No-Regret Online Learning Algorithms

Joseph Chuang-Chieh Lin
Department of Computer Science and Information Engineering, Tamkang University
\section*{Lecture Notes}

27 December 2021 - 11 Jan 2022

Credits for the resource

The slides are based on the lectures of Prof. Luca Trevisan: https://lucatrevisan.github.io/40391/index.html
the lectures of Prof. Shipra Agrawal:
https://ieor8100.github.io/mab/
the lectures of Prof. Francesco Orabona: https://parameterfree.com/lecture-notes-on-online-learning/
and also Elad Hazan's textbook: Introduction to Online Convex Optimization, 2nd Edition.

Outline

(1) Introduction
(2) Gradient Descent for Online Convex Optimization (GD)
(3) Multiplicative Weight Update (MWU)

4 Follow The Leader (FTL)
(5) Follow The Regularized Leader (FTRL)

- MWU Revisited
- FTRL with 2-norm regularizer
(6) Multi-Armed Bandit (MAB)
- Greedy Algorithms
- Upper Confidence Bound (UCB)
- Time-Decay ϵ-Greedy

Outline

(1) Introduction

2) Gradient Descent for Online Convex Optimization (GD)
(3) Multiplicative Weight Update (MWU)

4 Follow The Ieader (FTI)
(5) Follow The Regularized Leader (FTRL)

- MWU Revisited
- FTRL with 2-norm regularizer

6) Multi-Armed Bandit (MAB)

- Greedy Algorithms
- Upper Confidence Bound (UCB)
- Time-Decay ϵ-Greedy

Online Convex Optimization

Goal: Design an algorithm such that

- At discrete time steps $t=1,2, \ldots$, output $\boldsymbol{x}_{t} \in \mathcal{K}$, for each t.
- \mathcal{K} : a convex set of feasible solutions.
- After \boldsymbol{x}_{t} is generated, a convex cost function $f_{t}: \mathcal{K} \mapsto \mathbb{R}$ is revealed.
- Then the algorithm suffers the loss $f_{t}\left(\boldsymbol{x}_{t}\right)$.

And we want to minimize the cost.

The difficulty

- The cost functions f_{t} is unknown before t.
- $f_{1}, f_{2}, \ldots, f_{t}, \ldots$ are not necessarily fixed.
- Can be generated dynamically by an adversary.

What's the regret?

- The offline optimum: After T steps,

$$
\min _{\boldsymbol{x} \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(\boldsymbol{x})
$$

- The regret after T steps:

$$
\operatorname{regret}_{T}=\sum_{t=1}^{T} f_{t}\left(\boldsymbol{x}_{t}\right)-\min _{x \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(\boldsymbol{x})
$$

What's the regret?

- The offline optimum: After T steps,

$$
\min _{\boldsymbol{x} \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(\boldsymbol{x})
$$

- The regret after T steps:

$$
\operatorname{regret}_{T}=\sum_{t=1}^{T} f_{t}\left(\boldsymbol{x}_{t}\right)-\min _{\boldsymbol{x} \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(\boldsymbol{x})
$$

- The rescue: regret $_{T} \leq o(T)$.

What's the regret?

- The offline optimum: After T steps,

$$
\min _{\boldsymbol{x} \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(\boldsymbol{x}) .
$$

- The regret after T steps:

$$
\operatorname{regret}_{T}=\sum_{t=1}^{T} f_{t}\left(\boldsymbol{x}_{t}\right)-\min _{\boldsymbol{x} \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(\boldsymbol{x})
$$

- The rescue: regret $_{T} \leq o(T) . \Rightarrow$ No-Regret in average when $T \rightarrow \infty$.
- For example, $\operatorname{regret}_{T} / T=\frac{\sqrt{T}}{T} \rightarrow 0$ when $T \rightarrow \infty$.

Prerequisites (1/5)

Diameter

Let $\mathcal{K} \subseteq \mathbb{R}^{d}$ be a bounded convex and closed set in Euclidean space. We denote by D an upper bound on the diameter of \mathcal{K} :

$$
\forall \boldsymbol{x}, \boldsymbol{y} \in \mathcal{K},\|\boldsymbol{x}-\boldsymbol{y}\| \leq D
$$

Convex set

A set \mathcal{K} is convex if for any $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{K}$, we have

$$
\forall \alpha \in[0,1], \alpha \boldsymbol{x}+(1-\alpha) \boldsymbol{y} \in \mathcal{K}
$$

Prerequisites (2/5)

Convex function

A function $f: \mathcal{K} \mapsto \mathbb{R}$ is convex if for any $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{K}$,

$$
\forall \alpha \in[0,1], f((1-\alpha) \boldsymbol{x}+\alpha \boldsymbol{y}) \leq(1-\alpha) f(\boldsymbol{x})+\alpha f(\boldsymbol{y}) .
$$

Equivalently, if f is differentiable (i.e., $\nabla f(\boldsymbol{x})$ exists for all $\boldsymbol{x} \in \mathcal{K}$), then f is convex if and only if for all $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{K}$,

$$
f(\boldsymbol{y}) \geq f(\boldsymbol{x})+\nabla f(\boldsymbol{x})^{\top}(\boldsymbol{y}-\boldsymbol{x})
$$

Prerequisites (3/5)

Theorem [Rockafellar 1970]

Suppose that $f: \mathcal{K} \mapsto \mathbb{R}$ is a convex function and let $x \in \operatorname{int} \operatorname{dom}(f)$. If f is differentiable at \boldsymbol{x}, then for all $\boldsymbol{y} \in \mathbb{R}^{d}$,

$$
f(\boldsymbol{y}) \geq f(\boldsymbol{x})+\langle\nabla f(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle .
$$

Subgradient

For a function $f: \mathbb{R}^{d} \mapsto \mathbb{R}, \boldsymbol{g} \in \mathbb{R}^{d}$ is a subgradient of f at $x \in \mathbb{R}^{d}$ if for all $\boldsymbol{y} \in \mathbb{R}^{d}$,

$$
f(\boldsymbol{y}) \geq f(\boldsymbol{x})+\langle\boldsymbol{g}, \boldsymbol{y}-\boldsymbol{x}\rangle .
$$

Prerequisites (4/5)

Projection

The closest point of \boldsymbol{y} in a convex set \mathcal{K} in terms of norm $\|\cdot\|$:

$$
\Pi_{\mathcal{K}}(\boldsymbol{y}):=\arg \min _{\boldsymbol{x} \in \mathcal{K}}\|\boldsymbol{x}-\boldsymbol{y}\| .
$$

Pythagoras Theorem

Let $\mathcal{K} \subseteq \mathbb{R}^{d}$ be a convex set, $\boldsymbol{y} \in \mathbb{R}^{d}$ and $\boldsymbol{x}=\Pi_{\mathcal{K}}(\boldsymbol{y})$. Then for any $\boldsymbol{z} \in \mathcal{K}$, we have

$$
\|y-z\| \geq\|x-z\|
$$

Prerequisites (5/5)

Minimum vs. zero gradient

$$
\nabla f(\boldsymbol{x})=0 \text { iff } \boldsymbol{x} \in \arg \min _{\boldsymbol{x} \in \mathbb{R}^{d}}\{f(\boldsymbol{x})\} .
$$

Karush-Kuhn-Tucker (KKT) Theorem

Let $\mathcal{K} \subseteq \mathbb{R}^{d}$ be a convex set, $\boldsymbol{x}^{*} \in \arg \min _{x \in \mathcal{K}} f(\boldsymbol{x})$. Then for any $\boldsymbol{y} \in \mathcal{K}$ we have

$$
\nabla f\left(x^{*}\right)^{\top}\left(y-x^{*}\right) \geq 0 .
$$

Convex losses to linear losses

- We have the convex loss function $f_{t}\left(\boldsymbol{x}_{t}\right)$ at time t.
- Say we have subgradients \boldsymbol{g}_{t} for each \boldsymbol{x}_{t}.
- $f\left(\boldsymbol{x}_{t}\right)-f(\boldsymbol{u}) \leq\left\langle\boldsymbol{g}, \boldsymbol{x}_{\boldsymbol{t}}-\boldsymbol{u}\right\rangle$ for each $\boldsymbol{u} \in \mathbb{R}^{d}$.

Convex losses to linear losses

- We have the convex loss function $f_{t}\left(\boldsymbol{x}_{t}\right)$ at time t.
- Say we have subgradients \boldsymbol{g}_{t} for each \boldsymbol{x}_{t}.
- $f\left(\boldsymbol{x}_{t}\right)-f(\boldsymbol{u}) \leq\left\langle\boldsymbol{g}, \boldsymbol{x}_{\boldsymbol{t}}-\boldsymbol{u}\right\rangle$ for each $\boldsymbol{u} \in \mathbb{R}^{d}$.
- Hence, if we define $\tilde{f}_{t}(\boldsymbol{x}):=\left\langle\boldsymbol{g}_{t}, \boldsymbol{x}\right\rangle$, then for any $\boldsymbol{u} \in \mathbb{R}^{d}$,

$$
\sum_{t=1}^{T} f_{t}\left(\boldsymbol{x}_{t}\right)-f(\boldsymbol{u}) \leq \sum_{t=1}^{T}\left\langle\boldsymbol{g}, \boldsymbol{x}_{\boldsymbol{t}}-\boldsymbol{u}\right\rangle=\sum_{t=1}^{T} \tilde{f}_{t}\left(\boldsymbol{x}_{t}\right)-\tilde{f}(\boldsymbol{u})
$$

Convex losses to linear losses

- We have the convex loss function $f_{t}\left(\boldsymbol{x}_{t}\right)$ at time t.
- Say we have subgradients \boldsymbol{g}_{t} for each \boldsymbol{x}_{t}.
- $f\left(\boldsymbol{x}_{t}\right)-f(\boldsymbol{u}) \leq\left\langle\boldsymbol{g}, \boldsymbol{x}_{\boldsymbol{t}}-\boldsymbol{u}\right\rangle$ for each $\boldsymbol{u} \in \mathbb{R}^{d}$.
- Hence, if we define $\tilde{f}_{t}(\boldsymbol{x}):=\left\langle\boldsymbol{g}_{t}, \boldsymbol{x}\right\rangle$, then for any $\boldsymbol{u} \in \mathbb{R}^{d}$,

$$
\sum_{t=1}^{T} f_{t}\left(\boldsymbol{x}_{t}\right)-f(\boldsymbol{u}) \leq \sum_{t=1}^{T}\left\langle\boldsymbol{g}, \boldsymbol{x}_{\boldsymbol{t}}-\boldsymbol{u}\right\rangle=\sum_{t=1}^{T} \tilde{f}_{t}\left(\boldsymbol{x}_{t}\right)-\tilde{f}(\boldsymbol{u})
$$

$\mathrm{OCO} \rightarrow$ OLO.

Outline

(1) Introduction
(2) Gradient Descent for Online Convex Optimization (GD)
(3) Multiplicative Weight Update (MWU)

4 Follow The Leader (FTL)
(5) Follow The Regularized Leader (FTRL)

- MWU Revisited
- FTRL with 2-norm regularizer
(6) Multi-Armed Bandit (MAB)
- Greedy Algorithms
- Upper Confidence Bound (UCB)
- Time-Decay ϵ-Greedy

Online Gradient Descent (GD)

(1) Input: convex set $\mathcal{K}, T, \boldsymbol{x}_{1} \in \mathcal{K}$, step size $\left\{\eta_{t}\right\}$.
(2) for $t \leftarrow 1$ to T do:
(1) Play \boldsymbol{x}_{t} and observe cost $f_{t}\left(\boldsymbol{x}_{t}\right)$.
(2) Update and Project:

$$
\begin{aligned}
\boldsymbol{y}_{t+1} & =\boldsymbol{x}_{t}-\eta_{t} \nabla f_{t}\left(\boldsymbol{x}_{t}\right) \\
\boldsymbol{x}_{t+1} & =\Pi_{\mathcal{K}}\left(\boldsymbol{y}_{t+1}\right)
\end{aligned}
$$

(3) end for

GD for online convex optimization is of no-regret

Theorem A

Online gradient descent with step size $\left\{\eta_{t}=\frac{D}{G \sqrt{t}}, t \in[T]\right\}$ guarantees the following for all $T \geq 1$:

$$
\operatorname{regret}_{T}=\sum_{t=1}^{T} f_{t}\left(\boldsymbol{x}_{t}\right)-\min _{\boldsymbol{x}^{*} \in \mathcal{K}} \sum_{t=1}^{T} f_{t}\left(\boldsymbol{x}^{*}\right) \leq \frac{3}{2} G D \sqrt{T} .
$$

Proof of Theorem A (1/3)

- Let $\boldsymbol{x}^{*} \in \arg \min _{\boldsymbol{x} \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(\boldsymbol{x})$.
- Since f_{t} is convex, we have

$$
f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}^{*}\right) \leq\left(\nabla f_{t}\left(\boldsymbol{x}_{t}\right)\right)^{\top}\left(\boldsymbol{x}_{t}-\boldsymbol{x}^{*}\right) .
$$

- By the updating rule for \boldsymbol{x}_{t+1} and the Pythagorean theorem, we have

$$
\left\|\boldsymbol{x}_{t+1}-\boldsymbol{x}^{*}\right\|^{2}=\left\|\Pi_{\mathcal{K}}\left(\boldsymbol{x}_{t}-\eta_{t} \nabla f_{t}\left(\boldsymbol{x}_{t}\right)\right)-\boldsymbol{x}^{*}\right\|^{2} \leq\left\|\boldsymbol{x}_{t}-\eta_{t} \nabla f_{t}\left(\boldsymbol{x}_{t}\right)-\boldsymbol{x}^{*}\right\|^{2} .
$$

