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© Gradient Descent for Online Convex Optimization (GD)
© Muiltiplicative Weight Update (MWU)

@ Follow The Leader (FTL)

© Follow The Regularized Leader (FTRL)
© MWU Revisited
@ FTRL with 2-norm regularizer

© Multi-Armed Bandit (MAB)
o Greedy Algorithms
@ Upper Confidence Bound (UCB)
@ Time-Decay e-Greedy
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Outline

© Introduction
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Introduction

Online Convex Optimization

Goal: Design an algorithm such that

@ At discrete time steps t = 1,2, ..., output x; € IC, for each t.
e KC: a convex set of feasible solutions.

o After x; is generated, a convex cost function f; : IC +— R is revealed.

@ Then the algorithm suffers the loss fi(x:).

And we want to minimize the cost.
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The difficulty

@ The cost functions f; is unknown before t.
e fi,f,..., 1, ... are not necessarily fixed.
e Can be generated dynamically by an adversary.
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What's the regret?

@ The offline optimum: After T steps,

.
[ fi(x).
mip 2 ()

@ The regret after T steps:

T T
regrety = Z fr(xe) — TE'EZ fr(x).
t=1 t=1
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What's the regret?

@ The offline optimum: After T steps,

.
[ fi(x).
mip 2 ()

@ The regret after T steps:
T T
regrety = Z fr(xe) — TE'EZ fr(x).
t=1 t=1

@ The rescue: regretr < o(T).
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What's the regret?

@ The offline optimum: After T steps,

.
[ fi(x).
i 2 ()

@ The regret after T steps:
T T
regrety = Z fr(xe) — TE'EZ fr(x).
t=1 t=1

@ The rescue: regret < o(T). = No-Regret in average when
T — oc.
o For example, regret/T = g — 0 when T — 0.
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Prerequisites (1/5)

Let K C R? be a bounded convex and closed set in Euclidean space. We
denote by D an upper bound on the diameter of K:

Vx,y € K,||x —y|| < D.

v
Convex set

A set IC is convex if for any x,y € IC, we have

Va € [0,1],ax+ (1 —a)y € K.

A\
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Prerequisites (2/5)

Convex function

A function f : K — R is convex if for any x,y € K,

Va € [0,1], F((1 — a)x + ay) < (1 — a)f(x) + af(y).

Equivalently, if f is differentiable (i.e., Vf(x) exists for all x € KC), then f
is convex if and only if for all x,y € IC,

fly) = f(x) + VF(x)"(y — x).
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Prerequisites (3/5)

Theorem [Rockafellar 1970]

Suppose that f : K — R is a convex function and let x € int dom(f). If f
is differentiable at x, then for all y € RY,

f(y) = f(x) +(VF(x),y — x).

Subgradient

| A\

For a function f : R? — R, g € RY is a subgradient of f at x € RY if for
ally € RY,

fly) > f(x) + (g, y — x).

\
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Prerequisites (4/5)

The closest point of y in a convex set K in terms of norm || - |[:

I = i —vyll.
x(y) :=argmin [|x — ||

v

Pythagoras Theorem

Let K C RY be a convex set, y € RY and x = Mi(y). Then for any
z € K, we have

ly =zl = [|x — 2[|.
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Prerequisites (5/5)

Minimum vs. zero gradient

Vf(x) =0 iff x € arg min {f(x)}.
xeR

A\

Karush-Kuhn-Tucker (KKT) Theorem

Let X C RY be a convex set, x* € arg min,cx f(x). Then for any y € K
we have

VF(x*)T(y — x*) > 0.
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Introduction

Convex losses to linear losses

@ We have the convex loss function f;(x;) at time t.
@ Say we have subgradients g; for each x;.
o f(x:) — f(u) < (g, x — u) for each u € R7.
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Introduction

Convex losses to linear losses

@ We have the convex loss function f;(x;) at time t.

@ Say we have subgradients g; for each x;.

o f(x:) — f(u) < (g, x — u) for each u € R7.

o Hence, if we define f;(x) := (g, x), then for any u € R,

T

S felxe) — F(u) <

t=1 t

T

(g, xe—u) =) Ff(x)— f(u).

