Auctions & Mechanism Design Basics

Joseph Chuang-Chieh Lin

Dept. CSIE, Tamkang University, Taiwan

- We study about a kind of science of *rule-making*.
- ► To make it simple, we first consider single-item auctions.
- We will go over some basics about first-price auctions and second-price auctions.
- Also, we will talk about
 - incentive guarantees,
 - strong performance guarantees, and
 - computational efficiency

in an auction.

We will end the discussion with Myerson's Lemma.

イロッ イヨッ イヨッ

Outline

Single-Item Auctions

Sealed-Bid Auctions

First-Price Auctions Second-Price Auctions Case Study: Sponsored Search Auctions

Myerson's Lemma

Single-Parameter Environments The Lemma Application to the Sponsored Search Auction

Э

ヘロン 人口ン 人口ン 人口ン

Single-Item Auctions

Outline

Single-Item Auctions

Sealed-Bid Auctions

First-Price Auctions Second-Price Auctions Case Study: Sponsored Search Auctions

Myerson's Lemma

Single-Parameter Environments The Lemma Application to the Sponsored Search Auctio

э

ヘロン 人口ン 人口ン 人口ン

Consider a seller with a single item.

For example, an antiquated furniture.

Э

イロン 人間 とくほ とくほん

Consider a seller with a single item.

For example, an antiquated furniture.

Assume that there are *n* bidders who are strategic.

Bidders are interested in buying this furniture.

Э

・ロット (四マ・ハヨマ)

Consider a seller with a single item.

- For example, an antiquated furniture.
- Assume that there are *n* bidders who are strategic.
 - Bidders are interested in buying this furniture.
- We want to reason about bidder behavior in the auction.

э.

ヘロマス ロマス 日本 人口 マイロマ

Consider a seller with a single item.

- For example, an antiquated furniture.
- Assume that there are *n* bidders who are strategic.
 - Bidders are interested in buying this furniture.
- We want to reason about bidder behavior in the auction.
- Let's say each bidder i has a nonnegative valuation v_i for this item being sold.

Э

×日・×ヨ・×ヨ・

Consider a seller with a single item.

- For example, an antiquated furniture.
- Assume that there are n bidders who are strategic.
 - Bidders are interested in buying this furniture.
- We want to reason about bidder behavior in the auction.
- Let's say each bidder i has a nonnegative valuation v_i for this item being sold.
 - Her maximum willingness-to-pay for it.

Э

Consider a seller with a single item.

- For example, an antiquated furniture.
- Assume that there are n bidders who are strategic.
 - Bidders are interested in buying this furniture.
- We want to reason about bidder behavior in the auction.
- Let's say each bidder i has a nonnegative valuation v_i for this item being sold.
 - Her maximum willingness-to-pay for it.
 - v_i is private.

э.

ヘロマス ロマス 日本 人口 マイロマ

Consider a seller with a single item.

- For example, an antiquated furniture.
- Assume that there are n bidders who are strategic.
 - Bidders are interested in buying this furniture.
- We want to reason about bidder behavior in the auction.
- Let's say each bidder i has a nonnegative valuation v_i for this item being sold.
 - Her maximum willingness-to-pay for it.
 - v_i is private.
 - Unknown to the seller and other bidders.

I DOG

イロン イロン イロン イロン

Each bidder wants to acquire the item as cheaply as possible.

Э

ヘロマス 留マス ほどん ほう

- Each bidder wants to acquire the item as cheaply as possible.
- It would be great if

Э

イロン イボン イヨン

- Each bidder wants to acquire the item as cheaply as possible.
- lt would be great if the selling price is $\leq v_i$.

Э

・ロット (四) (日) (日)

- Each bidder wants to acquire the item as cheaply as possible.
- lt would be great if the selling price is $\leq v_i$.
- What's the utility of bidder i?

イロン イボン イヨン

- Each bidder wants to acquire the item as cheaply as possible.
- lt would be great if the selling price is $\leq v_i$.
- What's the utility of bidder i?
 - $\blacktriangleright \ \ \mathsf{lf she loses} \Rightarrow$

Э

イロト (四) () () ()

- Each bidder wants to acquire the item as cheaply as possible.
- lt would be great if the selling price is $\leq v_i$.
- What's the utility of bidder i?
 - If she loses \Rightarrow 0.

イロト (四) () () ()

- Each bidder wants to acquire the item as cheaply as possible.
- lt would be great if the selling price is $\leq v_i$.
- What's the utility of bidder i?
 - If she loses \Rightarrow 0.
 - If she wins \Rightarrow

э.

イロン イボン イヨン イヨン

- Each bidder wants to acquire the item as cheaply as possible.
- lt would be great if the selling price is $\leq v_i$.
- What's the utility of bidder i?
 - If she loses \Rightarrow 0.
 - If she wins $\Rightarrow v_i p_i$.