Proof of Theorem A (2/3)

- Hence

$$
\begin{aligned}
& \left\|\boldsymbol{x}_{t+1}-\boldsymbol{x}^{*}\right\|^{2} \leq\left\|\boldsymbol{x}_{t}-\boldsymbol{x}^{*}\right\|^{2}+\eta_{t}^{2}\left\|\nabla f_{t}\left(\boldsymbol{x}_{t}\right)\right\|^{2}-2 \eta_{t}\left(\nabla f_{t}\left(\boldsymbol{x}_{t}\right)\right)^{\top}\left(\boldsymbol{x}_{t}-\boldsymbol{x}^{*}\right) \\
& 2\left(\nabla f_{t}\left(\boldsymbol{x}_{t}\right)\right)^{\top}\left(\boldsymbol{x}_{t}-\boldsymbol{x}^{*}\right) \leq \frac{\left\|\boldsymbol{x}_{t}-\boldsymbol{x}^{*}\right\|^{2}-\left\|\boldsymbol{x}_{t+1}-\boldsymbol{x}^{*}\right\|^{2}}{\eta_{t}}+\eta_{t} G^{2} .
\end{aligned}
$$

- Summing above inequality from $t=1$ to T and setting $\eta_{t}=\frac{D}{G \sqrt{t}}$ and $\frac{1}{\eta_{0}}:=0$ we have :

Proof of Theorem A (3/3)

$$
\begin{aligned}
2\left(\sum_{t=1}^{T} f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}^{*}\right)\right) & \left.\leq 2 \sum_{t=1}^{T} \nabla f_{t}\left(\boldsymbol{x}_{t}\right)\right)^{\top}\left(\boldsymbol{x}_{t}-\boldsymbol{x}^{*}\right) \\
& \leq \sum_{t=1}^{T} \frac{\left\|\boldsymbol{x}_{t}-\boldsymbol{x}^{*}\right\|^{2}-\left\|\boldsymbol{x}_{t+1}-\boldsymbol{x}^{*}\right\|^{2}}{\eta_{t}}+G^{2} \sum_{t=1}^{T} \eta_{t} \\
& \leq \sum_{t=1}^{T}\left\|\boldsymbol{x}_{t}-\boldsymbol{x}^{*}\right\|^{2}\left(\frac{1}{\eta_{t}}-\frac{1}{\eta_{t-1}}\right)+G^{2} \sum_{t=1}^{T} \eta_{t} \\
& \leq D^{2} \sum_{t=1}^{T}\left(\frac{1}{\eta_{t}}-\frac{1}{\eta_{t-1}}\right)+G^{2} \sum_{t=1}^{T} \eta_{t} \\
& \leq D^{2} \frac{1}{\eta_{T}}+G^{2} \sum_{t=1}^{T} \eta_{t} \\
& \leq 3 D G \sqrt{T} .
\end{aligned}
$$

The Lower Bound

Theorem B

Let $\mathcal{K}=\left\{\boldsymbol{x} \in \mathbb{R}^{d}:\|\boldsymbol{x}\|_{\infty} \leq r\right\}$ be a convex subset of \mathbb{R}^{d}. Let A be any algorithm for Online Convex Optimization on \mathcal{K}. Then for any $T \geq 1$, there exists a sequence of vectors $\boldsymbol{g}_{1}, \ldots, \boldsymbol{g}_{\boldsymbol{T}}$ with $\left\|\boldsymbol{g}_{t}\right\|_{2} \leq L$ and $\boldsymbol{u} \in \mathcal{K}$ such that the regret of A satisfies

$$
\operatorname{regret}_{T}(\boldsymbol{u})=\sum_{t=1}^{T}\left\langle\boldsymbol{g}_{t}, \boldsymbol{x}_{t}\right\rangle-\sum_{t=1}^{T}\left\langle\boldsymbol{g}_{t}, \boldsymbol{u}\right\rangle \geq \frac{\sqrt{2} L D \sqrt{T}}{4}
$$

- The diameter D of \mathcal{K} is at most $\sqrt{\sum_{i=1}^{d}(2 r)^{2}} \leq 2 r \sqrt{d}$.
- $\|\boldsymbol{x}\|_{\infty} \leq r \Leftrightarrow|\boldsymbol{x}(i)| \leq r$ for each $i \in[n]$.

Proof of Theorem B (1/2)

- The approach:

For any random variable \boldsymbol{z} with domain \mathcal{V} and any function f,

$$
\sup _{\boldsymbol{x} \in V} f(\boldsymbol{x}) \geq E[f(\boldsymbol{z})]
$$

Proof of Theorem B (1/2)

- The approach:

For any random variable \boldsymbol{z} with domain \mathcal{V} and any function f,

$$
\sup _{\boldsymbol{x} \in V} f(\boldsymbol{x}) \geq E[f(\boldsymbol{z})]
$$

- $\operatorname{regret}_{T}=\max _{\boldsymbol{u} \in \mathcal{K}} \operatorname{regret}_{T}(\boldsymbol{u})$.

Proof of Theorem B (1/2)

- The approach:

For any random variable \boldsymbol{z} with domain \mathcal{V} and any function f,

$$
\sup _{\boldsymbol{x} \in V} f(\boldsymbol{x}) \geq E[f(\boldsymbol{z})]
$$

- $\operatorname{regret}_{T}=\max _{\boldsymbol{u} \in \mathcal{K}} \operatorname{regret}_{T}(\boldsymbol{u})$.
- Let $\boldsymbol{v}, \boldsymbol{w} \in \mathcal{K}$ such that $\|\boldsymbol{v}-\boldsymbol{w}\|=D$.

Proof of Theorem B (1/2)

- The approach:

For any random variable \boldsymbol{z} with domain \mathcal{V} and any function f,

$$
\sup _{\boldsymbol{x} \in V} f(\boldsymbol{x}) \geq E[f(\boldsymbol{z})]
$$

- $\operatorname{regret}_{T}=\max _{\boldsymbol{u} \in \mathcal{K}} \operatorname{regret}_{T}(\boldsymbol{u})$.
- Let $\boldsymbol{v}, \boldsymbol{w} \in \mathcal{K}$ such that $\|\boldsymbol{v}-\boldsymbol{w}\|=D$.
- Let $\boldsymbol{z}:=\frac{\boldsymbol{v}-\boldsymbol{w}}{\|\boldsymbol{v}-\boldsymbol{w}\|}$

Proof of Theorem B (1/2)

- The approach:

For any random variable \boldsymbol{z} with domain \mathcal{V} and any function f,

$$
\sup _{\boldsymbol{x} \in V} f(\boldsymbol{x}) \geq E[f(\boldsymbol{z})]
$$

- $\operatorname{regret}_{T}=\max _{\boldsymbol{u} \in \mathcal{K}} \operatorname{regret}_{T}(\boldsymbol{u})$.
- Let $\boldsymbol{v}, \boldsymbol{w} \in \mathcal{K}$ such that $\|\boldsymbol{v}-\boldsymbol{w}\|=D$.
- Let $\boldsymbol{z}:=\frac{\boldsymbol{v}-\boldsymbol{w}}{\|\boldsymbol{v}-\boldsymbol{w}\|} \Rightarrow\langle\boldsymbol{z}, \boldsymbol{v}-\boldsymbol{w}\rangle=D$.
- Let $\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{T}$ be i.i.d. random variables such that $\operatorname{Pr}\left[\epsilon_{t}=1\right]=\operatorname{Pr}\left[\epsilon_{t}=-1\right]=1 / 2$ for each t.

Proof of Theorem B (1/2)

- The approach:

For any random variable \boldsymbol{z} with domain \mathcal{V} and any function f,

$$
\sup _{\boldsymbol{x} \in V} f(\boldsymbol{x}) \geq E[f(\boldsymbol{z})]
$$

- $\operatorname{regret}_{T}=\max _{\boldsymbol{u} \in \mathcal{K}} \operatorname{regret}_{T}(\boldsymbol{u})$.
- Let $\boldsymbol{v}, \boldsymbol{w} \in \mathcal{K}$ such that $\|\boldsymbol{v}-\boldsymbol{w}\|=D$.
- Let $\boldsymbol{z}:=\frac{\boldsymbol{v}-\boldsymbol{w}}{\|\boldsymbol{v}-\boldsymbol{w}\|} \Rightarrow\langle\boldsymbol{z}, \boldsymbol{v}-\boldsymbol{w}\rangle=D$.
- Let $\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{T}$ be i.i.d. random variables such that $\operatorname{Pr}\left[\epsilon_{t}=1\right]=\operatorname{Pr}\left[\epsilon_{t}=-1\right]=1 / 2$ for each t.
- We choose the losses $\boldsymbol{g}_{t}=L \epsilon_{t} \boldsymbol{z}$.

Proof of Theorem B (1/2)

- The approach:

For any random variable \boldsymbol{z} with domain \mathcal{V} and any function f,

$$
\sup _{\boldsymbol{x} \in V} f(\boldsymbol{x}) \geq E[f(\boldsymbol{z})]
$$

- $\operatorname{regret}_{T}=\max _{\boldsymbol{u} \in \mathcal{K}} \operatorname{regret}_{T}(\boldsymbol{u})$.
- Let $\boldsymbol{v}, \boldsymbol{w} \in \mathcal{K}$ such that $\|\boldsymbol{v}-\boldsymbol{w}\|=D$.
- Let $\boldsymbol{z}:=\frac{\boldsymbol{v}-\boldsymbol{w}}{\|\boldsymbol{v}-\boldsymbol{w}\|} \Rightarrow\langle\boldsymbol{z}, \boldsymbol{v}-\boldsymbol{w}\rangle=D$.
- Let $\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{T}$ be i.i.d. random variables such that $\operatorname{Pr}\left[\epsilon_{t}=1\right]=\operatorname{Pr}\left[\epsilon_{t}=-1\right]=1 / 2$ for each t.
- We choose the losses $\boldsymbol{g}_{t}=L \epsilon_{t} \boldsymbol{z}$.
- The cost at $t:\left\langle L \epsilon_{t} \boldsymbol{z}, \boldsymbol{x}_{t}\right\rangle$.
- $\left\|g_{t}\right\|=\sqrt{L^{2} \epsilon_{t}^{2}} \cdot\|z\| \leq L$.

Proof of Theorem B (2/2)

$$
\begin{aligned}
\sup _{\boldsymbol{g}_{1}, \ldots, \boldsymbol{g}_{T}} \operatorname{regret}_{T} & \geq E\left[\sum_{t=1}^{T} L \epsilon_{t}\left\langle\boldsymbol{z}, \boldsymbol{x}_{t}\right\rangle-\min _{\boldsymbol{u} \in \mathcal{K}} \sum_{t=1}^{T} L \epsilon_{t}\langle\boldsymbol{z}, \boldsymbol{u}\rangle\right] \\
& =E\left[-\min _{\boldsymbol{u} \in \mathcal{K}} \sum_{t=1}^{T} L \epsilon_{t}\langle\boldsymbol{z}, \boldsymbol{u}\rangle\right]=E\left[\max _{\boldsymbol{u} \in \mathcal{K}} \sum_{t=1}^{T} L \epsilon_{t}\langle\boldsymbol{z}, \boldsymbol{u}\rangle\right] \\
& \geq E\left[\max _{\boldsymbol{u} \in\{\boldsymbol{v}, \boldsymbol{w}\}} \sum_{t=1}^{T} L \epsilon_{t}\langle\boldsymbol{z}, \boldsymbol{u}\rangle\right] \\
& =E\left[\frac{1}{2} \sum_{t=1}^{T} L \epsilon_{t}\langle\boldsymbol{z}, \boldsymbol{v}+\boldsymbol{w}\rangle+\frac{1}{2}\left|\sum_{t=1}^{T} L \epsilon_{t}\langle\boldsymbol{z}, \boldsymbol{v}-\boldsymbol{w}\rangle\right|\right] \\
& \geq \frac{L}{2} E\left[\left|\sum_{t=1}^{T} L \epsilon_{t}\langle\boldsymbol{z}, \boldsymbol{v}-\boldsymbol{w}\rangle\right|\right]=\frac{L D}{2} E\left[\left|\sum_{t=1}^{T} \epsilon_{t}\right|\right] \\
& \geq \frac{\sqrt{2} L D \sqrt{T}}{4} . \text { (by Khintchine inequality) }
\end{aligned}
$$

Outline

(1) Introduction
(2) Gradient Descent for Online Convex Optimization (GD)
(3) Multiplicative Weight Update (MWU)

4 Follow The Leader (FTL)
(5) Follow The Regularized Leader (FTRL)

- MWU Revisited
- FTRL with 2-norm regularizer
(6) Multi-Armed Bandit (MAB)
- Greedy Algorithms
- Upper Confidence Bound (UCB)
- Time-Decay ϵ-Greedy

Listen to the experts?

- Let's say we have n experts.
- We want to make best use of the advices coming from the experts.

Listen to the experts?

- Let's say we have n experts.
- We want to make best use of the advices coming from the experts.
- The idea: at each time step, decide the probability distribution (i.e., weights) of the experts to follow their advice.
- $\boldsymbol{x}_{t}=\left(\boldsymbol{x}_{t}(1), \boldsymbol{x}_{t}(2), \ldots, \boldsymbol{x}_{t}(n)\right)$, where $\boldsymbol{x}_{t}(i) \in[0,1]$ and $\sum_{i} \boldsymbol{x}_{t}(i)=1$.

Listen to the experts?

