Equilibrium Concepts

Joseph Chuang-Chieh Lin

Dept. CSIE, Tamkang University, Taiwan

Lecture Notes in Algorithmic Game Theory

30 November 2021

Joseph C.-C. Lin (CSIE, TKU, TW)

Equilibrium Concepts

< □ > < □ > < □ > < □ > < □ > < □ >

1/22

Outline

- Cost Minimization and Payoff Maximization
- 2 Pure Nash Equilibria (PNE)
- Mixed Nash Equilibria (MNE)
- ④ Correlated Equilibria (CE)

A hierarchy of equilibrium concepts

Joseph C.-C. Lin (CSIE, TKU, TW)

Equilibrium Concepts

Outline

Pure Nash Equilibria (PNE)

3 Mixed Nash Equilibria (MNE)

4 Correlated Equilibria (CE)

Joseph C.-C. Lin (CSIE, TKU, TW)

イロト イヨト イヨト イヨト

Cost-Minimization Games

A cost-minimization game has the following ingredients:

- a finite number of k agents;
- a finite set S_i of pure strategies for each agent i;
- a nonnegative cost function C_i(s) for each agent i.
 s ∈ S₁ × S₂ × ··· × S_k: a strategy profile or outcome.

For example, the network creation game.

Payoff-Maximization Games

- A payoff-maximization game has the following ingredients:
- a finite number of k agents;
- a finite set S_i of pure strategies for each agent i;
- a nonnegative payoff function π_i(s) for each agent i.
 s ∈ S₁ × S₂ × · · · × S_k: a strategy profile or outcome.

For example, the Rock-Paper-Scissors game, two-party election game, etc.

Outline

3 Mixed Nash Equilibria (MNE)

4 Correlated Equilibria (CE)

Joseph C.-C. Lin (CSIE, TKU, TW)

A D N A B N A B N A B N

Pure Nash Equilibrium (PNE)

Pure Nash Equilibrium (PNE)

A strategy profile **s** of a cost-minimization game is a pure Nash equilibrium (PNE) if for every agent $i \in \{1, 2, ..., k\}$ and every unilateral deviation $s'_i \in S_i$,

$$C_i(\mathbf{s}) \leq C_i(s'_i, \mathbf{s}_{-i}).$$

• \mathbf{s}_{-i} : the vector **s** with the *i*th component removed.

< ロ > < 同 > < 回 > < 回 >

Outline

Cost Minimization and Payoff Maximization

Pure Nash Equilibria (PNE)

Mixed Nash Equilibria (MNE)

4 Correlated Equilibria (CE)

5 Coarse Correlated Equilibria (CCE)

Joseph C.-C. Lin (CSIE, TKU, TW)

A D N A B N A B N A B N

Mixed Nash Equilibrium (MNE)

Mixed Nash Equilibrium (MNE)

Distributions $\sigma_1, \ldots, \sigma_k$, over strategy sets S_1, \ldots, S_k respectively, of a cost-minimization game constitute a mixed Nash equilibrium (MNE) if for every agent $i \in \{1, 2, \ldots, k\}$ and every unilateral deviation $s'_i \in S_i$,

$$\mathbf{E}_{\mathbf{s}\sim\sigma}[C_i(\mathbf{s})] \leq \mathbf{E}_{\mathbf{s}\sim\sigma}[C_i(s'_i,\mathbf{s}_{-i})].$$

• σ : the product distribution $\sigma_1 \times \cdots \times \sigma_k$.

Joseph C.-C. Lin (CSIE, TKU, TW)

Product of Mixed Strategies

Joseph C.-C. Lin (CSIE, TKU, TW)

30 Nov 2021

11/22

Outline

Cost Minimization and Payoff Maximization

Pure Nash Equilibria (PNE)

3 Mixed Nash Equilibria (MNE)

④ Correlated Equilibria (CE)

Joseph C.-C. Lin (CSIE, TKU, TW)

A D N A B N A B N A B N

Correlated Equilibrium (CE)

Correlated Equilibrium (CE)

A distribution σ on the set $S_1 \times \ldots \times S_k$ of outcomes of a cost-minimization game is a correlated equilibrium (CE) if for every agent $i \in \{1, 2, \ldots, k\}$ and every unilateral deviation $s'_i \in S_i$,

$$\mathbf{E}_{\mathbf{s}\sim\sigma}[C_i(\mathbf{s}) \mid \mathbf{s}_i] \leq \mathbf{E}_{\mathbf{s}\sim\sigma}[C_i(\mathbf{s}'_i, \mathbf{s}_{-i}) \mid \mathbf{s}_i].$$

13/22

Joseph C.-C. Lin (CSIE, TKU, TW)

イロト イヨト イヨト

Equilibrium Concepts Correlated Equilibria (CE)

Stop or Go?