1 t=1

M~
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Introduction

Convex losses to linear losses

@ We have the convex loss function f;(x;) at time t.

@ Say we have subgradients g; for each x;.

o f(x:) — f(u) < (g, x — u) for each u € R7.

o Hence, if we define f;(x) := (g, x), then for any u € R,

T T T . .
D h(xe) = f(u) <D (gxe—u) =) filx)— F(u).
t=1 t=1 t=1
0OCO — OLO.
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Gradient Descent for Online Convex Optimization (GD)
Outline

© Gradient Descent for Online Convex Optimization (GD)
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Online Gradient Descent (GD)

© Input: convex set IC, T, x; € K, step size {n;}.
Q fort+ 1to T do:

@ Play x; and observe cost fi(x;).
@ Update and Project:

Yiy1 = Xt—77tvft(xt)
Xt+1 = nlC(yt+1)

© end for
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Gradient Descent for Online Convex Optimization (GD)

GD for online convex optimization is of no-regret

Online gradient descent with step size {1 = %{, t € [T]} guarantees the

following for all T > 1:

T T
3
regretr = Z fr(x:) — ng;]cZ fr(x*) < EGDﬁ'
=1 il
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Proof of Theorem A (1/3)

o Let x* € argmineex S/, fi(x).

@ Since f; is convex, we have
fo(xe) = fr(x") < (V(xe)) " (xe — x¥).
@ By the updating rule for x;;1 and the Pythagorean theorem, we have

[Ixe41—x"||2 = [N (xe =1V (xe) = x| < ||xe—1eVe(xe) — x| |2
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Proof of Theorem A (2/3)

@ Hence

[Ixer1 = x*[17 < [1xe = x*[]> + 72|V ()P = 20e(VHe(xe)) T (xe — x*)
12 = e — x*[7

Nt

[|x: — x

2(Vi(x)) " (% — x*) < + G

@ Summing above inequality from t =1 to T and setting n; = GL\/E and

L -—0 we have :
70
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Proof of Theorem A (3/3)

T T
2 (Z fe(xe) — fr(X*)> < 2) VAx) (x — x%)
t=1 t=1
T T
||xe = x*[|* = ||xe1 — x*|]? 2
< +G° ) n
tz:; Nt Z !
T 1
< xp — x* 2( )+G2
< Slkr P (E k) st
T /1
< D? ( >+G2
Z Tt Ne—1 Znt
< D2i+622nt
B nT t=1
< 3DGVT.
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The Lower Bound

Let K = {x € R? : ||x||sc < r} be a convex subset of RY. Let A be any
algorithm for Online Convex Optimization on /. Then for any T > 1,
there exists a sequence of vectors gi,...,87 with ||g¢|[2 < Land u e K
such that the regret of A satisfies

T _ YaLDVT
-2 (g u) = ————

-
regrety(u) = Z (g, Xt)
t=1 t=1

o The diameter D of K is at most \/3 %, (2r)2 < 2rV/d.

o ||X||loo < r < |x(i)| < rfor each i € [n].
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Proof of Theorem B (1/2)

@ The approach:
For any random variable z with domain V and any function f,

sup £(x) > E[f(2)]
xeV

Joseph C. C. Lin (CSIE, TKU, TW) No-Regret Online Learning 27 Dec 2021 — 11 Jan 2022 21/81



No-Regret Online Learning

Proof of Theorem B (1/2)

@ The approach:
For any random variable z with domain V and any function f,

sup £(x) > E[f(2)]
xeV

@ regretT = maxyci regrett(u).
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Proof of Theorem B (1/2)

@ The approach:
For any random variable z with domain V and any function f,

sup £(x) > E[f(2)]
xeV

@ regretT = maxyci regrett(u).
o Let v,w € K such that ||v — w|| = D.
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Proof of Theorem B (1/2)

@ The approach:
For any random variable z with domain V and any function f,

sup £(x) > E[f(2)]
xeV

@ regretT = maxyci regrett(u).
o Let v,w € K such that ||v — w|| = D.