- Let's say we have n experts.
- We want to make best use of the advices coming from the experts.
- The idea: at each time step, decide the probability distribution (i.e., weights) of the experts to follow their advice.
- $\boldsymbol{x}_{t}=\left(x_{t}(1), x_{t}(2), \ldots, x_{t}(n)\right)$, where $\boldsymbol{x}_{t}(i) \in[0,1]$ and $\sum_{i} x_{t}(i)=1$.
- The loss of following expert i at time $t: \ell_{t}(i)$.
- The expected loss of the algorithm at time t :

$$
\left\langle x_{t}, \ell_{t}\right\rangle=\sum_{i=1}^{n} x_{t}(i) \ell_{t}(i)
$$

The regret of listening to the experts...

$$
\operatorname{regret}_{T}^{*}=\sum_{t=1}^{T}\left\langle x_{t}, \ell_{t}\right\rangle-\min _{i} \sum_{t=1}^{T} \ell_{t}(i)
$$

- The set of feasible solutions $K=\Delta \subseteq \mathbb{R}^{n}$, probability distributions over $\{1, \ldots, n\}$.
- $f_{t}(\boldsymbol{x})=\sum_{i} \boldsymbol{x}(i) \ell_{t}(i)$: linear function.
\star Assume that $\left|\ell_{t}(i)\right| \leq 1$ for all t and i.

The MWU Algorithm

- The spirit: "Hedge".
- Well-known and frequently rediscovered.

The MWU Algorithm

- The spirit: "Hedge".
- Well-known and frequently rediscovered.

Multiplicative Weight Update (MWU)

- Maintain a vector of weights $\boldsymbol{w}_{t}=\left(\boldsymbol{w}_{t}(1), \ldots, \boldsymbol{w}_{t}(n)\right)$ where $\boldsymbol{w}_{1}:=(1,1, \ldots, 1)$.
- Update the weights at time t by
- $\boldsymbol{w}_{t}(i):=\boldsymbol{w}_{t-1}(i) \cdot e^{-\beta \boldsymbol{\ell}_{t-1}(i)}$.
- $\boldsymbol{x}_{t}:=\frac{\boldsymbol{w}_{t}(i)}{\sum_{j=1}^{n} \boldsymbol{w}_{t}(j)}$.
β : a parameter which will be optimized later.

The MWU Algorithm

- The spirit: "Hedge".
- Well-known and frequently rediscovered.

Multiplicative Weight Update (MWU)

- Maintain a vector of weights $\boldsymbol{w}_{t}=\left(\boldsymbol{w}_{t}(1), \ldots, \boldsymbol{w}_{t}(n)\right)$ where $\boldsymbol{w}_{1}:=(1,1, \ldots, 1)$.
- Update the weights at time t by
- $\boldsymbol{w}_{t}(i):=\boldsymbol{w}_{t-1}(i) \cdot e^{-\beta \boldsymbol{\ell}_{t-1}(i)}$.
- $\boldsymbol{x}_{t}:=\frac{\boldsymbol{w}_{t}(i)}{\sum_{j=1}^{\boldsymbol{n}} \boldsymbol{w}_{t}(j)}$.
β : a parameter which will be optimized later.
The weight of expert i at time $t: \quad e^{-\beta \sum_{k=1}^{t-1} \ell_{k}(i)}$.

MWU is of no-regret

Theorem 1 (MWU is of no-regret)

Assume that $\left|\ell_{t}(i)\right| \leq 1$ for all t and i. For $\beta \in(0,1 / 2)$, the regret of MWU after T steps is bounded as

$$
\operatorname{regret}_{T}^{*} \leq \beta \sum_{t=1}^{T} \sum_{i=1}^{n} x_{t}(i) \ell_{t}^{2}(i)+\frac{\ln n}{\beta} \leq \beta T+\frac{\ln n}{\beta} .
$$

In particular, if $T>4 \ln n$, then

$$
\operatorname{regret}_{T}^{*} \leq 2 \sqrt{T \ln n}
$$

by setting $\beta=\sqrt{\frac{\ln n}{T}}$.

Proof of Theorem 1

Let $W_{t}:=\sum_{i=1}^{n} \boldsymbol{w}_{t}(i)$.
The idea:

- If the algorithm incurs a large loss after T steps, then W_{T+1} is small.
- And, if W_{T+1} is small, then even the best expert performs quite badly.

Proof of Theorem 1

Let $W_{t}:=\sum_{i=1}^{n} \boldsymbol{w}_{t}(i)$.
The idea:

- If the algorithm incurs a large loss after T steps, then W_{T+1} is small.
- And, if W_{T+1} is small, then even the best expert performs quite badly.

Let $L^{*}:=\min _{i} \sum_{t=1}^{T} \ell_{t}(i)$.

The proof (contd.)

Lemma 1 (W_{T+1} is SMALL $\Rightarrow L^{*}$ is LARGE)

$W_{T+1} \geq e^{-\beta L^{*}}$.

Proof.

Let $j=\arg \min L^{*}=\arg \min _{i} \sum_{t=1}^{T} \ell_{t}(i)$.

$$
W_{T+1}=\sum_{i=1}^{n} e^{-\beta \sum_{t=1}^{T} \ell_{t}(i)} \geq e^{-\beta \sum_{t=1}^{T} \ell_{t}(j)}=e^{-\beta L^{*}}
$$

The proof (contd.)

Lemma 2 (MWU brings large loss $\Rightarrow W_{T+1}$ is SMALL)

$$
W_{T+1} \leq n \prod_{t=1}^{n}\left(1-\beta\left\langle\boldsymbol{x}_{t}, \ell_{t}\right\rangle+\beta^{2}\left\langle\boldsymbol{x}_{t}, \ell_{t}^{2}\right\rangle\right)
$$

Proof.

Note: $W_{1}=n$.

$$
\frac{W_{t+1}}{W_{t}}=\sum_{i=1}^{n} \frac{\boldsymbol{w}_{t+1}(i)}{W_{t}}=\sum_{i=1}^{n} \frac{\boldsymbol{w}_{t}(i) \cdot e^{-\beta \ell_{t}(i)}}{W_{t}}
$$

The proof (contd.)

Lemma 2 (MWU brings large loss $\Rightarrow W_{T+1}$ is SMALL)

$$
W_{T+1} \leq n \prod_{t=1}^{n}\left(1-\beta\left\langle\boldsymbol{x}_{t}, \boldsymbol{\ell}_{t}\right\rangle+\beta^{2}\left\langle\boldsymbol{x}_{t}, \ell_{t}^{2}\right\rangle\right)
$$

Proof.

Note: $W_{1}=n$.

$$
\begin{aligned}
\frac{W_{t+1}}{W_{t}} & =\sum_{i=1}^{n} \frac{\boldsymbol{w}_{t+1}(i)}{W_{t}}=\sum_{i=1}^{n} \frac{w_{t}(i) \cdot e^{-\beta \ell_{t}(i)}}{W_{t}}=\sum_{i=1}^{n} x_{t}(i) \cdot e^{-\beta \ell_{t}(i)} \\
& \leq \sum_{i=1}^{n} x_{t}(i) \cdot\left(1-\beta \boldsymbol{\ell}_{t}(i)+\beta^{2} \ell_{t}^{2}(i)\right)
\end{aligned}
$$

The proof (contd.)

Lemma 2 (MWU brings large loss $\Rightarrow W_{T+1}$ is SMALL)

$$
W_{T+1} \leq n \prod_{t=1}^{n}\left(1-\beta\left\langle\boldsymbol{x}_{t}, \boldsymbol{\ell}_{t}\right\rangle+\beta^{2}\left\langle\boldsymbol{x}_{t}, \ell_{t}^{2}\right\rangle\right)
$$

Proof.

Note: $W_{1}=n$.

$$
\begin{aligned}
\frac{W_{t+1}}{W_{t}} & =\sum_{i=1}^{n} \frac{\boldsymbol{w}_{t+1}(i)}{W_{t}}=\sum_{i=1}^{n} \frac{\boldsymbol{w}_{t}(i) \cdot e^{-\beta \ell_{t}(i)}}{W_{t}}=\sum_{i=1}^{n} \boldsymbol{x}_{t}(i) \cdot e^{-\beta \ell_{t}(i)} \\
& \leq \sum_{i=1}^{n} \boldsymbol{x}_{t}(i) \cdot\left(1-\beta \boldsymbol{\ell}_{t}(i)+\beta^{2} \ell_{t}^{2}(i)\right) \\
& =1-\beta\left\langle\boldsymbol{x}_{t}, \ell_{t}\right\rangle+\beta^{2}\left\langle\boldsymbol{x}_{t}, \ell_{t}^{2}\right\rangle
\end{aligned}
$$

The proof (contd.)

Lemma 2 (MWU brings large loss $\Rightarrow W_{T+1}$ is SMALL)

$$
W_{T+1} \leq n \prod_{t=1}^{n}\left(1-\beta\left\langle x_{t}, \ell_{t}\right\rangle+\beta^{2}\left\langle x_{t}, \ell_{t}^{2}\right\rangle\right)
$$

Proof.

Note: $W_{1}=n$.

$$
\begin{aligned}
\frac{W_{t+1}}{W_{t}} & =\sum_{i=1}^{n} \frac{\boldsymbol{w}_{t+1}(i)}{W_{t}}=\sum_{i=1}^{n} \frac{\boldsymbol{w}_{t}(i) \cdot e^{-\beta \boldsymbol{\ell}_{t}(i)}}{W_{t}}=\sum_{i=1}^{n} \boldsymbol{x}_{t}(i) \cdot e^{-\beta \boldsymbol{\ell}_{t}(i)} \\
& \leq \sum_{i=1}^{n} \boldsymbol{x}_{t}(i) \cdot\left(1-\beta \boldsymbol{\ell}_{t}(i)+\beta^{2} \ell_{t}^{2}(i)\right) \\
& =1-\beta\left\langle x_{t}, \ell_{t}\right\rangle+\beta^{2}\left\langle x_{t}, \ell_{t}^{2}\right\rangle \leq e^{-\beta\left\langle x_{t}, \ell_{t}\right\rangle+\beta^{2}\left\langle x_{t}, \ell_{t}^{2}\right\rangle} .
\end{aligned}
$$

The proof (contd.)

Lemma 2 (MWU brings large loss $\Rightarrow W_{T+1}$ is SMALL)

$$
W_{T+1} \leq n \prod_{t=1}^{n} e^{-\beta\left\langle x_{t}, \ell_{t}\right\rangle+\beta^{2}\left\langle x_{t}, \ell_{t}^{2}\right\rangle}
$$

Proof.

Note: $W_{1}=n$.

$$
\begin{aligned}
\frac{W_{t+1}}{W_{t}} & =\sum_{i=1}^{n} \frac{\boldsymbol{w}_{t+1}(i)}{W_{t}}=\sum_{i=1}^{n} \frac{\boldsymbol{w}_{t}(i) \cdot e^{-\beta \ell_{t}(i)}}{W_{t}}=\sum_{i=1}^{n} \boldsymbol{x}_{t}(i) \cdot e^{-\beta \ell_{t}(i)} \\
& \leq \sum_{i=1}^{n} \boldsymbol{x}_{t}(i) \cdot\left(1-\beta \boldsymbol{\ell}_{t}(i)+\beta^{2} \ell_{t}^{2}(i)\right) \\
& =1-\beta\left\langle\boldsymbol{x}_{t}, \ell_{t}\right\rangle+\beta^{2}\left\langle\boldsymbol{x}_{t}, \ell_{t}^{2}\right\rangle \leq e^{-\beta\left\langle x_{t}, \ell_{t}\right\rangle+\beta^{2}\left\langle x_{t}, \ell_{t}^{2}\right\rangle} .
\end{aligned}
$$

The proof (contd.)

Hence

$$
\ln W_{T+1} \leq \ln n-\left(\sum_{i=1}^{T} \beta\left\langle\ell_{t}, \boldsymbol{x}_{t}\right\rangle\right)+\left(\sum_{i=1}^{T} \beta^{2}\left\langle\ell_{t}^{2}, \boldsymbol{x}_{t}\right\rangle\right)
$$

and $\ln W_{T+1} \geq-\beta L^{*}$.

The proof (contd.)

Hence

$$
\ln W_{T+1} \leq \ln n-\left(\sum_{i=1}^{T} \beta\left\langle\ell_{t}, \boldsymbol{x}_{t}\right\rangle\right)+\left(\sum_{i=1}^{T} \beta^{2}\left\langle\ell_{t}^{2}, \boldsymbol{x}_{t}\right\rangle\right)
$$

and $\ln W_{T+1} \geq-\beta L^{*}$.
Thus,

$$
\left(\sum_{t=1}^{T}\left\langle\ell_{t}, x_{t}\right\rangle\right)-L^{*} \leq \frac{\ln n}{\beta}+\beta \sum_{t=1}^{T}\left\langle\ell_{t}^{2}, x_{t}\right\rangle .
$$

The proof (contd.)

Hence

$$
\ln W_{T+1} \leq \ln n-\left(\sum_{i=1}^{T} \beta\left\langle\ell_{t}, \boldsymbol{x}_{t}\right\rangle\right)+\left(\sum_{i=1}^{T} \beta^{2}\left\langle\ell_{t}^{2}, \boldsymbol{x}_{t}\right\rangle\right)
$$

and $\ln W_{T+1} \geq-\beta L^{*}$.
Thus,

$$
\left(\sum_{t=1}^{T}\left\langle\ell_{t}, x_{t}\right\rangle\right)-L^{*} \leq \frac{\ln n}{\beta}+\beta \sum_{t=1}^{T}\left\langle\ell_{t}^{2}, x_{t}\right\rangle .
$$

Take $\beta=\sqrt{\frac{\ln n}{T}}$, we have $\operatorname{regret}_{T} \leq 2 \sqrt{T \ln n}$.

