your birth month + the day of your birth.
- Your valuation is between 2 and 43.
- Suppose that there is another bidder who has the same valuation like you.

An Example

- Suppose that you are participating in the first-price auction.
- Your valuation for the item: the number of your birth month + the day of your birth.
- Your valuation is between 2 and 43.
- Suppose that there is another bidder who has the same valuation like you.
- Would it help to know your opponent's birthday?

An Example

- Suppose that you are participating in the first-price auction.
- Your valuation for the item: the number of your birth month + the day of your birth.
- Your valuation is between 2 and 43.
- Suppose that there is another bidder who has the same valuation like you.
- Would it help to know your opponent's birthday?
- Would your answer change if you knew there were two other bidders rather than one?

Outline

Single-Item Auctions

Sealed-Bid Auctions

First-Price Auctions
Second-Price Auctions
Case Study: Sponsored Search Auctions

Single-Parameter Environments
The Lemma
Application to the Sponsored Search Auction

eBay/Yahoo auction

- If you bid $\$ 100$ and win, do you pay $\$ 100$?

eBay/Yahoo auction

- If you bid $\$ 100$ and win, do you pay $\$ 100$?
- eBay increases your bid on your behalf until
- Your maximum bid is reached, or
- You are the highest bidder whichever comes first.

eBay/Yahoo auction

- If you bid $\$ 100$ and win, do you pay $\$ 100$?
- eBay increases your bid on your behalf until
- Your maximum bid is reached, or
- You are the highest bidder
whichever comes first.
- For example, if the highest other bid is $\$ 90$.

You only pay $\$ 90+\epsilon$ for some small increment ϵ.
\approx highest other bid!

Second-Price auction

Second-Price/Vickrey Auction

The highest bidder wins and pays a price equal to the second-highest bid.

- Is such a strategy a dominant strategy?

Second-Price auction

Second-Price/Vickrey Auction

The highest bidder wins and pays a price equal to the second-highest bid.

- Is such a strategy a dominant strategy?
- The strategy is guaranteed to maximize a bidder's utility no matter what other bidders do.

Truthfully Bidding Is Dominant Here

Proposition (Incentives in Second-Price Auctions)
In a second-price auction, every bidder i has a dominant strategy: set the bid $b_{i}=v_{i}$, equal to her private valuation.

Proof of the Proposition

- Fix a bidder i with valuation v_{i}.
- b: the vector of all bids.
- \boldsymbol{b}_{-i} : the vector of \boldsymbol{b} with b_{i} removed.
* Goal: Show that bidder i's utility is maximized by setting $b_{i}=v_{i}$.

Proof of the Proposition (contd.)

- Let $B:=\max _{j \neq i} b_{j}$ denote the highest bid by some other bidder.

Proof of the Proposition (contd.)

- Let $B:=\max _{j \neq i} b_{j}$ denote the highest bid by some other bidder.
- If $b_{i}<B$, then

Proof of the Proposition (contd.)

- Let $B:=\max _{j \neq i} b_{j}$ denote the highest bid by some other bidder.
- If $b_{i}<B$, then i loses and receive utility

Proof of the Proposition (contd.)

- Let $B:=\max _{j \neq i} b_{j}$ denote the highest bid by some other bidder.
- If $b_{i}<B$, then i loses and receive utility 0 .
- If $b_{i} \geq B$, then i

Proof of the Proposition (contd.)

- Let $B:=\max _{j \neq i} b_{j}$ denote the highest bid by some other bidder.
- If $b_{i}<B$, then i loses and receive utility 0 .
- If $b_{i} \geq B$, then i wins at price

Proof of the Proposition (contd.)

- Let $B:=\max _{j \neq i} b_{j}$ denote the highest bid by some other bidder.
- If $b_{i}<B$, then i loses and receive utility 0 .
- If $b_{i} \geq B$, then i wins at price B and receives utility

Proof of the Proposition (contd.)

- Let $B:=\max _{j \neq i} b_{j}$ denote the highest bid by some other bidder.
- If $b_{i}<B$, then i loses and receive utility 0 .
- If $b_{i} \geq B$, then i wins at price B and receives utility $v_{i}-B$.