. v—w
o lLet z:= Tv=w]]
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Proof of Theorem B (1/2)

The approach:
For any random variable z with domain V and any function f,
sup f(x) > E[f(2)].
xeV
regretT = maxyck regret(u).
Let v, w € K such that ||[v — w|| =D
Let z := Wi(z,v—w>:D.

Let €1,¢€p,...,eT bei.i.d. random variables such that
Prle; = 1] = Pr[e; = —1] = 1/2 for each t.
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Proof of Theorem B (1/2)

The approach:
For any random variable z with domain V and any function f,

sup f(x) > E[f(2)].
xeV

regretT = maxyck regret(u).

Let v, w € K such that ||[v — w|| =D

Let z := Wi(z,v—w>:D.

Let €1,¢€p,...,eT bei.i.d. random variables such that

Prle; = 1] = Pr[e; = —1] = 1/2 for each t.

We choose the losses g = Le;z.
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Proof of Theorem B (1/2)

The approach:
For any random variable z with domain V and any function f,

sup f(x) > E[f(2)].
xeV

regretT = maxyck regret(u).

Let v, w € K such that ||[v — w|| =D

Let z := Wi(z,v—w>:D.

Let €1,¢€p,...,eT bei.i.d. random variables such that

Prle; = 1] = Pr[e; = —1] = 1/2 for each t.

We choose the losses g = Le;z.

e The cost at t: (Le;z, x;).

o |lgtll = vt - llzl| < L.
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Proof of Theorem B (2/2)

rT T
sup regrety > E g Let<z,xt>fmi’gg Let<z,u>]
ue
t=1 t=1

81,--,8T
r T T
= E |- ‘rlnellr%; Lei(z, u)] =E [Tea%(; Lei(z, u>]

B T

max Z Lei(z, u)

ue{v,w} 1

%
m

ro T T
1 1
= E 5 tgzl Lee(z, v + w) + 5‘ ;:1 Lee(z, v — w>"|

T

‘Z Lei(z,v — w>‘

t=1

V2LDV'T
4

=—E

\%

L
—E
2

(by Khintchine inequality)
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Multiplicative Weight Update (MWU)
Outline

© Muiltiplicative Weight Update (MWU)
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Multiplicative Weight Update (MWU)

Listen to the experts?

@ Let's say we have n experts.

@ We want to make best use of the advices coming from the experts.
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Multiplicative Weight Update (MWU)

Listen to the experts?

@ Let's say we have n experts.

@ We want to make best use of the advices coming from the experts.

@ The idea: at each time step, decide the probability distribution (i.e.,
weights) of the experts to follow their advice.

o x; = (x:(1),%:(2),...,x:(n)), where x,(i) € [0,1] and ), x;(i) = 1.
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Multiplicative Weight Update (MWU)

Listen to the experts?

Let's say we have n experts.

We want to make best use of the advices coming from the experts.

@ The idea: at each time step, decide the probability distribution (i.e.,
weights) of the experts to follow their advice.

o x; = (x:(1),%:(2),...,x:(n)), where x,(i) € [0,1] and ), x;(i) = 1.

The loss of following expert i at time t: £:(i).

The expected loss of the algorithm at time t:

Xt7£t E Xt
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The regret of listening to the experts...

T

-
regretT = Z(xt,ﬂt) - miin th(i).
t=1

t=1

@ The set of feasible solutions K = A C R", probability distributions
over {1,...,n}.

o fr(x) =, x(i)€:(i): linear function.

* Assume that [£.(/)| <1 for all t and /.
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Multiplicative Weight Update (MWU)

The MWU Algorithm

@ The spirit: “Hedge".

@ Well-known and frequently rediscovered.
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The MWU Algorithm

@ The spirit: “Hedge".

@ Well-known and frequently rediscovered.

Multiplicative Weight Update (MWU)

@ Maintain a vector of weights w; = (w¢(1), ..., wy(n)) where
wi = (1,1,...,1).
o Update the weights at time t by
o w(i):= Mzt),l(i) e Bl

@ Xt '— <777 -
& }1:1 w:())

B: a parameter which will be optimized later.
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The MWU Algorithm

@ The spirit: “Hedge".

@ Well-known and frequently rediscovered.