Outline

(1) Introduction
(2) Gradient Descent for Online Convex Optimization (GD)
(3) Multiplicative Weight Update (MWU)

4 Follow The Leader (FTL)
(5) Follow The Regularized Leader (FTRL)

- MWU Revisited
- FTRL with 2-norm regularizer
(6) Multi-Armed Bandit (MAB)
- Greedy Algorithms
- Upper Confidence Bound (UCB)
- Time-Decay ϵ-Greedy

Why so complicated?

- How about just following the one with best performance?

Why so complicated?

- How about just following the one with best performance?
- Follow The Leader (FTL) Algorithm.

Why so complicated?

- How about just following the one with best performance?
- Follow The Leader (FTL) Algorithm.
- First, we assume to make no assumptions on \mathcal{K} and $\left\{f_{t}: L \mapsto \mathbb{R}\right\}$.
- At time t, we are given previous cost functions f_{1}, \ldots, f_{t-1}, and then give the solution

$$
\boldsymbol{x}_{t}:=\arg \min _{\boldsymbol{x} \in \mathcal{K}} \sum_{k=1}^{t-1} f_{k}(\boldsymbol{x})
$$

Why so complicated?

- How about just following the one with best performance?
- Follow The Leader (FTL) Algorithm.
- First, we assume to make no assumptions on \mathcal{K} and $\left\{f_{t}: L \mapsto \mathbb{R}\right\}$.
- At time t, we are given previous cost functions f_{1}, \ldots, f_{t-1}, and then give the solution

$$
\boldsymbol{x}_{t}:=\arg \min _{\boldsymbol{x} \in \mathcal{K}} \sum_{k=1}^{t-1} f_{k}(\boldsymbol{x})
$$

That is, the best solution for the previous $t-1$ steps.

Why so complicated?

- How about just following the one with best performance?
- Follow The Leader (FTL) Algorithm.
- First, we assume to make no assumptions on \mathcal{K} and $\left\{f_{t}: L \mapsto \mathbb{R}\right\}$.
- At time t, we are given previous cost functions f_{1}, \ldots, f_{t-1}, and then give the solution

$$
\boldsymbol{x}_{t}:=\arg \min _{\boldsymbol{x} \in \mathcal{K}} \sum_{k=1}^{t-1} f_{k}(\boldsymbol{x})
$$

That is, the best solution for the previous $t-1$ steps.

- It seems reasonable and makes sense, doesn't it?

FTL leads to "overfitting"

$$
\begin{array}{cc}
t: & 1 \\
\boldsymbol{x}_{t}: & (0.5,0.5 \\
\ell_{t}: & (0,0.5) \\
f_{t}\left(\boldsymbol{x}_{t}\right): & 0.25 \\
\arg \min _{\boldsymbol{x}} \sum_{k=1}^{t} f_{k}(\boldsymbol{x}): & (1,0)
\end{array}
$$

FTL leads to "overfitting"

$$
\begin{array}{ccc}
t: & 1 & 2 \\
\boldsymbol{x}_{t}: & (0.5,0.5) & (1,0) \\
\boldsymbol{\ell}_{t}: & (0,0.5) & (1,0) \\
f_{t}\left(\boldsymbol{x}_{t}\right): & 0.25 & 1 \\
\arg \min _{\boldsymbol{x}} \sum_{k=1}^{t} f_{k}(\boldsymbol{x}): & (1,0) & (0,1)
\end{array}
$$

FTL leads to "overfitting"

$$
\begin{array}{cccc}
t: & 1 & 2 & 3 \\
\boldsymbol{x}_{t}: & (0.5,0.5) & (1,0) & (0,1) \\
\ell_{t}: & (0,0.5) & (1,0) & (0,1) \\
f_{t}\left(\boldsymbol{x}_{t}\right): & 0.25 & 1 & 1 \\
\arg \min _{\boldsymbol{x}} \sum_{k=1}^{t} f_{k}(\boldsymbol{x}): & (1,0) & (0,1) & (1,0)
\end{array}
$$

FTL leads to "overfitting"

$$
\begin{array}{ccccc}
t: & 1 & 2 & 3 & 4 \\
x_{t}: & (0.5,0.5) & (1,0) & (0,1) & (1,0) \\
t_{t}: & (0,0.5) & (1,0) & (0,1) & (1,0) \\
f_{t}\left(x_{t}\right): & 0.25 & 1 & 1 & 1 \\
\operatorname{arg~min}_{x} \sum_{k=1}^{t} f_{k}(x): & (1,0) & (0,1) & (1,0) & (0,1)
\end{array}
$$

FTL leads to "overfitting"

$$
\begin{array}{cccccc}
t: & 1 & 2 & 3 & 4 & 5 \\
x_{t}: & (0.5,0.5) & (1,0) & (0,1) & (1,0) & (0,1) \\
\ell_{t}: & (0,0.5) & (1,0) & (0,1) & (1,0) & (0,1) \\
f_{t}\left(x_{t}\right): & 0.25 & 1 & 1 & 1 & 1 \\
{ }_{x} \sum_{k=1}^{t} f_{k}(x): & (1,0) & (0,1) & (1,0) & (0,1) & (1,0)
\end{array}
$$

FTL leads to "overfitting"

$$
\begin{array}{ccccccl}
t: & 1 & 2 & 3 & 4 & 5 & \ldots \\
\boldsymbol{x}_{t}: & (0.5,0.5) & (1,0) & (0,1) & (1,0) & (0,1) & \ldots \\
\ell_{t}: & (0,0.5) & (1,0) & (0,1) & (1,0) & (0,1) & \ldots \\
f_{t}\left(\boldsymbol{x}_{t}\right): & 0.25 & 1 & 1 & 1 & 1 & \ldots \\
x_{x} \sum_{k=1}^{t} f_{k}(\boldsymbol{x}): & (1,0) & (0,1) & (1,0) & (0,1) & (1,0) & \ldots
\end{array}
$$

FTL leads to "overfitting"

$$
\begin{array}{ccccccc}
t: & 1 & 2 & 3 & 4 & 5 & \cdots \\
x_{t}: & (0.5,0.5) & (1,0) & (0,1) & (1,0) & (0,1) & \ldots \\
\ell_{t}: & (0,0.5) & (1,0) & (0,1) & (1,0) & (0,1) & \ldots \\
f_{t}\left(x_{t}\right): & 0.25 & 1 & 1 & 1 & 1 & \ldots \\
\arg \min _{x} \sum_{k=1}^{t} f_{k}(x): & (1,0) & (0,1) & (1,0) & (0,1) & (1,0) & \ldots
\end{array}
$$

optimum loss: $\approx T / 2$.
FTL's loss: $\approx T$.
regret: $\approx T / 2$ (linear).

Analysis of FTL

Theorem 2 (Analysis of FTL)

For any sequence of cost functions f_{1}, \ldots, f_{t} and any number of time steps T, the FTL algorithm satisfies

$$
\operatorname{regret}_{T} \leq \sum_{t=1}^{T}\left(f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t+1}\right)\right)
$$

Analysis of FTL

Theorem 2 (Analysis of FTL)

For any sequence of cost functions f_{1}, \ldots, f_{t} and any number of time steps T, the FTL algorithm satisfies

$$
\operatorname{regret}_{T} \leq \sum_{t=1}^{T}\left(f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t+1}\right)\right)
$$

Implication: If $f_{t}(\cdot)$ is Lipschitz w.r.t. to some distance function $\|\cdot\|$, then \boldsymbol{x}_{t} and \boldsymbol{x}_{t+1} are close $\Rightarrow\left\|f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t+1}\right)\right\|$ can't be too large.
Modify FTL: \boldsymbol{x}_{t} 's shouldn't change too much from step by step.

Proof of Theorem 2

Recall that

$$
\operatorname{regret}_{T}=\sum_{t=1}^{T} f_{t}\left(\boldsymbol{x}_{t}\right)-\min _{\boldsymbol{x} \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(\boldsymbol{x})
$$

Proof of Theorem 2

Recall that

$$
\operatorname{regret}_{T}=\sum_{t=1}^{T} f_{t}\left(\boldsymbol{x}_{t}\right)-\min _{\boldsymbol{x} \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(\boldsymbol{x}) \leq \sum_{t=1}^{T}\left(f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t+1}\right)\right) .
$$

The theorem $\Leftrightarrow \sum_{t=1}^{T} f_{t}\left(x_{t+1}\right) \leq \min _{x \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(\boldsymbol{x})$.

Proof of Theorem 2

Recall that

$$
\operatorname{regret}_{T}=\sum_{t=1}^{T} f_{t}\left(\boldsymbol{x}_{t}\right)-\min _{\boldsymbol{x} \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(\boldsymbol{x}) \leq \sum_{t=1}^{T}\left(f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t+1}\right)\right) .
$$

The theorem $\Leftrightarrow \sum_{t=1}^{T} f_{t}\left(\boldsymbol{x}_{t+1}\right) \leq \min _{x \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(\boldsymbol{x})$.
Prove by induction. $T=1$: The definition of \boldsymbol{x}_{2}.

Proof of Theorem 2

Recall that

$$
\operatorname{regret}_{T}=\sum_{t=1}^{T} f_{t}\left(\boldsymbol{x}_{t}\right)-\min _{\boldsymbol{x} \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(\boldsymbol{x}) \leq \sum_{t=1}^{T}\left(f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t+1}\right)\right) .
$$

The theorem $\Leftrightarrow \sum_{t=1}^{T} f_{t}\left(x_{t+1}\right) \leq \min _{x \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(x)$.
Prove by induction. $T=1$: The definition of \boldsymbol{x}_{2}.
Assume that it holds up to T. Then:

Proof of Theorem 2

Recall that

$$
\operatorname{regret}_{T}=\sum_{t=1}^{T} f_{t}\left(\boldsymbol{x}_{t}\right)-\min _{\boldsymbol{x} \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(\boldsymbol{x}) \leq \sum_{t=1}^{T}\left(f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t+1}\right)\right) .
$$

The theorem $\Leftrightarrow \sum_{t=1}^{T} f_{t}\left(x_{t+1}\right) \leq \min _{x \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(x)$.
Prove by induction. $T=1$: The definition of \boldsymbol{x}_{2}.
Assume that it holds up to T. Then:

$$
\sum_{t=1}^{T+1} f_{t}\left(\boldsymbol{x}_{t+1}\right)=\sum_{t=1}^{T} f_{t}\left(\boldsymbol{x}_{t+1}\right)+f_{T+1}\left(\boldsymbol{x}_{T+2}\right) \leq \sum_{t=1}^{T+1} f_{t}\left(\boldsymbol{x}_{T+2}\right)=\min _{\boldsymbol{x} \in \mathcal{K}} \sum_{t=1}^{T+1} f_{t}(\boldsymbol{x})
$$

Proof of Theorem 2

Recall that

$$
\operatorname{regret}_{T}=\sum_{t=1}^{T} f_{t}\left(\boldsymbol{x}_{t}\right)-\min _{\boldsymbol{x} \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(\boldsymbol{x}) \leq \sum_{t=1}^{T}\left(f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t+1}\right)\right) .
$$

The theorem $\Leftrightarrow \sum_{t=1}^{T} f_{t}\left(\boldsymbol{x}_{t+1}\right) \leq \min _{x \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(\boldsymbol{x})$.
Prove by induction. $T=1$: The definition of \boldsymbol{x}_{2}.
Assume that it holds up to T. Then:

$$
\sum_{t=1}^{T+1} f_{t}\left(\boldsymbol{x}_{t+1}\right)=\sum_{t=1}^{T} f_{t}\left(\boldsymbol{x}_{t+1}\right)+f_{T+1}\left(\boldsymbol{x}_{T+2}\right) \leq \sum_{t=1}^{T+1} f_{t}\left(\boldsymbol{x}_{T+2}\right)=\min _{\boldsymbol{x} \in \mathcal{K}} \sum_{t=1}^{T+1} f_{t}(\boldsymbol{x})
$$

where

$$
\sum_{t=1}^{T} f_{t}\left(\boldsymbol{x}_{t+1}\right) \leq \min _{x \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(\boldsymbol{x}) \leq \sum_{t=1}^{T} f_{t}\left(\boldsymbol{x}_{T+2}\right)
$$

Outline

(1) Introduction
(2) Gradient Descent for Online Convex Optimization (GD)
(3) Multiplicative Weight Update (MWU)

4 Follow The Leader (FTL)
(5) Follow The Regularized Leader (FTRL)

- MWU Revisited
- FTRL with 2-norm regularizer
(6) Multi-Armed Bandit (MAB)
- Greedy Algorithms
- Upper Confidence Bound (UCB)
- Time-Decay ϵ-Greedy

Introducing REGULARIZATION

- You might have already been using regularization for quite a long time.