Proof of the Proposition (contd.)

- Let $B:=\max _{j \neq i} b_{j}$ denote the highest bid by some other bidder.
- If $b_{i}<B$, then i loses and receive utility 0 .
- If $b_{i} \geq B$, then i wins at price B and receives utility $v_{i}-B$.
- Then, we consider two cases:

Proof of the Proposition (contd.)

- Let $B:=\max _{j \neq i} b_{j}$ denote the highest bid by some other bidder.
- If $b_{i}<B$, then i loses and receive utility 0 .
- If $b_{i} \geq B$, then i wins at price B and receives utility $v_{i}-B$.
- Then, we consider two cases:
- If $v_{i}<B$, the maximum utility that bidder i can obtain is

Proof of the Proposition (contd.)

- Let $B:=\max _{j \neq i} b_{j}$ denote the highest bid by some other bidder.
- If $b_{i}<B$, then i loses and receive utility 0 .
- If $b_{i} \geq B$, then i wins at price B and receives utility $v_{i}-B$.
- Then, we consider two cases:
- If $v_{i}<B$, the maximum utility that bidder i can obtain is $\max \left\{0, v_{i}-B\right\}=0$.

Proof of the Proposition (contd.)

- Let $B:=\max _{j \neq i} b_{j}$ denote the highest bid by some other bidder.
- If $b_{i}<B$, then i loses and receive utility 0 .
- If $b_{i} \geq B$, then i wins at price B and receives utility $v_{i}-B$.
- Then, we consider two cases:
- If $v_{i}<B$, the maximum utility that bidder i can obtain is $\max \left\{0, v_{i}-B\right\}=0$. \Rightarrow Bid truthfully (and then loses).

Proof of the Proposition (contd.)

- Let $B:=\max _{j \neq i} b_{j}$ denote the highest bid by some other bidder.
- If $b_{i}<B$, then i loses and receive utility 0 .
- If $b_{i} \geq B$, then i wins at price B and receives utility $v_{i}-B$.
- Then, we consider two cases:
- If $v_{i}<B$, the maximum utility that bidder i can obtain is $\max \left\{0, v_{i}-B\right\}=0$.
\Rightarrow Bid truthfully (and then loses).
- If $v_{i} \geq B$, the maximum utility that bidder i can obtain is

Proof of the Proposition (contd.)

- Let $B:=\max _{j \neq i} b_{j}$ denote the highest bid by some other bidder.
- If $b_{i}<B$, then i loses and receive utility 0 .
- If $b_{i} \geq B$, then i wins at price B and receives utility $v_{i}-B$.
- Then, we consider two cases:
- If $v_{i}<B$, the maximum utility that bidder i can obtain is $\max \left\{0, v_{i}-B\right\}=0$. \Rightarrow Bid truthfully (and then loses).
- If $v_{i} \geq B$, the maximum utility that bidder i can obtain is $\max \left\{0, v_{i}-B\right\}=v_{i}-B$.

Proof of the Proposition (contd.)

- Let $B:=\max _{j \neq i} b_{j}$ denote the highest bid by some other bidder.
- If $b_{i}<B$, then i loses and receive utility 0 .
- If $b_{i} \geq B$, then i wins at price B and receives utility $v_{i}-B$.
- Then, we consider two cases:
- If $v_{i}<B$, the maximum utility that bidder i can obtain is $\max \left\{0, v_{i}-B\right\}=0$.
\Rightarrow Bid truthfully (and then loses).
- If $v_{i} \geq B$, the maximum utility that bidder i can obtain is $\max \left\{0, v_{i}-B\right\}=v_{i}-B$.
\Rightarrow Bid truthfully (and then wins).

Nonnegative Utility Here

Proposition 2 (Nonnegative Utility)
In a second-price auction, every truthfully bidder is guaranteed nonnegative utility.

- Losers receive utility 0 .
- How about the winners?

Nonnegative Utility Here

Proposition 2 (Nonnegative Utility)

In a second-price auction, every truthfully bidder is guaranteed nonnegative utility.

- Losers receive utility 0 .
- How about the winners?
- The utility is $v_{i}-p$, where p is the 2 nd highest bid.