Multiplicative Weight Update (MWU)

@ Maintain a vector of weights w; = (w¢(1), ..., wy(n)) where
wi = (1,1,...,1).
o Update the weights at time t by
o w(i):= Mzt),l(i) e Bl

@ Xt '— <777 -
& }1:1 w:())

B: a parameter which will be optimized later.

The weight of expert i at time t: e~ 5 Xkt #(),
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MWU is of no-regret

Theorem 1 (MWU is of no-regret)

Assume that [€.(i)| <1 for all t and i. For 5 € (0,1/2), the regret of
MWU after T steps is bounded as

Inn Inn
2l cpT+ L
B

T n
regrety < 8 Y xe(i€ (i) + 3

t=1 j=1

In particular, if T > 41Inn, then

regretT <2V TlInn

by setting 8 = '"T”
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Multiplicative Weight Update (MWU)

Proof of Theorem 1

Let Wt = Z?:l Wt(l)

The idea:
@ If the algorithm incurs a large loss after T steps, then W1 is small.

o And, if W41 is small, then even the best expert performs quite badly.
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Multiplicative Weight Update (MWU)

Proof of Theorem 1

Let Wt = Zle Wt(l)

The idea:
@ If the algorithm incurs a large loss after T steps, then W1 is small.

o And, if W41 is small, then even the best expert performs quite badly.

Let L* := min; 3/, £:(i).
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Multiplicative Weight Update (MWU)

The proof (contd.)

Lemma 1 (Wry1 is SMALL = L* is LARGE)

Wrig > e BL".

Proof.
Let j = argmin L* = argmin; Z;l £:(7).

n
Wrii=) e Sl b() > o BEL £el) — o=BL",
i=1
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The proof (contd.)
Lemma 2 (MWU brings large loss = Wy, is SMALL)

n
Writ < n ] = Bixe, £e) + 52(xe, 63)),
t=1

Note: Wi = n.

Wt+1 - zn: Wt+1(i) . zn: Wt(’) . e*ﬁer(i)

W, W,
& i=1 & i=1

A\
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The proof (contd.)
Lemma 2 (MWU brings large loss = Wy, is SMALL)

n

Writ < n ] = Bixe, £e) + 52(xe, 63)),
t=1
Note: Wi = n.
Wit o= weni(i)) & M _pe(i)
W, 2 W, =2 _ZX ©

i=1 i=1

< zxt (1 - Be(i) + 26())

A\
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Multiplicative Weight Update (MWU)

The proof (contd.)
Lemma 2 (MWU brings large loss = Wy, is SMALL)

n

Wt < HH(l - ﬁ<xt7£t> + /82<xt7£§>)7

t=1

Note: Wi = n.

Wt+1 - n Wt+1(i) - n Wl’( ° @ ﬂet
W, T 2w

i=1 i=1

= th( —BE:(0)

< zxt (1 - Be(i) + 28())

= 1—3(x, t>—|—52<xt,£f>

A\
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Multiplicative Weight Update (MWU)

The proof (contd.)
Lemma 2 (MWU brings large loss = Wy, is SMALL)

n
Wrii<n H( )7
t=1 )
Note: Wi = n.
Wi i1 70 = w(i) - e P40 —Be.(i)
= = = = x:(i) - e P&
Wt ’z; Wt ’z:; Z

< zxt (1 - Be(i) + 26())

_ < @ B{xele)+5 (% £7)
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The proof (contd.)
Lemma 2 (MWU brings large loss = Wy, is SMALL)

n
WT+1 <n H e_5<xt=€t>+52<xt,ﬂf).

t=1 )
Note: Wi = n.
Weia Wt+1(  wi(i) - e P4 —Be(i)
= = x (i) - e PV
D e

< zxt (L~ Bei) + BPE(0)

- 1_ /8<Xt7£t> +ﬁ2<xt’e%> < e7/3<xtqet>+‘3 (Xr-l,).
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The proof (contd.)

Hence

T T

|n WT+]_ S |n n— ZB<£t,Xt> + 262<£%,Xt>

i=1 i=1

and In Wy > —(L*.
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The proof (contd.)