Introducing REGULARIZATION

```
from keras import regularizers
model.add(Dense(64, input_dim=64,
    kernel_regularizer=regularizers.12(0.01)
```


Introducing REGULARIZATION

```
# L1 data (only }5\mathrm{ informative features)
X_1, y_1 = datasets.make classification(n_samples=n_samples,
n_features=n_features, n_informative=5,
random_state=1)
# l2 data: non sparse, but less features
y_2 = np.sign(.5 - rnd.rand(n_samples))
X_2 = rnd.randn(n_samples, n_features // 5) + y_2[:, np.newaxis]
X_2 += 5 * rnd.randn(n_samples, n_features // 5)
clf_sets = [(LinearSVC(penalty='l1', loss='squared_hinge', dual=False,
    tol=1e-3),
    np.logspace(-2.3, -1.3, 10), X_1, y_1),
    (LinearSVC(penalty='12', loss='squared_hinge', dual=True),
    np.logspace(-4.5, -2, 10), X_2, y_2)]
```


The regularizer

At each step, we compute the solution

$$
\boldsymbol{x}_{t}:=\arg \min _{\boldsymbol{x} \in \mathcal{K}}\left(R(\boldsymbol{x})+\sum_{k=1}^{t-1} f_{k}(\boldsymbol{x})\right) .
$$

This is called Follow the Regularized Leader (FTRL).
In short,

FTRL $=$ FTL + Regularizer.

Analysis of FTRL

Theorem 3 (Analysis of FTRL)

For

- every sequence of cost function $\left\{f_{t}(\cdot)\right\}_{t \geq 1}$ and
- every regularizer function $R(\cdot)$, for every \boldsymbol{x}, the regret with respect to \boldsymbol{x} after T steps of the FTRL algorithm is bounded as

$$
\operatorname{regret}_{T}(\boldsymbol{x}) \leq\left(\sum_{t=1}^{T} f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t+1}\right)\right)+R(\boldsymbol{x})-R\left(\boldsymbol{x}_{1}\right)
$$

where $^{\operatorname{regret}_{T}}(\boldsymbol{x}):=\sum_{t=1}^{T}\left(f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}(\boldsymbol{x})\right)$.

Proof of Theorem 3

- Consider a mental experiment:

Proof of Theorem 3

- Consider a mental experiment:
- We run the FTL algorithm for $T+1$ steps.
- The sequence of cost functions: $R, f_{1}, f_{2}, \ldots, f_{T}$.
- Use x_{1} as the first solution.
- The solutions: $\boldsymbol{x}_{1}, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{T}$.

Proof of Theorem 3

- Consider a mental experiment:
- We run the FTL algorithm for $T+1$ steps.
- The sequence of cost functions: $R, f_{1}, f_{2}, \ldots, f_{T}$.
- Use x_{1} as the first solution.
- The solutions: $\boldsymbol{x}_{1}, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{T}$.
- The regret:

$$
R\left(\boldsymbol{x}_{1}\right)-R(\boldsymbol{x})+\sum_{t=1}^{T}\left(f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}(\boldsymbol{x})\right)
$$

Proof of Theorem 3

- Consider a mental experiment:
- We run the FTL algorithm for $T+1$ steps.
- The sequence of cost functions: $R, f_{1}, f_{2}, \ldots, f_{T}$.
- Use x_{1} as the first solution.
- The solutions: $\boldsymbol{x}_{1}, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{T}$.
- The regret:

$$
R\left(\boldsymbol{x}_{1}\right)-R(\boldsymbol{x})+\sum_{t=1}^{T}\left(f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}(\boldsymbol{x})\right) \leq R\left(\boldsymbol{x}_{1}\right)-R\left(\boldsymbol{x}_{1}\right)+\sum_{t=1}^{T}\left(f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t+1}\right)\right)
$$

minimizer of $R(\cdot)$

Proof of Theorem 3

- Consider a mental experiment:
- We run the FTL algorithm for $T+1$ steps.
- The sequence of cost functions: $R, f_{1}, f_{2}, \ldots, f_{T}$.
- Use x_{1} as the first solution.
- The solutions: $\boldsymbol{x}_{1}, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{T}$.
- The regret:

$$
\begin{aligned}
& R\left(\boldsymbol{x}_{1}\right)-R(\boldsymbol{x})+\sum_{t=1}^{T}\left(f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}(\boldsymbol{x})\right) \leq R\left(\boldsymbol{x}_{1}\right)-R\left(\boldsymbol{x}_{1}\right)+\sum_{t=1}^{T}\left(f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(x_{t+1}\right)\right) \\
& \text { output of FTRL at } t+1
\end{aligned}
$$

Outline

(1) Introduction
(2) Gradient Descent for Online Convex Optimization (GD)

3 Multiplicative Weight Update (MWU)
4 Follow The Leader (FTL)
(5) Follow The Regularized Leader (FTRL)

- MWU Revisited
- FTRL with 2-norm regularizer

6) Multi-Armed Bandit (MAB)

- Greedy Algorithms
- Upper Confidence Bound (UCB)
- Time-Decay ϵ-Greedy

Using negative-entropy regularization

- We have seen an example that FTL tends to put all probability mass on one expert (it's bad!)

Using negative-entropy regularization

- We have seen an example that FTL tends to put all probability mass on one expert (it's bad!)
- Idea: penalize over "concentralized" distributions.
- negative-entropy: a good measure of how centralized a distribution is.

Using negative-entropy regularization

- We have seen an example that FTL tends to put all probability mass on one expert (it's bad!)
- Idea: penalize over "concentralized" distributions.
- negative-entropy: a good measure of how centralized a distribution is.

$$
R(x):=c \cdot \sum_{i=1}^{n} x(i) \ln x(i)
$$

Using negative-entropy regularization

- We have seen an example that FTL tends to put all probability mass on one expert (it's bad!)
- Idea: penalize over "concentralized" distributions.
- negative-entropy: a good measure of how centralized a distribution is.

$$
R(x):=c \cdot \sum_{i=1}^{n} x(i) \ln x(i)
$$

- So our FTRL gives

$$
\boldsymbol{x}_{t}=\arg \min _{\boldsymbol{x} \in \Delta}\left(\sum_{k=1}^{t-1}\left\langle\ell_{k}, \boldsymbol{x}\right\rangle+c \cdot \sum_{i=1}^{n} \boldsymbol{x}(i) \ln \boldsymbol{x}(i)\right)
$$

Using negative entropy regularization

$$
\boldsymbol{x}_{t}=\arg \min _{\boldsymbol{x} \in \Delta}\left(\sum_{k=1}^{t-1}\left\langle\boldsymbol{\ell}_{k}, \boldsymbol{x}\right\rangle+c \cdot \sum_{i=1}^{n} \boldsymbol{x}(i) \ln \boldsymbol{x}(i)\right) .
$$

- The constraint $x \in \Delta \Rightarrow \sum_{i} x_{i}=1$.
- So we use Lagrange multiplier to solve

$$
\mathcal{L}=\left(\sum_{k=1}^{t-1}\left\langle\ell_{k}, \boldsymbol{x}\right\rangle\right)+c \cdot\left(\sum_{i=1}^{n} \boldsymbol{x}(i) \ln \boldsymbol{x}(i)\right)+\lambda \cdot(\langle\boldsymbol{x}, \mathbf{1}\rangle-1)
$$

Using negative entropy regularization

$$
\boldsymbol{x}_{t}=\arg \min _{x \in \Delta}\left(\sum_{k=1}^{t-1}\left\langle\ell_{k}, \boldsymbol{x}\right\rangle+c \cdot \sum_{i=1}^{n} \boldsymbol{x}(i) \ln \boldsymbol{x}(i)\right) .
$$

- The constraint $x \in \Delta \Rightarrow \sum_{i} x_{i}=1$.
- So we use Lagrange multiplier to solve

$$
\mathcal{L}=\left(\sum_{k=1}^{t-1}\left\langle\ell_{k}, \boldsymbol{x}\right\rangle\right)+c \cdot\left(\sum_{i=1}^{n} \boldsymbol{x}(i) \ln \boldsymbol{x}(i)\right)+\lambda \cdot(\langle\boldsymbol{x}, \mathbf{1}\rangle-1)
$$

- The partial derivative $\frac{\partial \mathcal{L}}{\partial x(i)}$:

$$
\left(\sum_{k=1}^{t-1} \ell_{k}(i)\right)+c \cdot\left(1+\ln x_{i}\right)+\lambda
$$

Rediscover MWU?

$$
\frac{\partial \mathcal{L}}{\partial \boldsymbol{x}(i)}=0 \quad \Rightarrow \quad \boldsymbol{x}(i)=\exp \left(-1-\frac{\lambda}{c}-\frac{1}{c} \sum_{k=1}^{t-1} \ell_{k}(i)\right)
$$

Rediscover MWU?

$$
\frac{\partial \mathcal{L}}{\partial \boldsymbol{x}(i)}=0 \Rightarrow \boldsymbol{x}(i)=\exp \left(-1-\frac{\lambda}{c}-\frac{1}{c} \sum_{k=1}^{t-1} \ell_{k}(i)\right)
$$

Take the value of λ to make the solution a probability distribution. Thus,

Rediscover MWU?

$$
\frac{\partial \mathcal{L}}{\partial \boldsymbol{x}(i)}=0 \Rightarrow \boldsymbol{x}(i)=\exp \left(-1-\frac{\lambda}{c}-\frac{1}{c} \sum_{k=1}^{t-1} \ell_{k}(i)\right)
$$

Take the value of λ to make the solution a probability distribution.
Thus,

$$
\boldsymbol{x}(i)=\frac{\exp \left(-\frac{1}{c} \sum_{k=1}^{t-1} \ell_{k}(i)\right)}{\sum_{j} \exp \left(-\frac{1}{c} \sum_{k=1}^{t-1} \ell_{k}(j)\right)}
$$

Rediscover MWU?

$$
\frac{\partial \mathcal{L}}{\partial \boldsymbol{x}(i)}=0 \Rightarrow \boldsymbol{x}(i)=\exp \left(-1-\frac{\lambda}{c}-\frac{1}{c} \sum_{k=1}^{t-1} \ell_{k}(i)\right)
$$

Take the value of λ to make the solution a probability distribution.
Thus,

$$
\boldsymbol{x}(i)=\frac{\exp \left(-\frac{1}{c} \sum_{k=1}^{t-1} \ell_{k}(i)\right)}{\sum_{j} \exp \left(-\frac{1}{c} \sum_{k=1}^{t-1} \ell_{k}(j)\right)}
$$

Exactly the solution of MWU if we take $c=1 / \beta$!

Rediscover MWU?

$$
\frac{\partial \mathcal{L}}{\partial \boldsymbol{x}(i)}=0 \Rightarrow \boldsymbol{x}(i)=\exp \left(-1-\frac{\lambda}{c}-\frac{1}{c} \sum_{k=1}^{t-1} \ell_{k}(i)\right)
$$

Take the value of λ to make the solution a probability distribution. Thus,

$$
\boldsymbol{x}(i)=\frac{\exp \left(-\frac{1}{c} \sum_{k=1}^{t-1} \ell_{k}(i)\right)}{\sum_{j} \exp \left(-\frac{1}{c} \sum_{k=1}^{t-1} \ell_{k}(j)\right)}
$$

Exactly the solution of MWU if we take $c=1 / \beta$!

- Now it remains to bound the deviation of each step.

Regret of FTRL + Negative-Entropy Regularization

- At each step,

$$
f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t+1}\right)=\left\langle\ell_{t}, \boldsymbol{x}_{t}-\boldsymbol{x}_{t+1}\right\rangle
$$

- Let's go back to use the notation of MWU.
- $\boldsymbol{w}_{1}(i)=1$ (initialization).
- $\boldsymbol{w}_{t+1}(i)=\boldsymbol{w}_{t}(i) \cdot e^{-\ell_{t}(i) / c}$.

Regret of FTRL + Negative-Entropy Regularization

- At each step,

$$
f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t+1}\right)=\left\langle\ell_{t}, \boldsymbol{x}_{t}-\boldsymbol{x}_{t+1}\right\rangle
$$

- Let's go back to use the notation of MWU.
- $\boldsymbol{w}_{1}(i)=1$ (initialization).
- $\boldsymbol{w}_{t+1}(i)=\boldsymbol{w}_{t}(i) \cdot e^{-\ell_{t}(i) / c}$.
- So, $\boldsymbol{x}_{t}=\frac{\boldsymbol{w}_{t}(i)}{\sum_{j} \boldsymbol{w}_{t}(j)}$.
- Then,

$$
\begin{aligned}
\boldsymbol{x}_{t+1}(i) & =\frac{\boldsymbol{w}_{t+1}(i)}{\sum_{j} \boldsymbol{w}_{t+1}(j)}=\frac{\boldsymbol{w}_{t}(i) e^{-\ell_{t}(i) / c}}{\sum_{j} \boldsymbol{w}_{t+1}(j)} \geq \frac{\boldsymbol{w}_{t}(i) e^{-\ell_{t}(i) / c}}{\sum_{j} \boldsymbol{w}_{t}(j)} \\
& \geq \boldsymbol{x}_{t}(i) \cdot e^{-1 / c} \geq(1-1 / c) \boldsymbol{x}_{t}(i)
\end{aligned}
$$

Regret of FTRL + Negative-Entropy Regularization

- At each step,

$$
f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t+1}\right)=\left\langle\ell_{t}, \boldsymbol{x}_{t}-\boldsymbol{x}_{t+1}\right\rangle
$$

- Let's go back to use the notation of MWU.
- $\boldsymbol{w}_{1}(i)=1$ (initialization).
- $\boldsymbol{w}_{t+1}(i)=\boldsymbol{w}_{t}(i) \cdot e^{-\ell_{t}(i) / c}$.
- So, $\boldsymbol{x}_{t}=\frac{\boldsymbol{w}_{t}(i)}{\sum_{j} \boldsymbol{w}_{t}(j)}$.
- Then,

$$
\begin{aligned}
\boldsymbol{x}_{t+1}(i) & =\frac{\boldsymbol{w}_{t+1}(i)}{\sum_{j} \boldsymbol{w}_{t+1}(j)}=\frac{\boldsymbol{w}_{t}(i) e^{-\ell_{t}(i) / c}}{\sum_{j} \boldsymbol{w}_{t+1}(j)} \geq \frac{\boldsymbol{w}_{t}(i) e^{-\ell_{t}(i) / c}}{\sum_{j} \boldsymbol{w}_{t}(j)} \\
& \geq \boldsymbol{x}_{t}(i) \cdot e^{-1 / c} \geq(1-1 / c) \boldsymbol{x}_{t}(i)
\end{aligned}
$$