Nonnegative Utility Here

Proposition 2 (Nonnegative Utility)

In a second-price auction, every truthfully bidder is guaranteed nonnegative utility.

- Losers receive utility 0 .
- How about the winners?
- The utility is $v_{i}-p$, where p is the 2 nd highest bid.
- \because bidder i wins and bids her true valuation v_{i}, so $p \leq v_{i}$

Nonnegative Utility Here

Proposition 2 (Nonnegative Utility)

In a second-price auction, every truthfully bidder is guaranteed nonnegative utility.

- Losers receive utility 0 .
- How about the winners?
- The utility is $v_{i}-p$, where p is the 2 nd highest bid.
- \because bidder i wins and bids her true valuation v_{i}, so $p \leq v_{i} \Rightarrow v_{i}-p \geq 0$.

Second-Price Single-Item Auctions are "ideal"

Definition (Dominant-Strategy Incentive Compatible)
An auction is dominant-strategy incentive compatible (DSIC) if

- truthful bidding is a dominant strategy for every bidder, and
- truthful bidders always obtain nonnegative utility.

Second-Price Single-Item Auctions are "ideal"

Definition (Dominant-Strategy Incentive Compatible)
An auction is dominant-strategy incentive compatible (DSIC) if

- truthful bidding is a dominant strategy for every bidder, and
- truthful bidders always obtain nonnegative utility.

Social Welfare
The social welfare of an outcome of a single-item auction is

$$
\sum_{i=1}^{n} v_{i} x_{i}
$$

where $\sum_{i=1}^{n} x_{i} \leq 1 ; x_{i}=1$ if bidder i wins and 0 if she loses.

Second-Price Single-Item Auctions are "ideal" (contd.)

Social Welfare

The social welfare of an outcome of a single-item auction is

$$
\sum_{i=1}^{n} v_{i} x_{i}
$$

where $\sum_{i=1}^{n} x_{i} \leq 1 ; x_{i}=1$ if bidder i wins and 0 if she loses.

- So such an auction is welfare maximizing if bids are truthful.

Second-Price Single-Item Auctions are "ideal" (contd.)

Theorem

A second-price single-item auction satisfies:
(1) DSIC.
(2) Welfare maximizing.
(3) It can be implemented in polynomial time.

In fact, (3) is linear.

Second-Price Single-Item Auctions are "ideal" (contd.)

```
Theorem
A second-price single-item auction satisfies:
(1) DSIC. (strong incentive guarantees)
(2) Welfare maximizing. (strong performance guarantees)
(3) It can be implemented in polynomial time. (computational efficiency)
```

In fact, (3) is linear.

Outline

Single-Item Auctions

Sealed-Bid Auctions

First-Price Auctions
Second-Price Auctions
Case Study: Sponsored Search Auctions

Single-Parameter Environments
The Lemma
Application to the Sponsored Search Auction

Background

The Social Dilemma (2020) - Trailer

- Web search results:
- relevant to your query (by an algorithm, e.g., PageRank).
- pops out a list of sponsored links.
- They are paid by advertisers.
- Every time you give a search query into a search engine, an auction is run in real time to decide
- which advertiser's links are shown,
- how these links are arranged visually,
- what the advertisers are charged.

Multiple Items for Sponsored Search Auctions

- Let's say the items for sale are k "slots" on a search results page.
- Bidders: the advertisers who have a bid on the keyword that was searched on.
- On the keyword, "university", NTU, NYCU, NCKU, TKU, etc., might be the bidders.

Multiple Items for Sponsored Search Auctions

- Let's say the items for sale are k "slots" on a search results page.
- Bidders: the advertisers who have a bid on the keyword that was searched on.
- On the keyword, "university", NTU, NYCU, NCKU, TKU, etc., might be the bidders.
- On the keyword, "camera", Nikon, Canon, Sony, etc., might be the bidders.

Multiple Items for Sponsored Search Auctions

- Let's say the items for sale are k "slots" on a search results page.
- Bidders: the advertisers who have a bid on the keyword that was searched on.
- On the keyword, "university", NTU, NYCU, NCKU, TKU, etc., might be the bidders.
- On the keyword, "camera", Nikon, Canon, Sony, etc., might be the bidders.
- On the keyword, "SUV", Toyota, Ford, Honda, Porsche, etc., might be the bidders.