Hence

InWs,1 <Inn-— (Zﬁ<ft,xt>> + (ZBZ<E%aXt>>

i=1 i=1
and In Wy > —(L*.
Thus,

.
<Z<et,xt>) < '“—” +BZ 2, x1).

t=1
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The proof (contd.)

Hence
T T
InWriy <lInn— (Zﬁwt,xt)) + (Zﬁ%»@)
i=1 i=1
and In Wy > —(L*.
Thus,

.
<Z<£t,xt>) < '“—” +BZ (€2, ;).

t=1

Take g = '%” we have regret+ < 2v T Inn.
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Outline

@ Follow The Leader (FTL)
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Why so complicated?

@ How about just following the one with best performance?
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Why so complicated?

@ How about just following the one with best performance?
o Follow The Leader (FTL) Algorithm.
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Why so complicated?

@ How about just following the one with best performance?
o Follow The Leader (FTL) Algorithm.

e First, we assume to make no assumptions on K and {f; : L — R}.

@ At time t, we are given previous cost functions f,...,f;_1, and then

give the solution
t—1

X 1= arg )r(nellrclz fi(x).
k=1
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Follow The Leader (FTL)

Why so complicated?

@ How about just following the one with best performance?
o Follow The Leader (FTL) Algorithm.

e First, we assume to make no assumptions on K and {f; : L — R}.
@ At time t, we are given previous cost functions f,...,f;_1, and then

give the solution
t—1

X 1= arg )r(nellrclz fi(x).
k=1

That is, the best solution for the previous t — 1 steps.
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Why so complicated?

@ How about just following the one with best performance?
o Follow The Leader (FTL) Algorithm.

e First, we assume to make no assumptions on K and {f; : L — R}.

@ At time t, we are given previous cost functions f,...,f;_1, and then

give the solution
t—1

X; = argmin fr(x).
t ngICZ k( )
k=1
That is, the best solution for the previous t — 1 steps.

@ It seems reasonable and makes sense, doesn't it?
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FTL leads to “overfitting”

t: 1

Xt (0.5,0.5)

Ly (0,0.5)
fr(xt): 0.25

arg miny Z;t(:1 fi(x): (1,0)
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FTL leads to “overfitting”

t: 1 2

X¢: (0.5,0.5) (1,0)

Ly (0,0.5) (1,0)
fr(xt): 0.25 1

arg miny > i1 fi(x): (1,0)  (0,1)
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Follow The Leader (FTL)

FTL leads to “overfitting”

t: 1 2 3
Xt (0.5,0.5) (1,0) (0,1)
Ly (0,0.5) (1,0) (0,1)

fr(xt): 0.25 1 1

arg miny Zi:l fi(x): (1,0) (0,1) (1,0)
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Follow The Leader (FTL)

FTL leads to “overfitting”

t: 1 2 3 4
Xe: (0.5,0.5) (1,0) (0,1) (1,0)
R (0,0.5) (1,0) (0,1) (1,0)
fo(xt): 0.25 1 1 1

arg miny > i1 fi(x): (1,0)  (0,1) (1,0) (0,1)
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No-Regret Online Learning
Follow The Leader (FTL)

FTL leads to “overfitting”

t:
Xt
Yo

fe(xt):

arg miny Zi:l fi(x):

Joseph C. C. Lin (CSIE, TKU, TW)
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Follow The Leader (FTL)

FTL leads to “overfitting”

t:
Xt
Yo

fe(xt):

arg miny Zi:l fi(x):
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1 2 3
(0.5,05) (1,0) (0,1)
(0,0.5) (1,0) (0,1)
0.25 1 1

(1,0) (0,1) (1,0)
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Follow The Leader (FTL)

FTL leads to “overfitting”

t: 1 2 3 4 5
Xe: (0.5,0.5) (1,0) (0,1) (1,0) (0,1)
£ (0,05) (1,0) (0,1) (1,0) (0,1)
fo(xe): 0.25 1 1 1 1

arg miny > i1 fi(x): (1,0) (0,1) (1,0) (0,1) (1,0)

optimum loss: ~ T/2.
FTL's loss: ~ T.
regret: ~ T /2 (linear).
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Analysis of FTL

