Algorithmic Game Theory

Introduction

Joseph Chuang-Chieh Lin Dept. CSIE, Tamkang University

Textbooks and Materials

- Textbooks/Lectures:
 - *Twenty Lectures on Algorithmic Game Theory*. Tim Roughgarden. Cambridge University Press. 2016.
 - *Algorithmic Game Theory*. Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijav V. Vazirani. Cambridge University Press. 2011.
- Other materials:
 - Essentials of Game Theory: A Concise, Multidisciplinary Introduction (Synthesis Lectur on Artificial Intelligence and Machine Learning). Leyton- Brown and Kevin, Shoham. Cambridge University Press. 2008.
- Course website:
 - https://josephcclin.github.io/courses/algorithmic_game_theory.htm

Prerequisites

- Basic CS undergraduate courses in
 - Algorithms
 - Probability theory
 - Discrete mathematics
 - Coding
- Motivation.
- Curiosity.

Topics (adjusted accordingly)

- Introduction and Preliminaries
- Minimax Principles
- Social Choice
- Stable Matchings
- A Sketch of Nash's Theorem from Fixed Point Theorems
- Auctions & Mechanism Design Basics
- Equilibrium Concepts
- No-Regret Dynamics
- Network Creation Games
- Other Selected Topics

- Attendance (10%)
- Assignments (30%)
- Midterm Presentation (30%)
 - Book chapters
 - https://www.cs.cinu.edu/~sandholm/cs15-892F13/algorithmic-game-theory.pdf
 - Chapters assigned through the **online random permutation generator**
- Final Presentation (30%)
 - Research papers

Grading policy for the presentations

- Order:
 - Midterm: According to the book chapters.
 - Final: According to the seat number ordering.
- Complete the presentation: 60 point
 - Duration for each presentation: 30~50 minutes.
- Raising questions: +2 point for each one (maximum +20 point)
- Clearly answering the teacher's \geq 4 questions: +5 point for each one.

Where to find the paper? (suggestions)

*Please look for papers in 2020—present.

- International conferences:
 - **EC**: Proceedings of the ACM conference on Electronic commerce.
 - **NeurIPS**: Conference on Neural Information Processing Systems.
 - AAAI: Association for the Advancement of Artificial Intelligence.
 - **IJCAI**: International Joint Conferences on Artificial Intelligence.
 - **AAMAS**: International Conference on Autonomous Agents and Multiagent Systems.
 - **SAGT**: Symposium on Algorithmic Game Theory.
 - **WINE**: International Conference on Web and Internet Economics.
 - ...
- Journals:
 - Games and Economic Behavior
 - International Journal of Game Theory
 - Social Choice and Welfare

John Forbes Nash Jr. (1928–2015)

- American mathematician.
- Fundamental contributions to game theory.
- **Nobel Memorial Prize** in Economic Sciences with game theorists Reinhard Selten and John Harsanyi.
- **Abel Prize** with Louis Nirenberg for his work on nonlinear partial differential equations.

Nash in 2006.

Reference:

https://en.wikipedia.org/wiki/John_Forbes_Nash_Jr.

A classic scene of "A Beautiful Mind"

• https://www.youtube.com/watch?v=2d_dtTZQyUM

Starring: Russel Crowe

Algorithmic Game Theory, CSIE, TKU, Taiwan

Before introducing Nash Equilibria...

• Let's play around several "games" first.

Number Guessing

- Let's say I have chosen a secret number **A** in my mind, which is among 1 and 100.
- Please guess it by a number **B**.
- If *B* < *A*, I will tell you "Larger, please".
- If *B* > *A*, I will tell you "Smaller, please".

• How many times do you think you can find out this secret number?

Number Guessing

- Let's say I have chosen a secret number **A** in my mind, which is among 1 and 100.
- Please guess it by a number **B**.
- If *B* < *A*, I will tell you "Larger, please".
- If *B* > *A*, I will tell you "Smaller, please".