Multiple Items for Sponsored Search Auctions

- Let's say the items for sale are k "slots" on a search results page.
- Bidders: the advertisers who have a bid on the keyword that was searched on.
- On the keyword, "university", NTU, NYCU, NCKU, TKU, etc., might be the bidders.
- On the keyword, "camera", Nikon, Canon, Sony, etc., might be the bidders.
- On the keyword, "SUV", Toyota, Ford, Honda, Porsche, etc., might be the bidders.
- Let's say the items are not identical.
- Higher slots are more valuable. What do you think?

Multiple Items for Sponsored Search Auctions

- Consider the click-through-rates (CTRs) α_{j} of slot j.
- The probability that the user clicks on this slot.
- Assumption: $\alpha_{1} \geq \alpha_{2} \geq \ldots \alpha_{k}$.

Multiple Items for Sponsored Search Auctions

- Consider the click-through-rates (CTRs) α_{j} of slot j.
- The probability that the user clicks on this slot.
- Assumption: $\alpha_{1} \geq \alpha_{2} \geq \ldots \alpha_{k}$.
- Each advertiser i has a quality score β_{i}.
- The CTR of advertiser i in slot $j: \beta_{i} \alpha_{j}$.

Multiple Items for Sponsored Search Auctions

- Consider the click-through-rates (CTRs) α_{j} of slot j.
- The probability that the user clicks on this slot.
- Assumption: $\alpha_{1} \geq \alpha_{2} \geq \ldots \alpha_{k}$.
- Each advertiser i has a quality score β_{i}.
- The CTR of advertiser i in slot $j: \beta_{i} \alpha_{j}$.
- The expected value derived by advertiser i from slot $j: v_{i} \alpha_{j}$

Multiple Items for Sponsored Search Auctions

- Consider the click-through-rates (CTRs) α_{j} of slot j.
- The probability that the user clicks on this slot.
- Assumption: $\alpha_{1} \geq \alpha_{2} \geq \ldots \alpha_{k}$.
- Each advertiser i has a quality score β_{i}.
- The CTR of advertiser i in slot $j: \beta_{i} \alpha_{j}$.
- The expected value derived by advertiser i from slot $j: v_{i} \alpha_{j}$
- The social welfare is $\sum_{i=1}^{n} v_{i} x_{i}$.
- x_{i} : the CTR of the slot to which bidder i is assigned.
- $x_{i}=0$: bidder i is not assigned to a slot.
- Each slot can only be assigned to one bidder; each bidder gets only one slot.

Our Design Approach

- Who wins what?
- Who pays what?
- The payment.

Our Design Approach

- Who wins what?
- Who pays what?
- The payment.
- If the payments are not just right, then the strategic bidders will game the system.

Our Design Approach

Design Steps

(a): Assume that the bidders bid truthfully. Then, how should we assign bidders to slots so that property (2) and (3) holds?
(b): Given the answer of above, how should we set selling prices so that property (1) holds?

Step (a)

- Given truthful bids. For $i=1,2, \ldots, k$, assign the i th highest bid to the i th best slot.

Step (a)

- Given truthful bids. For $i=1,2, \ldots, k$, assign the i th highest bid to the i th best slot.
- You can prove that this assignment achieves the maximum social welfare as an exercise.

Step (b)

- There is an analog of the second-price rule.
- DSIC.
* Myerson's lemma.

Step (b)

- There is an analog of the second-price rule.
- DSIC.
* Myerson's lemma.
- A powerful and general tool for implementing this second step.

Outline

Single-Item Auctions

Sealed-Bid Auctions
First-Price Auctions
Second-Price Auctions Case Study: Sponsored Search Auctions

Myerson's Lemma
Single-Parameter Environments
The Lemma
Application to the Sponsored Search Auction

Outline

Single-Item Auctions

Sealed-Bid Auctions
First-Price Auctions
Second-Price Auctions
Case Study: Sponsored Search Auctions
Myerson's Lemma
Single-Parameter Environments
The Lemma
Application to the Sponsored Search Auction

Single-Parameter Environments

Consider a more generalized and abstract setting:
Single-Parameter Environments

- n agents (e.g., bidders).
- A private valuation $v_{i} \geq 0$ for each agent i (per unit of stuff).
- A feasible set $X=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i} \in \mathbb{R}\right\} \subseteq \mathbb{R}^{n}$.
- x_{i} : amount of stuff given to agent i.