\because weights are non-increasing

Regret of FTRL + Negative-Entropy Regularization

- At each step,

$$
f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t+1}\right)=\left\langle\ell_{t}, \boldsymbol{x}_{t}-\boldsymbol{x}_{t+1}\right\rangle
$$

- Let's go back to use the notation of MWU.
- $\boldsymbol{w}_{1}(i)=1$ (initialization).
- $\boldsymbol{w}_{t+1}(i)=\boldsymbol{w}_{t}(i) \cdot e^{-\ell_{t}(i) / c}$.
- So, $\boldsymbol{x}_{t}=\frac{\boldsymbol{w}_{t}(i)}{\sum_{j} \boldsymbol{w}_{t}(j)}$.
- Then,

$$
\begin{aligned}
& \boldsymbol{x}_{t+1}(i)= \frac{\boldsymbol{w}_{t+1}(i)}{\sum_{j} \boldsymbol{w}_{t+1}(j)}=\frac{\boldsymbol{w}_{t}(i) e^{-\ell_{t}(i) / c}}{\sum_{j} \boldsymbol{w}_{t+1}(j)} \geq \frac{\boldsymbol{w}_{t}(i) e^{-\ell_{t}(i) / c}}{\sum_{j} \boldsymbol{w}_{t}(j)} \\
& \geq \boldsymbol{x}_{t}(i) \cdot e^{-1 / c} \geq(1-1 / c) \boldsymbol{x}_{t}(i) \\
& \quad \text { assume } 0 \leq \boldsymbol{\ell}_{t}(i) \leq 1
\end{aligned}
$$

Regret of FTRL + Negative-Entropy Regularization

- At each step,

$$
f_{t}\left(x_{t}\right)-f_{t}\left(x_{t+1}\right)=\left\langle\ell_{t}, \boldsymbol{x}_{t}-x_{t+1}\right\rangle \leq \sum_{i} \ell_{t}(i) \cdot \frac{1}{c} x_{t}(i) \leq \frac{1}{c} .
$$

- Let's go back to use the notation of MWU.
- $\boldsymbol{w}_{1}(i)=1$ (initialization).
- $\boldsymbol{w}_{t+1}(i)=\boldsymbol{w}_{t}(i) \cdot e^{-\ell_{t}(i) / c}$.
- So, $\boldsymbol{x}_{t}=\frac{\boldsymbol{w}_{t}(i)}{\sum_{j} \boldsymbol{w}_{t}(j)}$.
- Then,

$$
\begin{aligned}
\boldsymbol{x}_{t+1}(i) & =\frac{\boldsymbol{w}_{t+1}(i)}{\sum_{j} \boldsymbol{w}_{t+1}(j)}=\frac{\boldsymbol{w}_{t}(i) e^{-\ell_{t}(i) / c}}{\sum_{j} \boldsymbol{w}_{t+1}(j)} \geq \frac{\boldsymbol{w}_{t}(i) e^{-\ell_{t}(i) / c}}{\sum_{j} \boldsymbol{w}_{t}(j)} \\
& \geq \boldsymbol{x}_{t}(i) \cdot e^{-1 / c} \geq(1-1 / c) \boldsymbol{x}_{t}(i)
\end{aligned}
$$

Regret of FTRL + Negative-Entropy Regularization

- By Theorem 3, for any \boldsymbol{x},

$$
\operatorname{regret}_{T}(\boldsymbol{x}) \leq \sum_{t=1}^{T}\left(f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t+1}\right)\right)+R(\boldsymbol{x})-R\left(\boldsymbol{x}_{1}\right) \leq \frac{T}{c}+c \ln n .
$$

Regret of FTRL + Negative-Entropy Regularization

- By Theorem 3, for any \boldsymbol{x},

$$
\operatorname{regret}_{T}(\boldsymbol{x}) \leq \sum_{t=1}^{T}\left(f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t+1}\right)\right)+R(\boldsymbol{x})-R\left(\boldsymbol{x}_{1}\right) \leq \frac{T}{c}+c \ln n .
$$

\because max entropy for uniform distribution

Regret of FTRL + Negative-Entropy Regularization

- By Theorem 3, for any \boldsymbol{x},

$$
\operatorname{regret}_{T}(\boldsymbol{x}) \leq \sum_{t=1}^{T}\left(f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t+1}\right)\right)+R(\boldsymbol{x})-R\left(\boldsymbol{x}_{1}\right) \leq \frac{T}{c}+c \ln n
$$

Again, we have regret ${ }_{T} \leq 2 \sqrt{T \ln n}$ by choosing $c=\sqrt{\frac{T}{\ln n}}$.

Regret of FTRL + Negative-Entropy Regularization

- By Theorem 3, for any \boldsymbol{x},

$$
\operatorname{regret}_{T}(\boldsymbol{x}) \leq \sum_{t=1}^{T}\left(f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t+1}\right)\right)+R(\boldsymbol{x})-R\left(\boldsymbol{x}_{1}\right) \leq \frac{T}{c}+c \ln n
$$

Again, we have regret ${ }_{T} \leq 2 \sqrt{T \ln n}$ by choosing $c=\sqrt{\frac{T}{\ln n}}$.

- Note the slight difference b/w regret and regret*.

FTRL with 2-norm regularizer

Outline

(1) Introduction
(2) Gradient Descent for Online Convex Optimization (GD)
(3) Multiplicative Weight Update (MWU)

4 Follow The Leader (FTL)
(5) Follow The Regularized Leader (FTRL)

- MWU Revisited
- FTRL with 2-norm regularizer
(6) Multi-Armed Bandit (MAB)
- Greedy Algorithms
- Upper Confidence Bound (UCB)
- Time-Decay ϵ-Greedy

L2 Regularization

- Let's try to apply the FTRL to the case that the regularizer is of L2 norm!
- Consider also linear cost functions but $\mathcal{K}=\mathbb{R}^{n}$ first.
- What kind of problem we might encounter?

L2 Regularization

- Let's try to apply the FTRL to the case that the regularizer is of L2 norm!
- Consider also linear cost functions but $\mathcal{K}=\mathbb{R}^{n}$ first.
- What kind of problem we might encounter?
- The offline optimum could be $-\infty$.
- FTL will also tend to find a solution of "big" size, too.

L2 Regularization

- Let's try to apply the FTRL to the case that the regularizer is of L2 norm!
- Consider also linear cost functions but $\mathcal{K}=\mathbb{R}^{n}$ first.
- What kind of problem we might encounter?
- The offline optimum could be $-\infty$.
- FTL will also tend to find a solution of "big" size, too.
- To fight this tendency, it makes sense to use a regularizer which penalizes the size of a solution.

$$
R(\boldsymbol{x}):=c\|\boldsymbol{x}\|^{2} .
$$

The regularizer of 2-norm tells us...

- $x_{1}=0$.
- $\boldsymbol{x}_{t+1}=\arg \min _{\boldsymbol{x} \in \mathbb{R}^{n}} c\|\boldsymbol{x}\|^{2}+\sum_{k=1}^{t}\left\langle\boldsymbol{\ell}_{k}, \boldsymbol{x}\right\rangle$.
- Compute the gradient:

$$
\begin{aligned}
& 2 c x+\sum_{k=1}^{t} \ell_{k}=0 \\
\Rightarrow & x=-\frac{1}{2 c} \sum_{k=1}^{t} \ell_{k}
\end{aligned}
$$

Hence, $\boldsymbol{x}_{1}=\mathbf{0}, \boldsymbol{x}_{t+1}=\boldsymbol{x}_{t}-\frac{1}{2 c} \ell_{t}$.

The regularizer of 2-norm tells us...

- $x_{1}=0$.
- $\boldsymbol{x}_{t+1}=\arg \min _{\boldsymbol{x} \in \mathbb{R}^{n}} c\|\boldsymbol{x}\|^{2}+\sum_{k=1}^{t}\left\langle\ell_{k}, \boldsymbol{x}\right\rangle$. convex
- Compute the gradient:

$$
\begin{aligned}
& 2 c x+\sum_{k=1}^{t} \ell_{k}=0 \\
\Rightarrow & x=-\frac{1}{2 c} \sum_{k=1}^{t} \ell_{k} .
\end{aligned}
$$

Hence, $\boldsymbol{x}_{1}=\mathbf{0}, \boldsymbol{x}_{t+1}=\boldsymbol{x}_{t}-\frac{1}{2 c} \ell_{t}$.

The regularizer of 2-norm tells us...

- $x_{1}=0$.
- $\boldsymbol{x}_{t+1}=\arg \min _{\boldsymbol{x} \in \mathbb{R}^{n}} c\|\boldsymbol{x}\|^{2}+\sum_{k=1}^{t}\left\langle\boldsymbol{\ell}_{k}, \boldsymbol{x}\right\rangle$.
- Compute the gradient:

$$
\begin{aligned}
& 2 c x+\sum_{k=1}^{t} \ell_{k}=0 \\
\Rightarrow & x=-\frac{1}{2 c} \sum_{k=1}^{t} \ell_{k}
\end{aligned}
$$

Hence, $\boldsymbol{x}_{1}=\mathbf{0}, \boldsymbol{x}_{t+1}=\boldsymbol{x}_{t}-\frac{1}{2 c} \ell_{t}$.

The regularizer of 2-norm tells us...

- $x_{1}=0$.
- $\boldsymbol{x}_{t+1}=\arg \min _{\boldsymbol{x} \in \mathbb{R}^{n}} c\|\boldsymbol{x}\|^{2}+\sum_{k=1}^{t}\left\langle\boldsymbol{\ell}_{k}, \boldsymbol{x}\right\rangle$.
- Compute the gradient:

$$
\begin{aligned}
& 2 c x+\sum_{k=1}^{t} \ell_{k}=0 \\
\Rightarrow & x=-\frac{1}{2 c} \sum_{k=1}^{t} \ell_{k} .
\end{aligned}
$$

Hence, $\boldsymbol{x}_{1}=\mathbf{0}, \boldsymbol{x}_{t+1}=\boldsymbol{x}_{t}-\frac{1}{2 c} \ell_{t}$.
\rightarrow penalize the experts that performed badly in the past!

The regret of FTRL with 2-norm regularization

- First, we have

$$
f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t+1}\right)=\left\langle\ell_{t}, x_{t}-x_{t+1}\right\rangle=\left\langle\ell_{t}, \frac{1}{2 c} \ell_{t}\right\rangle=\frac{1}{2 c}\left\|\ell_{t}\right\|^{2} .
$$

- So, with respect to a solution \boldsymbol{x},

$$
\begin{aligned}
\operatorname{regret}_{T}(\boldsymbol{x}) & \leq R(\boldsymbol{x})-R\left(\boldsymbol{x}_{1}\right)+\sum_{t=1}^{T} f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t+1}\right) \\
& =c\|\boldsymbol{x}\|^{2}+\frac{1}{2 c} \sum_{t=1}^{T}\left\|\ell_{t}\right\|^{2} .
\end{aligned}
$$

- Suppose that $\left\|\ell_{t}\right\| \leq L$ for each t and $\|\boldsymbol{x}\| \leq D$. Then by optimizing $c=\sqrt{\frac{T}{2 D^{2} L^{2}}}$, we have

$$
\operatorname{regret}_{T}(x) \leq D L \sqrt{2 T}
$$

Dealing with constraints

- Let's deal with the constraint that \mathcal{K} is an arbitrary convex set instead of \mathbb{R}^{n}.
- Using the same regularizer, we have our FTRL which gives

$$
\begin{aligned}
& \boldsymbol{x}_{1}=\arg \min _{x \in \mathcal{K}} c\|\boldsymbol{x}\|^{2} \\
& \boldsymbol{x}_{t+1}=\arg \min _{x \in \mathcal{K}} c\|\boldsymbol{x}\|^{2}+\sum_{k=1}^{t}\left\langle\ell_{t}, \boldsymbol{x}\right\rangle
\end{aligned}
$$

Dealing with constraints

- Let's deal with the constraint that \mathcal{K} is an arbitrary convex set instead of \mathbb{R}^{n}.
- Using the same regularizer, we have our FTRL which gives

$$
\begin{aligned}
& \boldsymbol{x}_{1}=\arg \min _{x \in \mathcal{K}} c\|\boldsymbol{x}\|^{2}, \\
& \boldsymbol{x}_{t+1}=\arg \min _{x \in \mathcal{K}} c\|\boldsymbol{x}\|^{2}+\sum_{k=1}^{t}\left\langle\ell_{t}, \boldsymbol{x}\right\rangle .
\end{aligned}
$$

- The idea: First solve the unconstrained optimization and then project the solution on K.