Theorem 2 (Analysis of FTL)

For any sequence of cost functions fi, ..., f; and any number of time steps
T, the FTL algorithm satisfies

-
regret; < Z(ft(xt) — fe(xt41))-

t=1
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No-Regret Online Learning

Analysis of FTL

Theorem 2 (Analysis of FTL)

For any sequence of cost functions fi, ..., f; and any number of time steps
T, the FTL algorithm satisfies

-
regret; < Z(ft(xt) — fe(xt41))-

t=1

Implication: If f;(-) is Lipschitz w.r.t. to some distance function || - ||,
then x; and x;y1 are close = ||fi(x:) — fi(xt+1)|| can't be too large.

Modify FTL: x;'s shouldn't change too much from step by step.
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Proof of Theorem 2

Recall that

T T
regret = Z fr(x) — )r(rylg Z fi(x)
t=1 t=1
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No-Regret Online Learning

Proof of Theorem 2

Recall that

T T T
regret = Z fr(x) — )r(nellgz fr(x Z fr(xe) — fr(xee1))-
t=1 t=1 t=1

The theorem < Zt 1 (Xt+1) < minkex Zt 1 (X)
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Proof of Theorem 2

Recall that

T T T
regret = Z fr(x) — )r(nellgz fr(x Z fr(xe) — fr(xee1))-
t=1 t=1 t=1

The theorem < 2;1 fr(Xe41) < mingex Z;l fi(x).

Prove by induction. T = 1: The definition of x».
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Follow The Leader (FTL)

Proof of Theorem 2

Recall that

T T T
regret = Z fr(x) — )r(nellgz fr(x Z fr(xe) — fr(xee1))-
t=1 t=1 t=1

The theorem < 2;1 fr(Xe41) < mingex Z;l fi(x).

Prove by induction. T = 1: The definition of x».
Assume that it holds up to T. Then:
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Follow The Leader (FTL)

Proof of Theorem 2

Recall that

T T T
regret = Z fr(x) — )r(nellgz fr(x Z fr(xe) — fr(xee1))-
t=1 t=1 t=1

The theorem < 2;1 fr(Xe41) < mingex Z;l fi(x).

Prove by induction. T = 1: The definition of x».
Assume that it holds up to T. Then:

T+1 T+1 T+1
Z fi(xe1) = Z fr(Xer1) + frea(xr42) Z fi(xT42) = m|n Z fi(x
=1 =1
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Follow The Leader (FTL)

Proof of Theorem 2

Recall that

T T T
regret = Z fr(x) — )r(nellgz fr(x Z fr(xe) — fr(xee1))-
t=1 t=1 t=1

The theorem < 2;1 fr(Xe41) < mingex Z;l fi(x).

Prove by induction. T = 1: The definition of x».
Assume that it holds up to T. Then:

T+1 T+1 T+1
E fi(xe1) = E fr(Xer1) + frea(xr42) g fi(xT42) = m|n E fi(x
=1 =1

where

-~

T T
; fe(xeq1) < )f(‘fy}g ; fe(x Z (x742).
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Follow The Regularized Leader (FTRL)
Outline

© Follow The Regularized Leader (FTRL)
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Introducing REGULARIZATION

@ You might have already been using regularization for quite a long
time.
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No-Regret Online Learning

Introducing REGULARIZATION

from keras import regularizers

model.add(Dense(64, input_dim=64,
kernel_regularizer=regularizers.12(0.01)
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Introducing REGULARIZATION

# L1 data (only 5 informative features)

X_1, y_1 = datasets.make classification(n_samples=n_samples,
n_features=n_features, n_informative=5,
random_state=1)

# L2 data: non sparse, but less features

y_2 = np.sign(.5 - rnd.rand(n_samples))

X_2 = rnd.randn(n_samples, n_features // 5) + y_2[:, np.newaxis]
X_2 += 5 * rnd.randn(n_samples, n_features // 5)

clf_sets = [(LinearSVC(penalty='11", loss='squared_hinge', dual=False,
tol=1le-3),
np.logspace(-2.3, -1.3, 10), X_1, y_1),
(LinearSVC(penalty='12", loss='squared_hinge', dual=True),
np.logspace(-4.5, -2, 10), X_2, y_2)]
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Follow The Regularized Leader (FTRL)

The regularizer

At each step, we compute the solution

t—1
X; = arg )r(nellr% R(x) + Z fi(x)
k=1

This is called Follow the Regularized Leader (FTRL).