Matrix of costs

	Stop	Go
Stop	1, 1	1, 0
Go	0, 1	5, 5

• Two PNEs.

æ

Joseph C.-C. Lin (CSIE, TKU, TW)

イロト イヨト イヨト イヨト

14 / 22

Equilibrium Concepts Correlated Equilibria (CE)

Stop or Go?

Matrix of costs

	Stop	Go
Stop	1, 1	1, 0
Go	0, 1	5, 5

• Two PNEs.

14 / 22

æ

<ロト <問ト < 目と < 目と

Stop or Go?

Matrix of costs

	Stop	Go
Stop	prob. = 0 1, 1	prob. = 1/2 1 , 0
Go	prob. = $1/2$ 0 , 1	$\begin{array}{l} \text{prob.} = 0\\ 5, 5 \end{array}$

• A CE for example.

• Cannot correspond to a MNE.

15 / 22

Joseph C.-C. Lin (CSIE, TKU, TW)

<ロト <問ト < 目と < 目と

Stop or Go?

Matrix of costs

	Stop	Go
Stop	prob. = 0 1, 1	prob. = 1/2 1 , 0
Go	prob. = $1/2$ 0 , 1	$\begin{array}{l} \text{prob.} = 0\\ 5, 5 \end{array}$

- A CE for example.
- Cannot correspond to a MNE.

э

イロト イポト イヨト イヨト

- A.k.a. Hawk-Dove Game.
 - A model of conflict for two players.

	Dare	Chicken
Dare	0, 0	7, 2
Chicken	2, 7	6, 6

- Two PNE & One MNE.
- The expected utility of each player in the MNE:

Joseph C.-C. Lin (CSIE, TKU, TW)

イロト イヨト イヨト イヨト

- A.k.a. Hawk-Dove Game.
 - A model of conflict for two players.

	Dare	Chicken
Dare	0, 0	7, 2
Chicken	2, 7	6, 6

• Two PNE & One MNE.

• The expected utility of each player in the MNE:

Joseph C.-C. Lin (CSIE, TKU, TW)

< □ > < 同 > < 回 > < 回 > < 回 >

- A.k.a. Hawk-Dove Game.
 - A model of conflict for two players.

	Dare	Chicken
Dare	0, 0	7, 2
Chicken	2, 7	6, 6

- Two PNE & One MNE.
- The expected utility of each player in the MNE:

Joseph C.-C. Lin (CSIE, TKU, TW)

- A.k.a. Hawk-Dove Game.
 - A model of conflict for two players.

	Dare	Chicken
Dare	0, 0	7, 2
Chicken	2, 7	6, 6

- Two PNE & One MNE.
- The expected utility of each player in the MNE: $\frac{1}{2} \cdot \frac{2}{2} \cdot 7 + \frac{2}{2} \cdot \frac{1}{2} \cdot 2 + \frac{2}{2} \cdot \frac{2}{2} \cdot 6 = \frac{14}{2}$.

Joseph C.-C. Lin (CSIE, TKU, TW)

イロト イヨト イヨト イヨト

- A correlated equilibrium.
 - Check that it is an equilibrium if a player is assigned "Dare".
 - Check that it is an equilibrium if a player is assigned "Chicken Out".

	Dare	Chicken
Dare	$\begin{array}{l} \text{prob.} = 0\\ \textbf{0}, \ \textbf{0} \end{array}$	prob. = 1/3 7, 2
Chicken	prob. = $1/3$ 2, 7	prob. = 1/3 6, 6

• The expected utility for each player: $7 \cdot (1/3) + 2 \cdot (1/3) + 6 \cdot (1/3) = 5.$

Joseph C.-C. Lin (CSIE, TKU, TW)

30 Nov 2021

< □ > < □ > < □ > < □ > < □ > < □ >

17 / 22

- A correlated equilibrium.
 - Check that it is an equilibrium if a player is assigned "Dare".
 - Check that it is an equilibrium if a player is assigned "Chicken Out".