• How many times do you think you can find out this secret number? **Let's play to feel the strategic behaviors.**

Adversarial Number Guessing

• The **demo** code.

Envy-Free Cake-Cutting

- Children wants everything to be FAIR.
- Actually, in their world, nothing is FAIR..... lol

Envy-Free Cake-Cutting

- Children wants everything to be FAIR.
- Actually, in their world, nothing is FAIR..... lol
- Let's say we want two kids to share a cake.

Envy-Free Cake-Cutting

- Children wants everything to be FAIR.
- Actually, in their world, nothing is FAIR..... lol
- Let's say we want two kids to share a cake.
- Can you propose a way of cutting a cake so that two kids share a cake so that no one envies the other?

- It was originally framed by Merrill Flood and Melvin Dresher in 1950.
- Let's say there are two guys, *A* and *B*, who broke into a luxury store and stole a treasure.

- It was originally framed by Merrill Flood and Melvin Dresher in 1950.
- Let's say there are two guys, *A* and *B*, who broke into a luxury store and stole a treasure.
- They had hided the treasure before the police caught them.

Algorithmic Game Theory, CSIE, TKU, Taiwan

- It was originally framed by Merrill Flood and Melvin Dresher in 1950.
- Let's say there are two guys, *A* and *B*, who broke into a luxury store and stole a treasure.
- They had hided the treasure before the police caught them.
- They were kept in two separated rooms.
 - That means, they cannot communicate with each other...
- Each of them was offered two choices: **Denial** or **confession**.

• They were told that:

- They were told that:
 - If both of them deny the fact of stealing the treasure, they will **BOTH** be sentenced in prison for **one** month.
 - If one of them confesses while the other one denies, the former will be set **FREE** while the latter will be sentenced in prison for **9** months.
 - If both confess, then they will both get **6** months in prison.
 - Because the police officers have got their images from the monitor...

- They were told that:
 - If both of them deny the fact of stealing the treasure, they will **BOTH** be sentenced in prison for **one** month.
 - If one of them confesses while the other one denies, the former will be set **FREE** while the latter will be sentenced in prison for **9** months.
 - If both confess, then they will both get **6** months in prison.
 - Because the police officers have got their images from the monitor...
- In your opinion, what should they do?
 - They cannot communicate, and they must make their decisions simultaneously.

- We can use a "matrix" to formulate this game.
- Two **players**, two **actions** for each.
- If you are criminal *A*, what will you do?
- What's the **solution** (outcome)?

- Dominant strategy?
- Socially inefficient.
 - Why is it inefficient?
- Price of Anarchy (PoA).

Bach or Stravinsky (BoS)

- A historical two-player game.
 - The battle of sexes (in *Games and Decisions* by Luce and Raiffa, 1957).
 - Say Amy and Bob want to pick a concert to go to.

Bach or Stravinsky (BoS)

- A historical two-player game.
 - The battle of sexes (in *Games and Decisions* by Luce and Raiffa, 1957).
 - Say Amy and Bob want to pick a concert to go to.
 - Both prefer to go together than to go home.
 - However, Amy prefers Bach while Bob prefers Stravinsky.

Bach or Stravinsky (BoS)

• What are the SOLUTIONS of the game?

 Is there any **dominant** strategy for either Amy or Bob?

Battle of Sexes (BoS)

• What are the SOLUTIONS of the game?

 Is there any **dominant** strategy for either Amy or Bob?

Algorithmic Game Theory, CSIE, TKU, Taiwan

Matching Pennies

- Two players, playing a game by throwing a penny.
- Both 'heads' or both 'tails': player 1 keeps both pennies.
- Otherwise, player 2 keeps both pennies.

Matching Pennies

- Two players, playing a game by throwing a penny.
- Both 'heads' or both 'tails': player 1 keeps both pennies.
- Otherwise, player 2 keeps both pennies.

Matching Pennies

- Zero-sum?
- Do dominant strategies exist?
- What are the solutions?

Rock-Scissors-Paper Game

Player 2

Rock-Scissors-Paper Game

- Zero-sum?
- Dominant strategies?
- Any solutions?