Single-Parameter Environments (Examples)

- Single-item auction:
- $\sum_{i=1}^{n} X_{i} \leq 1$, and $x_{i} \in\{0,1\}$ for each i.

Single-Parameter Environments (Examples)

- Single-item auction:
- $\sum_{i=1}^{n} X_{i} \leq 1$, and $x_{i} \in\{0,1\}$ for each i.
- k-Unit auction:
- k identical items, $\sum_{i=1}^{n} X_{i} \leq k$, and $x_{i} \in\{0,1\}$ for each i.

Single-Parameter Environments (Examples)

- Single-item auction:
- $\sum_{i=1}^{n} X_{i} \leq 1$, and $x_{i} \in\{0,1\}$ for each i.
- k-Unit auction:
- k identical items, $\sum_{i=1}^{n} X_{i} \leq k$, and $x_{i} \in\{0,1\}$ for each i.
- Sponsored Search Auction:
- X : the set of n-vectors \Leftrightarrow assignments of bidders to slots.
- Each slot (resp., bidder) is assigned to ≤ 1 bidder (resp., slot).
- The component $x_{i}=\alpha_{j}$: bidder i is assigned to slot j.
- α_{j} : the click-through rate of slot j.
- Assume that the quality score $\beta_{i}=1$ for all i.

Allocation and Payment Rules

Choices to make in a sealed-bid auction

- Collect bids $\boldsymbol{b}=\left(b_{1}, \ldots, b_{n}\right)$.
- Allocation Rule: Choose a feasible $\boldsymbol{x}(\boldsymbol{b}) \in X \subseteq \mathbb{R}^{n}$.
- Payment Rule: Choose payments $\boldsymbol{p}(\boldsymbol{b}) \in \mathbb{R}^{n}$.
- A direct-revelation mechanism.

Allocation and Payment Rules

Choices to make in a sealed-bid auction

- Collect bids $\boldsymbol{b}=\left(b_{1}, \ldots, b_{n}\right)$.
- Allocation Rule: Choose a feasible $\boldsymbol{x}(\boldsymbol{b}) \in X \subseteq \mathbb{R}^{n}$.
- Payment Rule: Choose payments $\boldsymbol{p}(\boldsymbol{b}) \in \mathbb{R}^{n}$.
- A direct-revelation mechanism.
- Example of indirect mechanism: iterative ascending auction.

Allocation and Payment Rules (contd.)

With allocation rule \boldsymbol{x} and payment rule \boldsymbol{p},

- agent i receives utility $u_{i}(\boldsymbol{b})=v_{i} \cdot x_{i}(\boldsymbol{b})-p_{i}(\boldsymbol{b})$.
- $p_{i}(\boldsymbol{b}) \in\left[0, b_{i} \cdot x_{i}(\boldsymbol{b})\right]$.
- $p_{i}(\boldsymbol{b}) \geq 0$: prohibiting the seller from paying the agents.
- $p_{i}(\boldsymbol{b}) \leq b_{i} \cdot x_{i}(\boldsymbol{b}):$ a truthful agent receives nonnegative utility.

Allocation and Payment Rules (contd.)

With allocation rule \boldsymbol{x} and payment rule \boldsymbol{p},

- agent i receives utility $u_{i}(\boldsymbol{b})=v_{i} \cdot x_{i}(\boldsymbol{b})-p_{i}(\boldsymbol{b})$.
- $p_{i}(\boldsymbol{b}) \in\left[0, b_{i} \cdot x_{i}(\boldsymbol{b})\right]$.
- $p_{i}(\boldsymbol{b}) \geq 0$: prohibiting the seller from paying the agents.
- $p_{i}(\boldsymbol{b}) \leq b_{i} \cdot x_{i}(\boldsymbol{b}):$ a truthful agent receives nonnegative utility. Why?