In short,

FTRL = FTL + Regularizer.
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Analysis of FTRL

Theorem 3 (Analysis of FTRL)

For
@ every sequence of cost function {f;(-)}+>1 and
o every regularizer function R(-),

for every x, the regret with respect to x after T steps of the FTRL
algorithm is bounded as

-
regret(x) < (Z fr(x¢) — ft(Xt+1)> + R(x) — R(x1),

t=1

where regretr(x) := 32/, (fi(x;) — fi(x)).
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Proof of Theorem 3

o Consider a mental experiment:
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Proof of Theorem 3

o Consider a mental experiment:

e We run the FTL algorithm for T + 1 steps.
e The sequence of cost functions: R, fi, f, ..., fr.

@ Use x; as the first solution.

o The solutions: x1, x1, Xo, ..., XT.

Joseph C. C. Lin (CSIE, TKU, TW) No-Regret Online Learning 27 Dec 2021 — 11 Jan 2022 43/81



No-Regret Online Learning

Proof of Theorem 3

o Consider a mental experiment:

e We run the FTL algorithm for T + 1 steps.
e The sequence of cost functions: R, fi, f, ..., fr.

@ Use x; as the first solution.
o The solutions: x1, x1, Xo, ..., XT.

@ The regret:
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Proof of Theorem 3

o Consider a mental experiment:

e We run the FTL algorithm for T + 1 steps.
e The sequence of cost functions: R, fi, f, ..., fr.

@ Use x; as the first solution.
o The solutions: x1, x1, Xo, ..., XT.

@ The regret:

T T

R(x1) — R(x) + 3 (f(x) - f(x)) < R(x1) — R(xa) + 3 (fi(xe) — filxes1))

t=1 t=1

minimizer of R(:)
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Proof of Theorem 3

o Consider a mental experiment:

e We run the FTL algorithm for T + 1 steps.
e The sequence of cost functions: R, fi, f, ..., fr.

@ Use x; as the first solution.
o The solutions: x1, x1, Xo, ..., XT.

@ The regret:

T T

R(x1) — R(x) + 3 (f(x) - f(x)) < R(x1) = R(xa) + 3 (fi(xe) — filxes1))

t=1 t=1

output of FTRL at t + 1
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Follow The Regularized Leader (FTRL)

MWU Revisited

Outline

© Follow The Regularized Leader (FTRL)
® MWU Reuvisited
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Follow The Regularized Leader (FTRL)

MWU Revisited

Using negative-entropy regularization

@ We have seen an example that FTL tends to put all probability mass
on one expert (it's bad!)
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Follow The Regularized Leader (FTRL)

MWU Revisited

Using negative-entropy regularization

@ We have seen an example that FTL tends to put all probability mass
on one expert (it's bad!)

o ldea: penalize over “concentralized” distributions.
e negative-entropy: a good measure of how centralized a distribution is.
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Follow The Regularized Leader (FTRL)

MWU Revisited

Using negative-entropy regularization

@ We have seen an example that FTL tends to put all probability mass
on one expert (it's bad!)

o ldea: penalize over “concentralized” distributions.

e negative-entropy: a good measure of how centralized a distribution is.
n

R(x):=c- > x(i)Inx(i).

i=1
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Follow The Regularized Leader (FTRL)

MWU Revisited

Using negative-entropy regularization

@ We have seen an example that FTL tends to put all probability mass
on one expert (it's bad!)

o ldea: penalize over “concentralized” distributions.
e negative-entropy: a good measure of how centralized a distribution is.