э.

ヘロマ 人間マ 人口マ 人口マ

Outline

Single-Item Auctions

Sealed-Bid Auctions

First-Price Auctions Second-Price Auctions Case Study: Sponsored Search Auctions

Myerson's Lemma

Single-Parameter Environments The Lemma Application to the Sponsored Search Auctio

э

ヘロマ 人間マ 人間マ 人口マ

Sealed-Bid Auctions

Sealed-Bid Auction

- (i) Each bidder *i* privately communicates a bid *b_i* to the seller—in a sealed envelope.
- (ii) The seller decides who gets the item (if any).
- (iii) The seller decides the selling price.

Sealed-Bid Auctions

Sealed-Bid Auction

- (i) Each bidder *i* privately communicates a bid *b_i* to the seller—in a sealed envelope.
- (ii) The seller decides who gets the item (if any).

(iii) The seller decides the selling price.

Step (ii): The selection rule. We consider giving the item to the highest bidder.

・ロット (日) (日) (日)

Outline

Single-Item Auctions

Sealed-Bid Auctions

First-Price Auctions

Second-Price Auctions Case Study: Sponsored Search Auctions

Myerson's Lemma

Single-Parameter Environments The Lemma Application to the Sponsored Search Aucti

э

ヘロン 人口ン ヘビン ヘビン

First-Price auction

First-Price

The winning bidder pays her bid.

But it's hard to reason about.

First-Price auction

First-Price

The winning bidder pays her bid.

- But it's hard to reason about.
- ► Why?

For a bidder: Hard to figure how to bid.

= 990

For a bidder: Hard to figure how to bid.For the seller:

For a bidder: Hard to figure how to bid.For the seller: Hard to predict what will happen.

I DOR

イロン 人間 とくほ とくほ とう

- Suppose that you are participating in the first-price auction.
- Your valuation for the item: the number of your birth month + the day of your birth.

Э

イロン イボン イヨン

- Suppose that you are participating in the first-price auction.
- Your valuation for the item: the number of your birth month + the day of your birth.
 - Your valuation is between 2 and 43.

Э

ヘロマス 留マス ほどん ほう

- Suppose that you are participating in the first-price auction.
- Your valuation for the item: the number of your birth month + the day of your birth.
 - Your valuation is between 2 and 43.
- Suppose that there is another bidder who has the same valuation like you.

Э

・ロット (日) (日) (日)

- Suppose that you are participating in the first-price auction.
- Your valuation for the item: the number of your birth month + the day of your birth.
 - Your valuation is between 2 and 43.
- Suppose that there is another bidder who has the same valuation like you.
 - Would it help to know your opponent's birthday?

Э

イロン 人間 とくほう イヨン

- Suppose that you are participating in the first-price auction.
- Your valuation for the item: the number of your birth month + the day of your birth.
 - Your valuation is between 2 and 43.
- Suppose that there is another bidder who has the same valuation like you.
 - Would it help to know your opponent's birthday?
 - Would your answer change if you knew there were two other bidders rather than one?

Outline

Single-Item Auctions

Sealed-Bid Auctions

First-Price Auctions

Second-Price Auctions

Case Study: Sponsored Search Auctions

Myerson's Lemma

Single-Parameter Environments The Lemma Application to the Sponsored Search Auc

э

ヘロア ヘロア ヘビア ヘビア

eBay/Yahoo auction

If you bid \$100 and win, do you pay \$100?

= 900

イロン 不通 とくほど 不良とう

eBay/Yahoo auction

If you bid \$100 and win, do you pay \$100?
eBay increases your bid on your behalf until
Your maximum bid is reached, or
You are the highest bidder
whichever comes first.

eBay/Yahoo auction

If you bid \$100 and win, do you pay \$100?

- eBay increases your bid on your behalf until
 - Your maximum bid is reached, or
 - You are the highest bidder

whichever comes first.

 For example, if the highest other bid is \$90. You only pay \$90 + ε for some small increment ε.
≈ highest other bid!

Second-Price auction

Second-Price/Vickrey Auction

The highest bidder wins and pays a price equal to the second-highest bid.

Is such a strategy a dominant strategy?

э.

・ロット (日) (日) (日)

Second-Price auction

Second-Price/Vickrey Auction

The highest bidder wins and pays a price equal to the second-highest bid.

- Is such a strategy a dominant strategy?
 - The strategy is guaranteed to maximize a bidder's utility no matter what other bidders do.

Э

イロン 不動 とくほ とくほ とう

Truthfully Bidding Is Dominant Here

Proposition (Incentives in Second-Price Auctions)

In a second-price auction, every bidder *i* has a dominant strategy: set the bid $b_i = v_i$, equal to her private valuation.