The Myerson's Lemma

Definition (Implementable Allocation Rule)
An allocation rule \boldsymbol{x} for a single-parameter environment is implementable if there is a payment rule \boldsymbol{p} such that the direct-revelation mechanism $(\boldsymbol{x}, \boldsymbol{p})$ is DSIC.

The Myerson's Lemma

Definition (Implementable Allocation Rule)
An allocation rule \boldsymbol{x} for a single-parameter environment is implementable if there is a payment rule \boldsymbol{p} such that the direct-revelation mechanism $(\boldsymbol{x}, \boldsymbol{p})$ is DSIC.

The rules that extend to DSIC mechanisms.

The Myerson's Lemma

Definition (Implementable Allocation Rule)

An allocation rule \boldsymbol{x} for a single-parameter environment is implementable if there is a payment rule \boldsymbol{p} such that the direct-revelation mechanism $(\boldsymbol{x}, \boldsymbol{p})$ is DSIC.

The rules that extend to DSIC mechanisms.

Definition (Monotone Allocation Rule)

An allocation rule \boldsymbol{x} for a single-parameter environment is monotone if for every agent i and bids \boldsymbol{b}_{-i} by other agents, the allocation $x_{i}\left(z, \boldsymbol{b}_{-i}\right)$ to i is nondecreasing in her bid z.

The Myerson's Lemma

Definition (Implementable Allocation Rule)

An allocation rule \boldsymbol{x} for a single-parameter environment is implementable if there is a payment rule \boldsymbol{p} such that the direct-revelation mechanism $(\boldsymbol{x}, \boldsymbol{p})$ is DSIC.

The rules that extend to DSIC mechanisms.

Definition (Monotone Allocation Rule)

An allocation rule \boldsymbol{x} for a single-parameter environment is monotone if for every agent i and bids \boldsymbol{b}_{-i} by other agents, the allocation $x_{i}\left(z, \boldsymbol{b}_{-i}\right)$ to i is nondecreasing in her bid z.

Bidding higher can only get you more stuff!

The Myerson's Lemma

Definition (Implementable Allocation Rule)

An allocation rule \boldsymbol{x} for a single-parameter environment is implementable if there is a payment rule \boldsymbol{p} such that the direct-revelation mechanism $(\boldsymbol{x}, \boldsymbol{p})$ is DSIC.

The rules that extend to DSIC mechanisms.

Definition (Monotone Allocation Rule)

An allocation rule \boldsymbol{x} for a single-parameter environment is monotone if for every agent i and bids \boldsymbol{b}_{-i} by other agents, the allocation $x_{i}\left(z, \boldsymbol{b}_{-i}\right)$ to i is nondecreasing in her bid z.

Bidding higher can only get you more stuff!
So, how about awarding the item to the second-highest bidder?

The Myerson's Lemma

Definition (Implementable Allocation Rule)

An allocation rule \boldsymbol{x} for a single-parameter environment is implementable if there is a payment rule \boldsymbol{p} such that the direct-revelation mechanism $(\boldsymbol{x}, \boldsymbol{p})$ is DSIC.

The rules that extend to DSIC mechanisms.

Definition (Monotone Allocation Rule)

An allocation rule \boldsymbol{x} for a single-parameter environment is monotone if for every agent i and bids \boldsymbol{b}_{-i} by other agents, the allocation $x_{i}\left(z, \boldsymbol{b}_{-i}\right)$ to i is nondecreasing in her bid z.

Bidding higher can only get you more stuff!
So, how about awarding the item to the second-highest bidder?
You raise your bid, you might lose the chance of getting it!

Outline

Sealed-Bid Auctions
First-Price Auctions
Second-Price Auctions Case Study: Sponsored Search Auctions

Myerson's Lemma
Single-Parameter Environments
The Lemma
Application to the Sponsored Search Auction

The Myerson's Lemma

Theorem (Myerson's Lemma)
Fix a single-parameter environment.
(i) An allocation rule \boldsymbol{x} is implementable if and only if it is monotone.
(ii) If \boldsymbol{x} is monotone, then there is a unique payment rule for which the direct-revelation mechanism ($\boldsymbol{x}, \boldsymbol{p})$ is DSIC and $p_{i}(\boldsymbol{b})=0$ whenever $b_{i}=0$.
(iii) The payment rule in (ii) is given by an explicit formula.
"Monotone" is more operational.