	Dare	Chicken
Dare	$\begin{array}{l} \text{prob.} = 0\\ \textbf{0}, \ \textbf{0} \end{array}$	prob. = 1/3 7, 2
Chicken	prob. = $1/3$ 2, 7	prob. $= 1/3$ 6, 6

• The expected utility for each player: $7 \cdot (1/3) + 2 \cdot (1/3) + 6 \cdot (1/3) = 5.$

Joseph C.-C. Lin (CSIE, TKU, TW)

30 Nov 2021

< □ > < □ > < □ > < □ > < □ > < □ >

17 / 22

- A correlated equilibrium.
 - Check that it is an equilibrium if a player is assigned "Dare".
 - Check that it is an equilibrium if a player is assigned "Chicken Out".

	Dare	Chicken
Dare	$\begin{array}{l} \text{prob.} = 0\\ \textbf{0}, \ \textbf{0} \end{array}$	prob. = 1/3 7, 2
Chicken	prob. = $1/3$ 2, 7	prob. = 1/3 6, 6

• The expected utility for each player: $7 \cdot (1/3) + 2 \cdot (1/3) + 6 \cdot (1/3) = 5.$

イロト イヨト イヨト

Outline

Cost Minimization and Payoff Maximization

Pure Nash Equilibria (PNE)

3 Mixed Nash Equilibria (MNE)

4 Correlated Equilibria (CE)

Joseph C.-C. Lin (CSIE, TKU, TW)

A D N A B N A B N A B N

Coarse Correlated Equilibrium (CCE)

Coarse Correlated Equilibrium (CCE)

A distribution σ on the set $S_1 \times \ldots \times S_k$ of outcomes of a cost-minimization game is a correlated equilibrium (CE) if for every agent $i \in \{1, 2, \ldots, k\}$ and every unilateral deviation $s'_i \in S_i$,

$$\mathbf{E}_{\mathbf{s}\sim\sigma}[C_i(\mathbf{s})] \leq \mathbf{E}_{\mathbf{s}\sim\sigma}[C_i(s'_i,\mathbf{s}_{-i})].$$

 $\mathsf{CE} \subseteq \mathsf{CCE}$?

$$\begin{aligned} \mathbf{E}_{\mathbf{s}\sim\sigma}[C_i(\mathbf{s})] &= \sum_{a\in S_i} \mathbf{E}_{\mathbf{s}\sim\sigma}[C_i(\mathbf{s}) \mid s_i = a] \Pr[s_i = a] \\ &\leq \sum_{a\in S_i} \mathbf{E}_{\mathbf{s}\sim\sigma}[C_i(s'_i, \mathbf{s}) \mid s_i = a] \Pr[s_i = a] \\ &= \mathbf{E}_{\mathbf{s}\sim\sigma}[C_i(s'_i, \mathbf{s}_{-i})] \end{aligned}$$

Coarse Correlated Equilibrium (CCE)

Coarse Correlated Equilibrium (CCE)

A distribution σ on the set $S_1 \times \ldots \times S_k$ of outcomes of a cost-minimization game is a correlated equilibrium (CE) if for every agent $i \in \{1, 2, \ldots, k\}$ and every unilateral deviation $s'_i \in S_i$,

$$\mathbf{E}_{\mathbf{s}\sim\sigma}[C_i(\mathbf{s})] \leq \mathbf{E}_{\mathbf{s}\sim\sigma}[C_i(s'_i,\mathbf{s}_{-i})].$$

 $\mathsf{CE}\subseteq\mathsf{CCE?}$

$$\begin{aligned} \mathbf{E}_{\mathbf{s}\sim\sigma}[C_i(\mathbf{s})] &= \sum_{a\in S_i} \mathbf{E}_{\mathbf{s}\sim\sigma}[C_i(\mathbf{s}) \mid s_i = a] \Pr[s_i = a] \\ &\leq \sum_{a\in S_i} \mathbf{E}_{\mathbf{s}\sim\sigma}[C_i(s'_i, \mathbf{s}) \mid s_i = a] \Pr[s_i = a] \\ &= \mathbf{E}_{\mathbf{s}\sim\sigma}[C_i(s'_i, \mathbf{s}_{-i})] \end{aligned}$$