Proof of the Proposition

- Fix a bidder *i* with valuation v_i .
- **b**: the vector of all bids.
- **b**_i: the vector of **b** with b_i removed.
- * **Goal**: Show that bidder *i*'s utility is maximized by setting $b_i = v_i$.

I DOG

Let $B := \max_{j \neq i} b_j$ denote the highest bid by some other bidder.

Let B := max_{j≠i} b_j denote the highest bid by some other bidder.
If b_i < B, then

Let B := max_{j≠i} b_j denote the highest bid by some other bidder.
If b_i < B, then i loses and receive utility

I DOG

イロン イボン イヨン

- Let $B := \max_{j \neq i} b_j$ denote the highest bid by some other bidder.
- If $b_i < B$, then *i* loses and receive utility 0.
- ▶ If $b_i \ge B$, then *i*

- Let $B := \max_{j \neq i} b_j$ denote the highest bid by some other bidder.
- If $b_i < B$, then *i* loses and receive utility 0.
- ▶ If $b_i \ge B$, then *i* wins at price

= nar

イロン 不動 とくほ とくほ とう

- Let $B := \max_{j \neq i} b_j$ denote the highest bid by some other bidder.
- If $b_i < B$, then *i* loses and receive utility 0.
- ▶ If $b_i \ge B$, then *i* wins at price *B* and receives utility

I DOG

イロン 不動 とくほ とくほ とう

- Let $B := \max_{j \neq i} b_j$ denote the highest bid by some other bidder.
- If $b_i < B$, then *i* loses and receive utility 0.
- ▶ If $b_i \ge B$, then *i* wins at price *B* and receives utility $v_i B$.

- Let $B := \max_{j \neq i} b_j$ denote the highest bid by some other bidder.
- ▶ If $b_i < B$, then *i* loses and receive utility 0.
- ▶ If $b_i \ge B$, then *i* wins at price *B* and receives utility $v_i B$.
- Then, we consider two cases:

- Let $B := \max_{j \neq i} b_j$ denote the highest bid by some other bidder.
- ▶ If $b_i < B$, then *i* loses and receive utility 0.
- ▶ If $b_i \ge B$, then *i* wins at price *B* and receives utility $v_i B$.
- Then, we consider two cases:
 - If $v_i < B$, the maximum utility that bidder *i* can obtain is

- Let $B := \max_{j \neq i} b_j$ denote the highest bid by some other bidder.
- ▶ If $b_i < B$, then *i* loses and receive utility 0.
- ▶ If $b_i \ge B$, then *i* wins at price *B* and receives utility $v_i B$.
- Then, we consider two cases:

▶ If $v_i < B$, the maximum utility that bidder *i* can obtain is max $\{0, v_i - B\} = 0$.

- Let $B := \max_{j \neq i} b_j$ denote the highest bid by some other bidder.
- ▶ If $b_i < B$, then *i* loses and receive utility 0.
- ▶ If $b_i \ge B$, then *i* wins at price *B* and receives utility $v_i B$.
- Then, we consider two cases:
 - ▶ If $v_i < B$, the maximum utility that bidder *i* can obtain is max $\{0, v_i B\} = 0$.
 - \Rightarrow Bid truthfully (and then loses).

- Let $B := \max_{j \neq i} b_j$ denote the highest bid by some other bidder.
- ▶ If $b_i < B$, then *i* loses and receive utility 0.
- ▶ If $b_i \ge B$, then *i* wins at price *B* and receives utility $v_i B$.
- Then, we consider two cases:
 - If $v_i < B$, the maximum utility that bidder *i* can obtain is max $\{0, v_i B\} = 0$.
 - \Rightarrow Bid truthfully (and then loses).
 - If $v_i \ge B$, the maximum utility that bidder *i* can obtain is

- Let $B := \max_{j \neq i} b_j$ denote the highest bid by some other bidder.
- ▶ If $b_i < B$, then *i* loses and receive utility 0.
- ▶ If $b_i \ge B$, then *i* wins at price *B* and receives utility $v_i B$.
- Then, we consider two cases:
 - If $v_i < B$, the maximum utility that bidder *i* can obtain is max $\{0, v_i B\} = 0$.
 - \Rightarrow Bid truthfully (and then loses).
 - If v_i ≥ B, the maximum utility that bidder i can obtain is max{0, v_i − B} = v_i − B.

- Let $B := \max_{j \neq i} b_j$ denote the highest bid by some other bidder.
- ▶ If $b_i < B$, then *i* loses and receive utility 0.
- ▶ If $b_i \ge B$, then *i* wins at price *B* and receives utility $v_i B$.
- Then, we consider two cases:
 - ▶ If $v_i < B$, the maximum utility that bidder *i* can obtain is max $\{0, v_i B\} = 0$.
 - \Rightarrow Bid truthfully (and then loses).
 - If v_i ≥ B, the maximum utility that bidder i can obtain is max{0, v_i − B} = v_i − B.
 - \Rightarrow Bid truthfully (and then wins).