Allocation curves: allocation as a function of bids

Figures from Tim Roughgarden's lecture notes.

Constraints from DSIC

Consider $0 \leq z<y$.
Say agent i has a private valuation z and free to submit a false bid y or agent i has a private valuation y and free to submit a false bid z

DSIC: Bidding truthfully brings maximum utility.

$$
\begin{aligned}
z \cdot x(z)-p(z) & \geq z \cdot x(y)-p(y) \\
y \cdot x(y)-p(y) & \geq y \cdot x(z)-p(z)
\end{aligned}
$$

Constraints from DSIC

Consider $0 \leq z<y$.
Say agent i has a private valuation z and free to submit a false bid y or agent i has a private valuation y and free to submit a false bid z

DSIC: Bidding truthfully brings maximum utility.

$$
\begin{aligned}
z \cdot x(z)-p(z) & \geq z \cdot x(y)-p(y) \\
y \cdot x(y)-p(y) & \geq y \cdot x(z)-p(z)
\end{aligned}
$$

So

$$
z \cdot(x(y)-x(z)) \leq p(y)-p(z) \leq y \cdot(x(y)-x(z)) .
$$

Constraints from DSIC

Consider $0 \leq z<y$.
Say agent i has a private valuation z and free to submit a false bid y or agent i has a private valuation y and free to submit a false bid z

DSIC: Bidding truthfully brings maximum utility.

$$
\begin{aligned}
z \cdot x(z)-p(z) & \geq z \cdot x(y)-p(y) \\
y \cdot x(y)-p(y) & \geq y \cdot x(z)-p(z)
\end{aligned}
$$

So

$$
z \cdot(x(y)-x(z)) \leq p(y)-p(z) \leq y \cdot(x(y)-x(z)) .
$$

$p(y)-p(z)$ can be bounded below and above.

Constraints from DSIC

Consider $0 \leq z<y$.
Say agent i has a private valuation z and free to submit a false bid y or agent i has a private valuation y and free to submit a false bid z

DSIC: Bidding truthfully brings maximum utility.

$$
\begin{aligned}
z \cdot x(z)-p(z) & \geq z \cdot x(y)-p(y) \\
y \cdot x(y)-p(y) & \geq y \cdot x(z)-p(z)
\end{aligned}
$$

So

$$
z \cdot(x(y)-x(z)) \leq p(y)-p(z) \leq y \cdot(x(y)-x(z)) .
$$

$p(y)-p(z)$ can be bounded below and above.
\Rightarrow every implementable allocation rule is monotone (why?)

Case: x is a piecewise constant function

$$
z \cdot(x(y)-x(z)) \leq p(y)-p(z) \leq y \cdot(x(y)-x(z)) .
$$

- Try: fix z and let y tend to z.

Case: x is a piecewise constant function

$$
z \cdot(x(y)-x(z)) \leq p(y)-p(z) \leq y \cdot(x(y)-x(z)) .
$$

- Try: fix z and let y tend to z.
- Taking $y \rightarrow z$
\Rightarrow left-hand and right-hand sides $\rightarrow 0$ if there is no jump in x at z.

Case: x is a piecewise constant function

$$
z \cdot(x(y)-x(z)) \leq p(y)-p(z) \leq y \cdot(x(y)-x(z)) .
$$

- Try: fix z and let y tend to z.
- Taking $y \rightarrow z$
\Rightarrow left-hand and right-hand sides $\rightarrow 0$ if there is no jump in x at z.

$$
p_{i}\left(b_{i}, \boldsymbol{b}_{-i}\right)=\sum_{j=1}^{\ell} z_{j} \cdot\left[\text { jump in } x_{i}\left(\cdot, \boldsymbol{b}_{-i}\right) \text { at } z_{j}\right],
$$

where z_{1}, \ldots, z_{ℓ} are breakpoints of $x_{i}\left(\cdot, \boldsymbol{b}_{-i}\right)$ in the range $\left[0, b_{i}\right]$.