Unconstrained optimization + projection

$$
\begin{aligned}
& \boldsymbol{y}_{t+1}=\arg \min _{\boldsymbol{y} \in \mathbb{R}^{n}} c\|\boldsymbol{y}\|^{2}+\sum_{k=1}^{t}\left\langle\ell_{t}, \boldsymbol{y}\right\rangle . \\
& \boldsymbol{x}_{t+1}^{\prime}=\Pi_{\mathcal{K}}\left(\boldsymbol{y}_{t+1}\right)=\arg \min _{\boldsymbol{x} \in \mathcal{K}}\left\|\boldsymbol{x}-\boldsymbol{y}_{t+1}\right\| .
\end{aligned}
$$

FTRL with 2-norm regularizer

Unconstrained optimization + projection

$$
\begin{aligned}
& \boldsymbol{y}_{t+1}=\arg \min _{\boldsymbol{y} \in \mathbb{R}^{n}} c\|\boldsymbol{y}\|^{2}+\sum_{k=1}^{t}\left\langle\ell_{t}, \boldsymbol{y}\right\rangle . \\
& \boldsymbol{x}_{t+1}^{\prime}=\Pi_{\mathcal{K}}\left(\boldsymbol{y}_{t+1}\right)=\arg \min _{\boldsymbol{x} \in \mathcal{K}}\left\|\boldsymbol{x}-\boldsymbol{y}_{t+1}\right\| .
\end{aligned}
$$

- Claim: $x_{t+1}^{\prime}=x_{t+1}$.

Proof of the claim: $x_{t+1}^{\prime}=x_{t+1}$

- First, we already have that $\boldsymbol{y}_{t+1}=-\frac{1}{2 c} \sum_{k=1}^{t} \ell_{t}$.
- Then,

$$
\begin{aligned}
\boldsymbol{x}_{t+1}^{\prime} & =\arg \min _{\boldsymbol{x} \in \mathcal{K}}\left\|\boldsymbol{x}-\boldsymbol{y}_{t+1}\right\|=\arg \min _{\boldsymbol{x} \in \mathcal{K}}\left\|\boldsymbol{x}-\boldsymbol{y}_{t+1}\right\|^{2} \\
& =\arg \min _{\boldsymbol{x} \in \mathcal{K}}\|\boldsymbol{x}\|^{2}-2\left\langle\boldsymbol{x}, \boldsymbol{y}_{t+1}\right\rangle+\left\|\boldsymbol{y}_{t+1}\right\|^{2}
\end{aligned}
$$

Proof of the claim: $x_{t+1}^{\prime}=x_{t+1}$

- First, we already have that $\boldsymbol{y}_{t+1}=-\frac{1}{2 c} \sum_{k=1}^{t} \ell_{t}$.
- Then,

$$
\begin{aligned}
\boldsymbol{x}_{t+1}^{\prime} & =\arg \min _{\boldsymbol{x} \in \mathcal{K}}\left\|\boldsymbol{x}-\boldsymbol{y}_{t+1}\right\|=\arg \min _{\boldsymbol{x} \in \mathcal{K}}\left\|\boldsymbol{x}-\boldsymbol{y}_{t+1}\right\|^{2} \\
& =\arg \min _{\boldsymbol{x} \in \mathcal{K}}\|\boldsymbol{x}\|^{2}-2\left\langle\boldsymbol{x}, \boldsymbol{y}_{t+1}\right\rangle+\left\|\boldsymbol{y}_{t+1}\right\|^{2} \\
& =\arg \min _{\boldsymbol{x} \in \mathcal{K}}\|\boldsymbol{x}\|^{2}-2\left\langle\boldsymbol{x}, \boldsymbol{y}_{t+1}\right\rangle \\
& =\arg \min _{\boldsymbol{x} \in \mathcal{K}}\|\boldsymbol{x}\|^{2}-2\left\langle\boldsymbol{x},-\frac{1}{2 c} \sum_{k=1}^{t} \ell_{t}\right\rangle \\
& =\arg \min _{\boldsymbol{x} \in \mathcal{K}} c\|\boldsymbol{x}\|^{2}+\left\langle\boldsymbol{x}, \sum_{k=1}^{t} \ell_{t}\right\rangle \\
& =\boldsymbol{x}_{t+1} .
\end{aligned}
$$

FTRL with 2-norm regularizer

To bound the regret

$$
f_{t}\left(x_{t}\right)-f_{t}\left(x_{t+1}\right)=\left\langle\ell_{t}, x_{t}-x_{t+1}\right\rangle \leq\left\|\ell_{t}\right\| \cdot\left\|x_{t}-x_{t+1}\right\|
$$

To bound the regret

$$
\begin{aligned}
f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t+1}\right)=\left\langle\ell_{t}, \boldsymbol{x}_{t}-\boldsymbol{x}_{t+1}\right\rangle & \leq\left\|\ell_{t}\right\| \cdot\left\|\boldsymbol{x}_{t}-\boldsymbol{x}_{t+1}\right\| \\
& \leq\left\|\ell_{t}\right\| \cdot\left\|\boldsymbol{y}_{t}-\boldsymbol{y}_{t+1}\right\| .
\end{aligned}
$$

To bound the regret

$$
\begin{aligned}
f_{t}\left(x_{t}\right)-f_{t}\left(x_{t+1}\right)=\left\langle\ell_{t}, x_{t}-x_{t+1}\right\rangle & \leq\left\|\ell_{t}\right\| \cdot\left\|x_{t}-x_{t+1}\right\| \\
& \leq\left\|\ell_{t}\right\| \cdot\left\|y_{t}-y_{t+1}\right\| \\
& \leq \frac{1}{2 c}\left\|\ell_{t}\right\|^{2} .
\end{aligned}
$$

So, assume $\max _{\boldsymbol{x} \in \mathcal{K}}\|\boldsymbol{x}\| \leq D$ and $\left\|\ell_{t}\right\| \leq L$ for all t, we have

$$
\begin{aligned}
\operatorname{regret}_{T} & \leq c\left\|\boldsymbol{x}^{*}\right\|^{2}-c\left\|\boldsymbol{x}_{1}\right\|^{2}+\frac{1}{2 c} \sum_{t=1}^{T}\left\|\ell_{t}\right\|^{2} \\
& \leq c D^{2}+\frac{1}{2 c} T L^{2}
\end{aligned}
$$

To bound the regret

$$
\begin{aligned}
f_{t}\left(x_{t}\right)-f_{t}\left(x_{t+1}\right)=\left\langle\ell_{t}, x_{t}-x_{t+1}\right\rangle & \leq\left\|\ell_{t}\right\| \cdot\left\|x_{t}-x_{t+1}\right\| \\
& \leq\left\|\ell_{t}\right\| \cdot\left\|y_{t}-y_{t+1}\right\| \\
& \leq \frac{1}{2 c}\left\|\ell_{t}\right\|^{2} .
\end{aligned}
$$

So, assume $\max _{\boldsymbol{x} \in \mathcal{K}}\|\boldsymbol{x}\| \leq D$ and $\left\|\ell_{t}\right\| \leq L$ for all t, we have

$$
\begin{aligned}
\operatorname{regret}_{T} & \leq c\left\|\boldsymbol{x}^{*}\right\|^{2}-c\left\|\boldsymbol{x}_{1}\right\|^{2}+\frac{1}{2 c} \sum_{t=1}^{T}\left\|\ell_{t}\right\|^{2} \\
& \leq c D^{2}+\frac{1}{2 c} T L^{2} \leq D L \sqrt{2 T} .
\end{aligned}
$$

Outline

(1) Introduction
(2) Gradient Descent for Online Convex Optimization (GD)
(3) Multiplicative Weight Update (MWU)

4 Follow The Leader (FTL)
(5) Follow The Regularized Leader (FTRL)

- MWU Revisited
- FTRL with 2-norm regularizer
(6) Multi-Armed Bandit (MAB)
- Greedy Algorithms
- Upper Confidence Bound (UCB)
- Time-Decay ϵ-Greedy

Multi-Armed Bandit

Fig.: Image credit: Microsoft Research

The setting

- We can see N arms as N experts.
- Arms give are independent.
- We can only pull an arm and observe the reward of it.
- It's NOT possible to observe the reward of pulling the other arms...
- Each arm i has its own reward $r_{i} \in[0,1]$.

The setting

- We can see N arms as N experts.
- Arms give are independent.
- We can only pull an arm and observe the reward of it.
- It's NOT possible to observe the reward of pulling the other arms...
- Each arm i has its own reward $r_{i} \in[0,1]$.
- μ_{i} : the mean of reward of arm i
- $\hat{\mu}_{i}$: the empirical mean of reward of arm i
- μ^{*} : the mean of reward of the BEST arm.
- $\Delta_{i}: \mu^{*}-\mu_{i}$.
- Index of the best arm: $I^{*}:=\arg \max _{i \in\{1, \ldots, N\}} \mu_{i}$.
- The associated highest expected reward: $\mu^{*}=\mu_{I^{*}}$.

The regret formulation for MAB

Let I_{t} be the arm played by the algorithm at time t. The regret of the algorithm in T rounds is

$$
\operatorname{regret}_{T}=\sum_{t=1}^{T}\left(\mu^{*}-\mu_{I_{t}}\right)
$$

The regret formulation for MAB

Let I_{t} be the arm played by the algorithm at time t. The regret of the algorithm in T rounds is

$$
\operatorname{regret}_{T}=\sum_{t=1}^{T}\left(\mu^{*}-\mu_{I_{t}}\right)=\sum_{i=1}^{N} \sum_{t: I_{t}=i}\left(\mu^{*}-\mu_{i}\right)
$$

The regret formulation for MAB

Let I_{t} be the arm played by the algorithm at time t. The regret of the algorithm in T rounds is

$$
\begin{aligned}
\operatorname{regret}_{T} & =\sum_{t=1}^{T}\left(\mu^{*}-\mu_{I_{t}}\right)=\sum_{i=1}^{N} \sum_{t: I_{t}=i}\left(\mu^{*}-\mu_{i}\right) \\
& =\sum_{i=1}^{N} n_{i, T} \Delta_{i}
\end{aligned}
$$

The regret formulation for MAB

Let I_{t} be the arm played by the algorithm at time t. The regret of the algorithm in T rounds is

$$
\begin{aligned}
\operatorname{regret}_{T} & =\sum_{t=1}^{T}\left(\mu^{*}-\mu_{I_{t}}\right)=\sum_{i=1}^{N} \sum_{t: I_{t}=i}\left(\mu^{*}-\mu_{i}\right) \\
& =\sum_{i=1}^{N} n_{i, T} \Delta_{i} \\
& =\sum_{i: \mu_{i}<\mu^{*}} n_{i, T} \Delta_{i}
\end{aligned}
$$

Outline

(1) Introduction
(2) Gradient Descent for Online Convex Optimization (GD)
(3) Multiplicative Weight Update (MWU)

4 Follow The Leader (FTL)
(5) Follow The Regularized Leader (FTRL)

- MWU Revisited
- FTRL with 2-norm regularizer
(6) Multi-Armed Bandit (MAB)
- Greedy Algorithms
- Upper Confidence Bound (UCB)
- Time-Decay ϵ-Greedy

A Naïve Greedy Algorithm

Greedy Algorithm

(1) For $t \leq c N$, select a random arm with probability $1 / N$ and pull it.
(2) For $t>c N$, pull the arm $I_{t}:=\arg \max _{i=1, \ldots, N} \hat{\mu}_{i, t}$.

- Here c is a constant.

A Naïve Greedy Algorithm

Greedy Algorithm

(1) For $t \leq c N$, select a random arm with probability $1 / N$ and pull it.
(2) For $t>c N$, pull the arm $I_{t}:=\arg \max _{i=1, \ldots, N} \hat{\mu}_{i, t}$.

- Here c is a constant.
- This algorithm is of linear regret, hence is not a no-regret algorithm.

A Naïve Greedy Algorithm

Greedy Algorithm

(1) For $t \leq c N$, select a random arm with probability $1 / N$ and pull it.
(2) For $t>c N$, pull the arm $I_{t}:=\arg \max _{i=1, \ldots, N} \hat{\mu}_{i, t}$.

- Here c is a constant.
- This algorithm is of linear regret, hence is not a no-regret algorithm.
- For example,
- Arm 1: 0/1 reward with mean 3/4.
- Arm 2: Fixed reward of $1 / 4$.
- After $c N=2 c$ steps, with constant probability, we have $\hat{\mu}_{1, c N}<\hat{\mu}_{2, c N}$.

A Naïve Greedy Algorithm

Greedy Algorithm

(1) For $t \leq c N$, select a random arm with probability $1 / N$ and pull it.
(2) For $t>c N$, pull the arm $I_{t}:=\arg \max _{i=1, \ldots, N} \hat{\mu}_{i, t}$.

- Here c is a constant.
- This algorithm is of linear regret, hence is not a no-regret algorithm.
- For example,
- Arm 1: 0/1 reward with mean 3/4.
- Arm 2: Fixed reward of $1 / 4$.
- After $c N=2 c$ steps, with constant probability, we have $\hat{\mu}_{1, c N}<\hat{\mu}_{2, c N}$.
- If this is the case, the algorithm will keep pulling arm 2 and will never change!

Multi-Armed Bandit (MAB)

Greedy Algorithms

ϵ-Greedy Algorithm

ϵ-Greedy Algorithm

For all $t=1,2, \ldots, N$:

- With probability $1-\epsilon$, pull arm $I_{t}:=\arg \max _{i=1, \ldots, N} \hat{\mu}_{i, t}$.
- With probability ϵ, select an arm uniformly at random (i.e., each with probability $1 / N$).

ϵ-Greedy Algorithm

ϵ-Greedy Algorithm

For all $t=1,2, \ldots, N$:

- With probability $1-\epsilon$, pull arm $I_{t}:=\arg \max _{i=1, \ldots, N} \hat{\mu}_{i, t}$.
- With probability ϵ, select an arm uniformly at random (i.e., each with probability $1 / N$).
- It looks good.