Proposition 2 (Nonnegative Utility)

In a second-price auction, every truthfully bidder is guaranteed nonnegative utility.

Losers receive utility 0.

How about the winners?

Э

イロン 人間 とくほう イヨン

Proposition 2 (Nonnegative Utility)

In a second-price auction, every truthfully bidder is guaranteed nonnegative utility.

- Losers receive utility 0.
- How about the winners?
 - The utility is $v_i p$, where p is the 2nd highest bid.

3

イロン 不動 とくほ とくほ とう

Proposition 2 (Nonnegative Utility)

In a second-price auction, every truthfully bidder is guaranteed nonnegative utility.

- Losers receive utility 0.
- How about the winners?
 - The utility is $v_i p$, where p is the 2nd highest bid.
 - ▶ : bidder *i* wins and bids her true valuation v_i , so $p \le v_i$

Proposition 2 (Nonnegative Utility)

In a second-price auction, every truthfully bidder is guaranteed nonnegative utility.

- Losers receive utility 0.
- How about the winners?
 - The utility is $v_i p$, where p is the 2nd highest bid.
 - ▶ : bidder *i* wins and bids her true valuation v_i , so $p \le v_i \Rightarrow v_i p \ge 0$.

Second-Price Single-Item Auctions are "ideal"

Definition (Dominant-Strategy Incentive Compatible)

An auction is dominant-strategy incentive compatible (DSIC) if

- truthful bidding is a dominant strategy for every bidder, and
- truthful bidders always obtain nonnegative utility.

Second-Price Single-Item Auctions are "ideal"

Definition (Dominant-Strategy Incentive Compatible)

An auction is dominant-strategy incentive compatible (DSIC) if

- truthful bidding is a dominant strategy for every bidder, and
- truthful bidders always obtain nonnegative utility.

Social Welfare

The social welfare of an outcome of a single-item auction is

$$\sum_{i=1}^n v_i x_i.$$

where $\sum_{i=1}^{n} x_i \leq 1$; $x_i = 1$ if bidder *i* wins and 0 if she loses.

Second-Price Single-Item Auctions are "ideal" (contd.)

Social Welfare

The social welfare of an outcome of a single-item auction is

$$\sum_{i=1}^n v_i x_i.$$

where $\sum_{i=1}^{n} x_i \leq 1$; $x_i = 1$ if bidder *i* wins and 0 if she loses.

So such an auction is welfare maximizing if bids are truthful.

Second-Price Single-Item Auctions are "ideal" (contd.)

Theorem

A second-price single-item auction satisfies:

(1) DSIC.

(2) Welfare maximizing.

(3) It can be implemented in polynomial time.

```
In fact, (3) is linear.
```

Second-Price Single-Item Auctions are "ideal" (contd.)

Theorem

A second-price single-item auction satisfies:

- (1) DSIC. (strong incentive guarantees)
- (2) Welfare maximizing. (strong performance guarantees)
- (3) It can be implemented in polynomial time. (computational efficiency)

In fact, (3) is linear.

・ロット (日) (日) (日) (日) [日)

Outline

Single-Item Auctions

Sealed-Bid Auctions

First-Price Auctions Second-Price Auctions Case Study: Sponsored Search Auctions

Myerson's Lemma

Single-Parameter Environments The Lemma Application to the Sponsored Search Auctio

э

ヘロマス 白マス 小田 マスト

Background

The Social Dilemma (2020) - Trailer

- ► Web search results:
 - relevant to your query (by an algorithm, e.g., PageRank).
 - pops out a list of sponsored links.
 - They are paid by advertisers.
- Every time you give a search query into a search engine, an auction is run in real time to decide
 - which advertiser's links are shown,
 - how these links are arranged visually,
 - what the advertisers are charged.

I DOG

ヘロマ ヘロマ ヘビマ ヘロマー

- Let's say the items for sale are k "slots" on a search results page.
- Bidders: the advertisers who have a bid on the keyword that was searched on.
 - On the keyword, "university", NTU, NYCU, NCKU, TKU, etc., might be the bidders.

Э

・ロット (日) (日) (日)

- Let's say the items for sale are k "slots" on a search results page.
- Bidders: the advertisers who have a bid on the keyword that was searched on.
 - On the keyword, "university", NTU, NYCU, NCKU, TKU, etc., might be the bidders.
 - On the keyword, "camera", Nikon, Canon, Sony, etc., might be the bidders.