Case: x is a piecewise constant function

$$
\begin{gathered}
z \cdot(x(y)-x(z)) \leq p(y)-p(z) \leq y \cdot(x(y)-x(z)) . \\
p_{i}\left(b_{i}, \boldsymbol{b}_{-i}\right)=\sum_{j=1}^{\ell} z_{j} \cdot\left[\text { jump in } x_{i}\left(\cdot, \boldsymbol{b}_{-i}\right) \text { at } z_{j}\right],
\end{gathered}
$$

z_{1}, \ldots, z_{ℓ} : breakpoints of $x_{i}\left(\cdot, \boldsymbol{b}_{-i}\right)$ in $\left[0, b_{i}\right]$.

Case: x is a piecewise constant function

Case: x is a monotone function

$$
z \cdot(x(y)-x(z)) \leq p(y)-p(z) \leq y \cdot(x(y)-x(z))
$$

- Suppose x is differentiable.
- Dividing the inequalities by $y-z$:

Case: x is a monotone function

$$
z \cdot(x(y)-x(z)) \leq p(y)-p(z) \leq y \cdot(x(y)-x(z))
$$

- Suppose x is differentiable.
- Dividing the inequalities by $y-z$:

$$
p^{\prime}(z)=z \cdot x^{\prime}(z) .
$$

Case: x is a monotone function

$$
z \cdot(x(y)-x(z)) \leq p(y)-p(z) \leq y \cdot(x(y)-x(z)) .
$$

- Suppose x is differentiable.
- Dividing the inequalities by $y-z$:

$$
\begin{gathered}
p^{\prime}(z)=z \cdot x^{\prime}(z) . \\
p_{i}\left(b_{i}, \boldsymbol{b}_{-i}\right)=\int_{0}^{b_{i}} z \cdot \frac{d}{d z} x_{i}\left(z, \boldsymbol{b}_{-i}\right) d z .
\end{gathered}
$$

Outline

Single-Item Auctions

Sealed-Bid Auctions
First-Price Auctions
Second-Price Auctions
Case Study: Sponsored Search Auctions
Myerson's Lemma
Single-Parameter Environments
The Lemma
Application to the Sponsored Search Auction

Apply to Sponsored Search Auction

The allocation rule is piecewise.
re-index the bidders: $b_{1} \geq b_{2} \geq \ldots \geq b_{n}$.

Apply to Sponsored Search Auction

The allocation rule is piecewise.
re-index the bidders: $b_{1} \geq b_{2} \geq \ldots \geq b_{n}$.

Apply to Sponsored Search Auction

The allocation rule is piecewise.
re-index the bidders: $b_{1} \geq b_{2} \geq \ldots \geq b_{n}$.

Exercise 1 (5\%)

- Recall that in the model of sponsored search auctions:
- There are k slots, the j th slot has a click-through rate (CTR) of α_{j} (nonincreasing in j).
- The utility of bidder i in slot j is $\alpha_{j}\left(v_{i}-p_{j}\right)$, where v_{i} is the private value-per-click of the bidder and p_{j} is the price charged per-click in slot j.
- The Generalized Second Price (GSP) Auction is defined as follows:

Exercise 1 (5\%) (contd.)

The Generalized Second Price (GSP) Auction

1. Rank advertisers from highest to lowest bid; assume without loss of generality that $b_{1} \geq b_{2} \geq \cdots \geq b_{n}$.
2. For $i=1,2, \ldots, k$, assign the i th bidder to the i slot.
3. For $i=1,2, \ldots, k$, charge the i th bidder a price of b_{i+1} per click.
(a) Prove that for every $k \geq 2$ and sequence $\alpha_{1} \geq \cdots \geq \alpha_{k}>0$ of CTRs, the GSP auction is NOT DSIC. (Hint: Find out an example.)
(b) A bid profile \boldsymbol{b} with $b_{1} \geq \cdots \geq b_{n}$ is envy-free if for every bidder i and slot $j \neq i$,

$$
\alpha_{i}\left(v_{i}-b_{i+1}\right) \geq \alpha_{j}\left(v_{i}-b_{j+1}\right) .
$$

Please verify that every envy-free bid profile is an equilibrium.