	А	В	С
Α	prob. = $1/3$ 1, 1	-1, -1	0, 0
В	-1, -1	prob. = 1/3 1, 1	0, 0
С	0, 0	0, 0	prob. = $1/3$ -1.1, -1.1

• The payoff for each player (playing according to this distribution): $\frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 1 - \frac{1}{3} \cdot 1.1 = 0.3.$

- A player playing fixed A or B while the opponent randomized according to this distribution: ¹/₃ ⋅ 1 - ¹/₃ ⋅ 1 + ¹/₃ ⋅ 0 = 0.
- A player playing fixed C while the opponent randomized according to distribution: ¹/₃ ⋅ 0 + ¹/₃ ⋅ 0 + ¹/₃ ⋅ (-1.1) < 0.

Joseph C.-C. Lin (CSIE, TKU, TW)

<ロト <問ト < 目と < 目と

	А	В	С
А	prob. = $1/3$ 1, 1	-1, -1	0, 0
В	-1, -1	prob. = $1/3$ 1, 1	0, 0
С	0, 0	0, 0	prob. = $1/3$ -1.1, -1.1

- The payoff for each player (playing according to this distribution): $\frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 1 \frac{1}{3} \cdot 1.1 = 0.3.$
- A player playing fixed A or B while the opponent randomized according to this distribution: ¹/₃ ⋅ 1 - ¹/₃ ⋅ 1 + ¹/₃ ⋅ 0 = 0.
- A player playing fixed C while the opponent randomized according to distribution: ¹/₃ ⋅ 0 + ¹/₃ ⋅ 0 + ¹/₃ ⋅ (-1.1) < 0.

Joseph C.-C. Lin (CSIE, TKU, TW)

イロト イポト イヨト イヨト

	А	В	С
Α	prob. = $1/3$ 1, 1	-1, -1	0, 0
В	-1, -1	prob. = $1/3$ 1, 1	0, 0
С	0, 0	0, 0	prob. = $1/3$ -1.1, -1.1

- The payoff for each player (playing according to this distribution): $\frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 1 \frac{1}{3} \cdot 1.1 = 0.3.$
- A player playing fixed A or B while the opponent randomized according to this distribution: ¹/₃ ⋅ 1 ¹/₃ ⋅ 1 + ¹/₃ ⋅ 0 = 0.

A player playing fixed C while the opponent randomized according to the distribution: ¹/₃ ⋅ 0 + ¹/₃ ⋅ 0 + ¹/₃ ⋅ (-1.1) < 0.

	А	В	С
Α	prob. = $1/3$ 1, 1	-1, -1	0, 0
В	-1, -1	prob. = $1/3$ 1, 1	0, 0
С	0, 0	0, 0	prob. = $1/3$ -1.1, -1.1

- The payoff for each player (playing according to this distribution): $\frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 1 \frac{1}{3} \cdot 1.1 = 0.3.$
- A player playing fixed A or B while the opponent randomized according to this distribution: ¹/₃ ⋅ 1 ¹/₃ ⋅ 1 + ¹/₃ ⋅ 0 = 0.
- A player playing fixed C while the opponent randomized according to this distribution: ¹/₃ ⋅ 0 + ¹/₃ ⋅ 0 + ¹/₃ ⋅ (-1.1) < 0.

Coarse Correlated Equilibria (CCE)

CCE Example

	А	В	С
А	prob. = $1/3$ 1, 1	-1, -1	0, 0
В	-1, -1	prob. = 1/3 1, 1	0, 0
С	0, 0	0, 0	prob. = $1/3$ -1.1, -1.1

A player playing fixed C and the strategy profile follows this distribution:
 ⇒ deviation is possible.

• Not a CE.

・ロト ・四ト ・ヨト ・ヨト

Coarse Correlated Equilibria (CCE)

CCE Example

	А	В	С
А	prob. = $1/3$ 1, 1	-1, -1	0, 0
В	-1, -1	prob. = 1/3 1, 1	0, 0
С	0, 0	0, 0	prob. = $1/3$ -1.1, -1.1

A player playing fixed C and the strategy profile follows this distribution:
 ⇒ deviation is possible.

イロト イヨト イヨト イヨト

[•] Not a CE.

A hierarchy of equilibrium concepts

Joseph C.-C. Lin (CSIE, TKU, TW)