- Let's say the items for sale are k "slots" on a search results page.
- Bidders: the advertisers who have a bid on the keyword that was searched on.
 - On the keyword, "university", NTU, NYCU, NCKU, TKU, etc., might be the bidders.
 - On the keyword, "camera", Nikon, Canon, Sony, etc., might be the bidders.
 - On the keyword, "SUV", Toyota, Ford, Honda, Porsche, etc., might be the bidders.

3

イロン 不動 とくほ とくほ とう

- Let's say the items for sale are k "slots" on a search results page.
- Bidders: the advertisers who have a bid on the keyword that was searched on.
 - On the keyword, "university", NTU, NYCU, NCKU, TKU, etc., might be the bidders.
 - On the keyword, "camera", Nikon, Canon, Sony, etc., might be the bidders.
 - On the keyword, "SUV", Toyota, Ford, Honda, Porsche, etc., might be the bidders.
- Let's say the items are not identical.
 - Higher slots are more valuable. What do you think?

I DOG

イロン 不動 とくほ とくほ とう

• Consider the click-through-rates (CTRs) α_j of slot *j*.

- The probability that the user clicks on this slot.
- Assumption: $\alpha_1 \geq \alpha_2 \geq \ldots \alpha_k$.

I DOG

イロト イヨト イヨト イヨト

Multiple Items for Sponsored Search Auctions

• Consider the click-through-rates (CTRs) α_j of slot j.

- The probability that the user clicks on this slot.
- Assumption: $\alpha_1 \geq \alpha_2 \geq \ldots \alpha_k$.

Each advertiser *i* has a quality score β_i .

• The CTR of advertiser *i* in slot *j*: $\beta_i \alpha_j$.

ヘロン 人間 とくほ とくほ とうほう

Multiple Items for Sponsored Search Auctions

- Consider the click-through-rates (CTRs) α_j of slot j.
 - The probability that the user clicks on this slot.
 - Assumption: $\alpha_1 \geq \alpha_2 \geq \ldots \alpha_k$.
- Each advertiser *i* has a quality score β_i .
 - The CTR of advertiser *i* in slot *j*: $\beta_i \alpha_j$.
- The expected value derived by advertiser *i* from slot *j*: $v_i \alpha_j$

Multiple Items for Sponsored Search Auctions

- Consider the click-through-rates (CTRs) α_j of slot j.
 - The probability that the user clicks on this slot.
 - Assumption: $\alpha_1 \geq \alpha_2 \geq \ldots \alpha_k$.
- Each advertiser *i* has a quality score β_i .
 - The CTR of advertiser *i* in slot *j*: $\beta_i \alpha_j$.
- The expected value derived by advertiser *i* from slot *j*: $v_i \alpha_j$
- The social welfare is $\sum_{i=1}^{n} v_i x_i$.
 - \blacktriangleright x_i: the CTR of the slot to which bidder *i* is assigned.
 - $x_i = 0$: bidder *i* is not assigned to a slot.
 - Each slot can only be assigned to one bidder; each bidder gets only one slot.

Our Design Approach

- Who wins what?Who pays what?
- ► The payment.

E DQC

イロン イロン イヨン イヨン

Our Design Approach

- Who wins what?
- Who pays what?
- ► The payment.
 - If the payments are not just right, then the strategic bidders will game the system.

э.

・ロット (日) (日) (日)

Our Design Approach

Design Steps

- (a): Assume that the bidders bid truthfully. Then, how should we assign bidders to slots so that property (2) and (3) holds?
- (b): Given the answer of above, how should we set selling prices so that property (1) holds?

Step (a)

Given truthful bids. For i = 1, 2, ..., k, assign the ith highest bid to the ith best slot.

Step (a)

- Given truthful bids. For i = 1, 2, ..., k, assign the ith highest bid to the ith best slot.
- You can prove that this assignment achieves the maximum social welfare as an exercise.

Step (b)

There is an analog of the second-price rule.

- ► DSIC.
- ★ Myerson's lemma.

Step (b)

There is an analog of the second-price rule.

- DSIC.
- ★ Myerson's lemma.

A powerful and general tool for implementing this second step.

Outline

Single-Item Auctions

Sealed-Bid Auctions

First-Price Auctions Second-Price Auctions Case Study: Sponsored Search Auctions

Myerson's Lemma

Single-Parameter Environments The Lemma Application to the Sponsored Search Auction

э

ヘロト ヘロト ヘヨト ヘヨト

Outline

Single-Item Auctions

Sealed-Bid Auctions

First-Price Auctions Second-Price Auctions Case Study: Sponsored Search Auctions

Myerson's Lemma Single-Parameter Environments

The Lemma Application to the Sponsored Search Auction

э.