Mixed Strategies

- What we have discussed about are all **pure strategies**.
 - A deterministic action.

Mixed Strategies

- What we have discussed about are all **pure strategies**.
 - A deterministic action.
- What is a **mixed strategy**?

Mixed Strategies

- Like this?
 - Nine-headed Dragon Strike.
- Or like this?
 - Man of many pitches.
- For a portfolio manager in a hedge fund:
 - Portfolio weighting.

• Setting the weights?

• Setting the weights? $0 < \epsilon, \rho < 1$

- Setting the weights? $0 < \epsilon, \rho < 1$
- The expected utility of player 1 playing 'head':

 $f = 1 \cdot \epsilon + (-1) \cdot (1 - \epsilon)$

• The expected utility of player 1 playing 'tail':

 $g = -1 \cdot \epsilon + 1 \cdot (1 - \epsilon)$

Player 1

An intuitive definition of a **Nash equilibrium**

• A state such that no player can increase her expected payoff (profit, gain, advantage, money, etc.) by a **unilateral** deviation.

<u>Nash's Theorem</u>:

Every **finite** game (a finite number of players, each has a finite number of pure strategies) has **at least one** Nash equilibrium.

- Setting the weights? $0 < \epsilon, \rho < 1$
- The expected utility of player 1 playing 'head':

 $f = 1 \cdot \epsilon + (-1) \cdot (1 - \epsilon)$

• The expected utility of player 1 playing 'tail':

 $g = 1 \cdot \epsilon + (-1) \cdot (1 - \epsilon)$

• What if $f \neq g$?

Player 1

- Setting the weights? $0 < \epsilon, \rho < 1$
- The expected utility of player 1 playing 'head':

 $f = 1 \cdot \epsilon + (-1) \cdot (1 - \epsilon)$

• The expected utility of player 1 playing 'tail':

 $g = -1 \cdot \epsilon + 1 \cdot (1 - \epsilon)$

• What if $f \neq g$?

Consider Player 1's expected utility: $\rho \cdot f + (1 - \rho) \cdot g$

Player 1

head

tail

ρ

Player 2

tail

-1.1

1, -1

 $1-\epsilon$

head

1. -1

-1, 1

 ϵ

- Setting the weights? $0 < \epsilon, \rho < 1$
- The expected utility of player 1 playing 'head':

 $f = 1 \cdot \epsilon + (-1) \cdot (1 - \epsilon)$

• The expected utility of player 1 playing 'tail':

 $g = -1 \cdot \epsilon + 1 \cdot (1 - \epsilon)$

• Solving $f = g \Rightarrow \epsilon = 0.5$.

Now it's your turn to solve ρ .

• Take your time.

• So we just proved that the game has a kind of solution:

"Mixed-Strategy Nash Equilibrium".

Saddle point illustration

Algorithmic Game Theory, CSIE, TKU, Taiwan

An intuitive definition of a **Nash equilibrium**

• A state such that no player can increase her expected payoff (profit, gain, advantage, money, etc.) by a **unilateral** deviation.

<u>Nash's Theorem</u>:

Every **finite** game (a finite number of players, each has a finite number of pure strategies) has **at least one** Nash equilibrium.

• The concept of **best responses** & **mixed strategies**.

Back to the classic scene of "A Beautiful Mind"

• https://www.youtube.com/watch?v=2d_dtTZQyUM

- Do you observe anything strange or anything wrong?
 - https://www.youtube.com/watch?v=DTcmmD_MWas

An Easy Exercise

 Please find out a mixed-strategy Nash equilibrium of the rockscissors-paper game.
Player 2

Algorithmic Game Theory, CSIE, TKU, Taiwan

The Monty Hall Problem

• From an American TV show *Let's Make a Deal* hosted by Monty Hall.

Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat. He then says to you, "Do you want to pick door No. 2?" **Is it to your advantage to switch your choice?**

Algorithmic Game Theory, CSIE, TKU, Taiwan