ϵ-Greedy Algorithm

ϵ-Greedy Algorithm

For all $t=1,2, \ldots, N$:

- With probability $1-\epsilon$, pull arm $I_{t}:=\arg \max _{i=1, \ldots, N} \hat{\mu}_{i, t}$.
- With probability ϵ, select an arm uniformly at random (i.e., each with probability $1 / N$).
- It looks good.
- Unfortunately, this algorithm still incurs linear regret.

ϵ-Greedy Algorithm

ϵ-Greedy Algorithm

For all $t=1,2, \ldots, N$:

- With probability $1-\epsilon$, pull arm $I_{t}:=\arg \max _{i=1, \ldots, N} \hat{\mu}_{i, t}$.
- With probability ϵ, select an arm uniformly at random (i.e., each with probability $1 / N$).
- It looks good.
- Unfortunately, this algorithm still incurs linear regret.
- Indeed,
- Each arm is pulled in average $\epsilon T / N$ times.

ϵ-Greedy Algorithm

ϵ-Greedy Algorithm

For all $t=1,2, \ldots, N$:

- With probability $1-\epsilon$, pull arm $I_{t}:=\arg \max _{i=1, \ldots, N} \hat{\mu}_{i, t}$.
- With probability ϵ, select an arm uniformly at random (i.e., each with probability $1 / N$).
- It looks good.
- Unfortunately, this algorithm still incurs linear regret.
- Indeed,
- Each arm is pulled in average $\epsilon T / N$ times.
- Hence the (expected) regret will be at least $\frac{\epsilon T}{N} \sum_{i: \mu_{i}<\mu^{*}} \Delta_{i}$.

Outline

(1) Introduction
(2) Gradient Descent for Online Convex Optimization (GD)
(3) Multiplicative Weight Update (MWU)

4 Follow The Leader (FTL)
(5) Follow The Regularized Leader (FTRL)

- MWU Revisited
- FTRL with 2-norm regularizer
(6) Multi-Armed Bandit (MAB)
- Greedy Algorithms
- Upper Confidence Bound (UCB)
- Time-Decay ϵ-Greedy

The upper confidence bound algorithm (UCB)

- At each time step (round), we simply pull the arm with the highest "empirical reward estimate + high-confidence interval size".
- The empirical reward estimate of arm i at time t :

$$
\hat{\mu}_{i, t}=\frac{\sum_{s=1}^{t} l_{s, i} \cdot r_{s}}{n_{i, t}}
$$

$n_{i, t}$: the number of times arm i is played.
$I_{s, i}: 1$ if the choice of arm is i at time s and 0 otherwise.

- Reward estimate + confidence interval:

$$
\mathrm{UCB}_{i, t}:=\hat{\mu}_{i, t}+\sqrt{\frac{\ln t}{n_{i, t}}} .
$$

Multi-Armed Bandit (MAB)

Upper Confidence Bound (UCB)

Algorithm UCB

UCB Algorithm

N arms, T rounds such that $T \geq N$.

(1) For $t=1, \ldots, N$, play arm t.
(2) For $t=N+1, \ldots, T$, play arm

$$
A_{t}=\arg \max _{i \in\{1, \ldots, N\}} \cup^{\prime} C_{i, t-1} .
$$

Multi-Armed Bandit (MAB)

Upper Confidence Bound (UCB)

Algorithm UCB

Multi-Armed Bandit (MAB)

Upper Confidence Bound (UCB)

Algorithm UCB (after more time steps...)

From the Chernoff bound (proof skipped)

For each arm i at time t, we have

$$
\left|\hat{\mu}_{i, t}-\mu_{i}\right|<\sqrt{\frac{\ln t}{n_{i, t}}}
$$

with probability $\geq 1-2 / t^{2}$.

Immediately, we know that

- with prob. $\geq 1-2 / t^{2}, \operatorname{UCB}_{i, t}:=\hat{\mu}_{i, t}+\sqrt{\frac{\ln t}{n_{i, t}}}>\mu_{i}$.
- with prob. $\geq 1-2 / t^{2}, \hat{\mu}_{i, t}<\mu_{i}+\frac{\Delta_{i}}{2}$ when $n_{i, t} \geq \frac{4 \ln t}{\Delta_{i}^{2}}$.

From the Chernoff bound (proof skipped)

For each arm i at time t, we have

$$
\left|\hat{\mu}_{i, t}-\mu_{i}\right|<\sqrt{\frac{\ln t}{n_{i, t}}}
$$

with probability $\geq 1-2 / t^{2}$.
To understand why, please take my Randomized Algorithms course. :) Immediately, we know that

- with prob. $\geq 1-2 / t^{2}, \operatorname{UCB}_{i, t}:=\hat{\mu}_{i, t}+\sqrt{\frac{\ln t}{n_{i, t}}}>\mu_{i}$.
- with prob. $\geq 1-2 / t^{2}, \hat{\mu}_{i, t}<\mu_{i}+\frac{\Delta_{i}}{2}$ when $n_{i, t} \geq \frac{4 \ln t}{\Delta_{i}^{2}}$.

Appendix: Tail probability by the Chernoff/Hoeffding bound

The Chernoff/Hoeffding bound

For independent and identically distributed (i.i.d.) samples $x_{1}, \ldots, x_{n} \in[0,1]$ with $\mathbb{E}\left[x_{i}\right]=\mu$, we have

$$
\operatorname{Pr}\left[\left|\frac{\sum_{i=1}^{n} x_{i}}{n}-\mu\right| \geq \delta\right] \leq 2 e^{-2 n \delta^{2}}
$$

Very unlikely to play a suboptimal arm

Lemma 3

At any time step t, if a suboptimal arm i (i.e., $\mu_{i}<\mu^{*}$) has been played for $n_{i, t} \geq \frac{4 \ln t}{\Delta_{i}^{2}}$ times, then $\mathrm{UCB}_{i, t}<\mathrm{UCB}_{I^{*}, t}$ with probability $\geq 1-4 / t^{2}$. Therefore, for any t,

$$
\operatorname{Pr}\left[I_{t+1, i}=1 \left\lvert\, n_{i, t} \geq \frac{4 \ln t}{\Delta_{i}^{2}}\right.\right] \leq \frac{4}{t^{2}}
$$

Proof of Lemma 3

With probability $<2 / t^{2}+2 / t^{2}$ (union bound) that

$$
\begin{aligned}
\mathrm{UCB}_{i, t}=\hat{\mu}_{i, t}+\sqrt{\frac{\ln t}{n_{i, t}}} & \leq \hat{\mu}_{i, t}+\frac{\Delta_{i}}{2} \\
& <\left(\mu_{i}+\frac{\Delta_{i}}{2}\right)+\frac{\Delta_{i}}{2} \\
& =\mu^{*}<\mathrm{UCB}_{i^{*}, t}
\end{aligned}
$$

does NOT hold.

Playing suboptimal arms for very limited number of times

Lemma 4

For any arm i with $\mu_{i}<\mu^{*}$,

$$
\mathbb{E}\left[n_{i, T}\right] \leq \frac{4 \ln T}{\Delta_{i}^{2}}+8
$$

$$
\begin{aligned}
\mathbb{E}\left[n_{i, T}\right]= & 1+\mathbb{E}\left[\sum_{t=N}^{T} \mathbb{1}\left\{I_{t+1, i}=1\right\}\right] \\
= & 1+\mathbb{E}\left[\sum_{t=N}^{T} \mathbb{1}\left\{I_{t+1, i}=1, n_{i, t}<\frac{4 \ln t}{\Delta_{i}^{2}}\right\}\right] \\
& +\mathbb{E}\left[\sum_{t=N}^{T} \mathbb{1}\left\{I_{t+1, i}=1, n_{i, t} \geq \frac{4 \ln t}{\Delta_{i}^{2}}\right\}\right]
\end{aligned}
$$

Proof of Lemma 4 (contd.)

$$
\begin{aligned}
\mathbb{E}\left[n_{i, T}\right] & \leq \frac{4 \ln T}{\Delta_{i}^{2}}+\mathbb{E}\left[\sum_{t=N}^{T} \mathbb{1}\left\{I_{t+1, i}=1, n_{i, t} \geq \frac{4 \ln t}{\Delta_{i}^{2}}\right\}\right] \\
& =\frac{4 \ln T}{\Delta_{i}^{2}}+\sum_{t=N}^{T} \operatorname{Pr}\left[I_{t+1, i}=1, n_{i, t} \geq \frac{4 \ln t}{\Delta_{i}^{2}}\right] \\
& =\frac{4 \ln T}{\Delta_{i}^{2}}+\sum_{t=N}^{T} \operatorname{Pr}\left[I_{t+1, i}=1 \left\lvert\, n_{i, t} \geq \frac{4 \ln t}{\Delta_{i}^{2}}\right.\right] \cdot \operatorname{Pr}\left[n_{i, t} \geq \frac{4 \ln t}{\Delta_{i}^{2}}\right] \\
& \leq \frac{4 \ln T}{\Delta_{i}^{2}}+\sum_{t=N}^{T} \frac{4}{t^{2}} \\
& \leq \frac{4 \ln T}{\Delta_{i}^{2}}+8
\end{aligned}
$$

The regret bound for the UCB algorithm

Theorem 4

For all $T \geq N$, the (expected) regret by the UCB algorithm in round T is $\mathbb{E}\left[\operatorname{regret}_{T}\right] \leq 5 \sqrt{N T \ln T}+8 N$.

Proof of Theorem 4

- Divide the arms into two groups:
(1) Group $\operatorname{ONE}\left(G_{1}\right):$ "almost optimal arms" with $\Delta_{i}<\sqrt{\frac{N}{T} \ln T}$.
(2) Group TWO $\left(G_{2}\right)$: "bad" arms with $\Delta_{i} \geq \sqrt{\frac{N}{T} \ln T}$.

$$
\sum_{i \in G_{1}} n_{i, T} \Delta_{i} \leq\left(\sqrt{\frac{N}{T} \ln T}\right) \sum_{i \in G_{1}} n_{i, T} \leq T \cdot \sqrt{\frac{N}{T} \ln T}=\sqrt{N T \ln T} .
$$

By Lemma 4,

$$
\begin{aligned}
\sum_{i \in G_{2}} \mathbb{E}\left[n_{i, T}\right] \Delta_{i} \leq \sum_{i \in G_{2}} \frac{4 \ln T}{\Delta_{i}}+8 \Delta_{i} & \leq \sum_{i \in G_{2}} 4 \sqrt{\frac{T \ln T}{N}}+8 \\
& \leq 4 \sqrt{N T \ln T}+8 N
\end{aligned}
$$

Outline

(1) Introduction
2) Gradient Descent for Online Convex Optimization (GD)
(3) Multiplicative Weight Update (MWU)

4 Follow The Leader (FTL)
(5) Follow The Regularized Leader (FTRL)

- MWU Revisited
- FTRL with 2-norm regularizer
(6) Multi-Armed Bandit (MAB)
- Greedy Algorithms
- Upper Confidence Bound (UCB)
- Time-Decay ϵ-Greedy

Time Decaying ϵ-Greedy Algorithm

What if the horizon T is known in advance when we run ϵ-Greedy?

Time-Decaying ϵ-Greedy Algorithm

For all $t=1,2, \ldots, N$, set $\epsilon:=N^{1 / 3} / T^{1 / 3}$:

- With probability $1-\epsilon$, pull arm $I_{t}:=\arg \max _{i=1, \ldots, N} \hat{\mu}_{i, t}$.
- With probability ϵ, select an arm uniformly at random (i.e., each with probability $1 / N$).

Time Decaying ϵ-Greedy Algorithm

What if the horizon T is known in advance when we run ϵ-Greedy?

Time-Decaying ϵ-Greedy Algorithm

For all $t=1,2, \ldots, N$, set $\epsilon:=N^{1 / 3} / T^{1 / 3}$:

- With probability $1-\epsilon$, pull arm $I_{t}:=\arg \max _{i=1, \ldots, N} \hat{\mu}_{i, t}$.
- With probability ϵ, select an arm uniformly at random (i.e., each with probability $1 / N$).

Claim

Time-Decaying ϵ-Greedy Algorithm gets roughly $O\left(N^{1 / 3} T^{2 / 3}\right)$ regret.

Sketch of proving the claim

- The expected regret $\mathrm{E}[R(T)]=\sum_{t=1}^{T} \mathrm{E}\left[\mu^{*}-\mu_{T_{t}}\right]$.
- Using the greedy choice that $\hat{\mu}_{I_{t}} \geq \hat{\mu}_{I^{*}}$, we have

$$
\begin{aligned}
\mathrm{E}[R(T)] & \leq \sum_{t=1}^{T}(1-\epsilon) \mathrm{E}\left[\left(\mu_{I^{*}}-{\hat{\mu} I^{*}}+\hat{\mu}_{I_{t}}-\mu_{I_{t}}\right) \mid \text { greedy choice of } I_{t}\right]+\epsilon T \\
& \leq \sum_{t=1}^{T}\left(\sqrt{\frac{\ln T}{I_{I^{*}, t}}}+\sqrt{\frac{\ln T}{n_{t}, t}}\right)+\frac{1}{T} \cdot 1 \cdot T+\epsilon T \quad \text { (Chernoff) } \\
& \approx \leq \sum_{t=1}^{T}\left(\sqrt{\frac{\ln T}{\epsilon t / N}}+\sqrt{\frac{\ln T}{\epsilon t / N}}\right)+\epsilon T+1 \\
& \leq \sqrt{\frac{N}{\epsilon}} \sqrt{T \log T}+\epsilon T+1=O\left(N^{1 / 3} T^{2 / 3} \sqrt{\log T}\right) .
\end{aligned}
$$

Thank you.