ヘロア ヘロア ヘビア ヘビア

Single-Parameter Environments

Consider a more generalized and abstract setting:

Single-Parameter Environments

- n agents (e.g., bidders).
- ▶ A private valuation $v_i \ge 0$ for each agent *i* (per unit of stuff).
- A feasible set $X = \{(x_1, x_2, \dots, x_n) \mid x_i \in \mathbb{R}\} \subseteq \mathbb{R}^n$.
 - > x_i : amount of stuff given to agent *i*.

Single-Parameter Environments (Examples)

Single-item auction:

•
$$\sum_{i=1}^{n} X_i \le 1$$
, and $x_i \in \{0, 1\}$ for each *i*.

Single-Parameter Environments (Examples)

Single-item auction:

• $\sum_{i=1}^{n} X_i \leq 1$, and $x_i \in \{0,1\}$ for each *i*.

k-Unit auction:

• k identical items, $\sum_{i=1}^{n} X_i \leq k$, and $x_i \in \{0, 1\}$ for each i.

Single-Parameter Environments (Examples)

Single-item auction:

• $\sum_{i=1}^{n} X_i \leq 1$, and $x_i \in \{0,1\}$ for each *i*.

k-Unit auction:

- k identical items, $\sum_{i=1}^{n} X_i \leq k$, and $x_i \in \{0, 1\}$ for each i.
- Sponsored Search Auction:
 - X: the set of *n*-vectors \Leftrightarrow assignments of bidders to slots.
 - ▶ Each slot (resp., bidder) is assigned to ≤ 1 bidder (resp., slot).
 - The component $x_i = \alpha_j$: bidder *i* is assigned to slot *j*.
 - α_j : the click-through rate of slot *j*.
 - Assume that the quality score $\beta_i = 1$ for all *i*.

Allocation and Payment Rules

Choices to make in a sealed-bid auction

- Collect bids $\boldsymbol{b} = (b_1, \ldots, b_n)$.
- ▶ Allocation Rule: Choose a feasible $\mathbf{x}(\mathbf{b}) \in X \subseteq \mathbb{R}^n$.

▶ Payment Rule: Choose payments $p(b) \in \mathbb{R}^n$.

A direct-revelation mechanism.

Allocation and Payment Rules

Choices to make in a sealed-bid auction

- Collect bids $\boldsymbol{b} = (b_1, \ldots, b_n)$.
- ▶ Allocation Rule: Choose a feasible $\mathbf{x}(\mathbf{b}) \in X \subseteq \mathbb{R}^n$.

▶ Payment Rule: Choose payments $\boldsymbol{p}(\boldsymbol{b}) \in \mathbb{R}^n$.

A direct-revelation mechanism.

Example of *indirect mechanism*: iterative ascending auction.

Allocation and Payment Rules (contd.)

With allocation rule \boldsymbol{x} and payment rule \boldsymbol{p} ,

- > agent *i* receives utility $u_i(\mathbf{b}) = v_i \cdot x_i(\mathbf{b}) p_i(\mathbf{b})$.
- $\triangleright p_i(\boldsymbol{b}) \in [0, b_i \cdot x_i(\boldsymbol{b})].$
 - $p_i(\mathbf{b}) \ge 0$: prohibiting the seller from paying the agents.
 - ▶ $p_i(\mathbf{b}) \le b_i \cdot x_i(\mathbf{b})$: a truthful agent receives nonnegative utility.

Allocation and Payment Rules (contd.)

With allocation rule \boldsymbol{x} and payment rule \boldsymbol{p} ,

- > agent *i* receives utility $u_i(\mathbf{b}) = v_i \cdot x_i(\mathbf{b}) p_i(\mathbf{b})$.
- $\triangleright p_i(\boldsymbol{b}) \in [0, b_i \cdot x_i(\boldsymbol{b})].$
 - $p_i(\mathbf{b}) \ge 0$: prohibiting the seller from paying the agents.
 - ▶ $p_i(\mathbf{b}) \leq b_i \cdot x_i(\mathbf{b})$: a truthful agent receives nonnegative utility. Why?

Definition (Implementable Allocation Rule)

An allocation rule x for a single-parameter environment is implementable if there is a payment rule p such that the direct-revelation mechanism (x, p) is DSIC.

Definition (Implementable Allocation Rule)

An allocation rule x for a single-parameter environment is implementable if there is a payment rule p such that the direct-revelation mechanism (x, p) is DSIC.

The rules that extend to DSIC mechanisms.

э.

ヘロマ 人間マ 人口マ 人口マー

Definition (Implementable Allocation Rule)

An allocation rule x for a single-parameter environment is implementable if there is a payment rule p such that the direct-revelation mechanism (x, p) is DSIC.

The rules that extend to DSIC mechanisms.

Definition (Monotone Allocation Rule)

An allocation rule x for a single-parameter environment is monotone if for every agent i and bids \mathbf{b}_{-i} by other agents, the allocation $x_i(z, \mathbf{b}_{-i})$ to i is nondecreasing in her bid z.

Definition (Implementable Allocation Rule)

An allocation rule x for a single-parameter environment is implementable if there is a payment rule p such that the direct-revelation mechanism (x, p) is DSIC.

The rules that extend to DSIC mechanisms.

Definition (Monotone Allocation Rule)

An allocation rule x for a single-parameter environment is monotone if for every agent i and bids \mathbf{b}_{-i} by other agents, the allocation $x_i(z, \mathbf{b}_{-i})$ to i is nondecreasing in her bid z.

Bidding higher can only get you more stuff!

Definition (Implementable Allocation Rule)

An allocation rule x for a single-parameter environment is implementable if there is a payment rule p such that the direct-revelation mechanism (x, p) is DSIC.

The rules that extend to DSIC mechanisms.

Definition (Monotone Allocation Rule)

An allocation rule x for a single-parameter environment is monotone if for every agent i and bids \mathbf{b}_{-i} by other agents, the allocation $x_i(z, \mathbf{b}_{-i})$ to i is nondecreasing in her bid z.

Bidding higher can only get you more stuff! So, how about awarding the item to the second-highest bidder?

Definition (Implementable Allocation Rule)

An allocation rule x for a single-parameter environment is implementable if there is a payment rule p such that the direct-revelation mechanism (x, p) is DSIC.

The rules that extend to DSIC mechanisms.

Definition (Monotone Allocation Rule)

An allocation rule x for a single-parameter environment is monotone if for every agent i and bids \mathbf{b}_{-i} by other agents, the allocation $x_i(z, \mathbf{b}_{-i})$ to i is nondecreasing in her bid z.

Bidding higher can only get you more stuff! So, how about awarding the item to the second-highest bidder? You raise your bid, you might lose the chance of getting it!

Outline

Single-Item Auctions

Sealed-Bid Auctions

First-Price Auctions Second-Price Auctions Case Study: Sponsored Search Auctions

Myerson's Lemma

Single-Parameter Environments The Lemma

э.

ヘロト ヘロト ヘヨト ヘヨト

Theorem (Myerson's Lemma)

Fix a single-parameter environment.

- (i) An allocation rule x is implementable if and only if it is monotone.
- (ii) If \boldsymbol{x} is monotone, then there is a unique payment rule for which the direct-revelation mechanism $(\boldsymbol{x}, \boldsymbol{p})$ is DSIC and $p_i(\boldsymbol{b}) = 0$ whenever $b_i = 0$.
- (iii) The payment rule in (ii) is given by an explicit formula.

"Monotone" is more operational.

・ロット (四)・ (日)・ (日)・

Allocation curves: allocation as a function of bids

Figures from Tim Roughgarden's lecture notes.

э.

イロン 不得 とくほう イヨン

Consider $0 \le z < y$.

Say agent i has a private valuation z and free to submit a false bid y or agent i has a private valuation y and free to submit a false bid z

DSIC: Bidding truthfully brings maximum utility.

Consider $0 \le z < y$.

Say agent i has a private valuation z and free to submit a false bid y or agent i has a private valuation y and free to submit a false bid z

DSIC: Bidding truthfully brings maximum utility.

So

$$z \cdot (x(y) - x(z)) \leq p(y) - p(z) \leq y \cdot (x(y) - x(z)).$$

Consider $0 \le z < y$.

Say agent i has a private valuation z and free to submit a false bid y or agent i has a private valuation y and free to submit a false bid z

DSIC: Bidding truthfully brings maximum utility.

$$z \cdot x(z) - p(z) \ge z \cdot x(y) - p(y)$$

 $y \cdot x(y) - p(y) \ge y \cdot x(z) - p(z)$

So

$$z \cdot (x(y) - x(z)) \leq p(y) - p(z) \leq y \cdot (x(y) - x(z)).$$

p(y) - p(z) can be bounded below and above.

Consider $0 \le z < y$.

Say agent i has a private valuation z and free to submit a false bid y or agent i has a private valuation y and free to submit a false bid z

DSIC: Bidding truthfully brings maximum utility.

$$z \cdot x(z) - p(z) \ge z \cdot x(y) - p(y)$$

 $y \cdot x(y) - p(y) \ge y \cdot x(z) - p(z)$

So

$$z \cdot (x(y) - x(z)) \leq p(y) - p(z) \leq y \cdot (x(y) - x(z)).$$

p(y) - p(z) can be bounded below and above.

 \Rightarrow every implementable allocation rule is monotone (why?)

$$z \cdot (x(y) - x(z)) \leq p(y) - p(z) \leq y \cdot (x(y) - x(z)).$$

Try: fix z and let y tend to z.

$$z \cdot (x(y) - x(z)) \leq p(y) - p(z) \leq y \cdot (x(y) - x(z)).$$

- Try: fix z and let y tend to z.
- Taking $y \to z$

 \Rightarrow left-hand and right-hand sides \rightarrow 0 if there is no jump in x at z.

$$z \cdot (x(y) - x(z)) \leq p(y) - p(z) \leq y \cdot (x(y) - x(z)).$$

Taking $y \rightarrow z$ \Rightarrow left-hand and right-hand sides $\rightarrow 0$ if there is no jump in x at z.

$$p_i(b_i,oldsymbol{b}_{-i}) = \sum_{j=1}^\ell z_j \cdot [ext{ jump in } x_i(\cdot,oldsymbol{b}_{-i}) ext{ at } z_j],$$

where z_1, \ldots, z_ℓ are breakpoints of $x_i(\cdot, \boldsymbol{b}_{-i})$ in the range $[0, b_i]$.

$$egin{aligned} &z\cdot(x(y)-x(z))\leq p(y)-p(z)\leq y\cdot(x(y)-x(z))\ &p_i(b_i,oldsymbol{b}_{-i})=\sum_{j=1}^\ell z_j\cdot [ext{ jump in }x_i(\cdot,oldsymbol{b}_{-i}) ext{ at }z_j], \end{aligned}$$

 z_1, \ldots, z_ℓ : breakpoints of $x_i(\cdot, \boldsymbol{b}_{-i})$ in $[0, b_i]$.

= nar

・ロット (日) (日) (日)

Joseph C.-C. Lin

CSIE, TKU, TW

44 / 50

Case: x is a monotone function

$$z \cdot (x(y) - x(z)) \leq p(y) - p(z) \leq y \cdot (x(y) - x(z)).$$

- Suppose x is differentiable.
- **b** Dividing the inequalities by y z:

E DQC

イロト イロト イヨト イヨト

Case: x is a monotone function

$$z \cdot (x(y) - x(z)) \leq p(y) - p(z) \leq y \cdot (x(y) - x(z)).$$

- Suppose x is differentiable.
- Dividing the inequalities by y z:

 $p'(z)=z\cdot x'(z).$

Case: x is a monotone function

$$z \cdot (x(y) - x(z)) \leq p(y) - p(z) \leq y \cdot (x(y) - x(z)).$$

- Suppose x is differentiable.
- Dividing the inequalities by y z:

$$p'(z) = z \cdot x'(z).$$

$$p_i(b_i, \boldsymbol{b}_{-i}) = \int_0^{b_i} z \cdot \frac{d}{dz} x_i(z, \boldsymbol{b}_{-i}) dz.$$

Outline

Single-Item Auctions

Sealed-Bid Auctions

First-Price Auctions Second-Price Auctions Case Study: Sponsored Search Auctions

Myerson's Lemma

Single-Parameter Environments The Lemma

Application to the Sponsored Search Auction

э.

ヘロト ヘロト ヘヨト ヘヨト

Apply to Sponsored Search Auction

The allocation rule is piecewise.

Apply to Sponsored Search Auction

The allocation rule is piecewise.

Apply to Sponsored Search Auction

The allocation rule is piecewise.

Exercise 1 (5%)

- Recall that in the model of sponsored search auctions:
 - There are k slots, the jth slot has a click-through rate (CTR) of α_j (nonincreasing in j).
 - The utility of bidder i in slot j is α_j(v_i p_j), where v_i is the private value-per-click of the bidder and p_j is the price charged per-click in slot j.
- ▶ The Generalized Second Price (GSP) Auction is defined as follows:

Exercise 1 (5%) (contd.)

The Generalized Second Price (GSP) Auction

- 1. Rank advertisers from highest to lowest bid; assume without loss of generality that $b_1 \ge b_2 \ge \cdots \ge b_n$.
- 2. For i = 1, 2, ..., k, assign the *i*th bidder to the *i* slot.
- 3. For i = 1, 2, ..., k, charge the *i*th bidder a price of b_{i+1} per click.
- (a) Prove that for every $k \ge 2$ and sequence $\alpha_1 \ge \cdots \ge \alpha_k > 0$ of CTRs, the GSP auction is NOT DSIC. (*Hint: Find out an example.*)
- (b) A bid profile **b** with $b_1 \ge \cdots \ge b_n$ is envy-free if for every bidder *i* and slot $j \ne i$,

$$\alpha_i(\mathbf{v}_i - \mathbf{b}_{i+1}) \geq \alpha_j(\mathbf{v}_i - \mathbf{b}_{j+1}).$$

Please verify that every envy-free bid profile is an equilibrium.