R(x):=c- > x(i)Inx(i).
i=1
@ So our FTRL gives
t—1 n
X; = arg mig Z(Ek,x> +c- Zx(i) In x(7)
xe
k=1 i=1
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Follow The Regularized Leader (FTRL)

MWU Revisited

Using negative entropy regularization

t—1 n
Xt = arg)r(réig (Z(Zk,x> +c- Zx(i) In x(i)) .

k=1 i=1

@ The constraint x € A = ) . x; = 1.
@ So we use Lagrange multiplier to solve

t—1 n
L= (Z(Ek,x>> tc- <Zx(i)|nx(i)> F A ((x,1) — 1),

k=1 i=1
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Follow The Regularized Leader (FTRL)

MWU Revisited

Using negative entropy regularization

t—1 n
Xt = arg)r(réig (Z(Zk,x> +c- Zx(i) In x(i)) .

k=1 i=1

@ The constraint x € A = ) . x; = 1.
@ So we use Lagrange multiplier to solve

t—1 n
L= (Z(Ek,x>> tc- <Zx(i)|nx(i)> F A ((x,1) — 1),

k=1 i=1

@ The partial derivative 3?(6):

t—1
(Zem) +c-(1+Inx)+ A
k=1
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Follow The Regularized Leader (FTRL)

MWU Revisited

Rediscover MWU?

oL _ Ao1es
~=0 = x(i)=-exp —l—c—c;ﬁk(/)
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Follow The Regularized Leader (FTRL)

MWU Revisited

Rediscover MWU?

oL
ox(i)

A lt—l
=0 = x(i)=exp —1—C—Ck§::1£k(i)

Take the value of A to make the solution a probability distribution.
Thus,
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Follow The Regularized Leader (FTRL)

MWU Revisited

Rediscover MWU?

L _ =
ox(7) =0 = x(i)=exp (—1 - k§::1£k(l)>

Take the value of A to make the solution a probability distribution.
Thus,

exp (—L X2 44()
e (~L i)

x(i) =
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Follow The Regularized Leader (FTRL)

MWU Revisited

Rediscover MWU?

L _ =
ox(7) =0 = x(i)=exp (—1 - k§::1£k(l)>

Take the value of A to make the solution a probability distribution.
Thus,

G =0)
e (~L i)

Exactly the solution of MWU if we take ¢ = 1/4!
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Follow The Regularized Leader (FTRL)

MWU Revisited

Rediscover MWU?

L _ =
ox(7) =0 = x(i)=exp (—1 - k§::1£k(l)>

Take the value of A to make the solution a probability distribution.
Thus,

G =0)
e (~L i)

Exactly the solution of MWU if we take ¢ = 1/4!

@ Now it remains to bound the deviation of each step.
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Follow The Regularized Leader (FTRL)

MWU Revisited

Regret of FTRL + Negative-Entropy Regularization

@ At each step,
fe(xe) — fe(xer1) = (Lo, Xe — Xeq1)
@ Let’s go back to use the notation of MWU.
o wy (i) =1 (initialization).
o wi1(i) = wy(i) - e &)/e
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Follow The Regularized Leader (FTRL)

MWU Revisited

Regret of FTRL + Negative-Entropy Regularization

@ At each step,
fe(xe) — fe(xer1) = (Lo, Xe — Xeq1)
@ Let’s go back to use the notation of MWU.
o wy (i) =1 (initialization).
o wi1(i) = wy(i) - e &)/e

@ So, x; = S W)
@ Then,

xera(i) = we1(F) _ wt(i)e*lf(")/c < wt(i)e*lf(")/c
" diwera() 2 ywena() T X we())
> xe(i)- eV > (1—1/c)x(i).
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Follow The Regularized Leader (FTRL)

MWU Revisited

Regret of FTRL + Negative-Entropy Regularization

At each step,

fe(xe) — fe(xer1) = (Lo, Xe — Xeq1)

Let's go back to use the notation of MWU.
o wy (i) =1 (initialization).
o wi1(i) = wy(i) - e &)/e

So, x; = W)
@ Then,

wepr() wi(i)e b/ wy(i)e /e

il = () T Swen() X, wl)
> xe(i)- eV > (1—1/c)x(i).

*.» weights are non-increasing
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Follow The Regularized Leader (FTRL)

MWU Revisited

Regret of FTRL + Negative-Entropy Regularization

@ At each step,
fe(xe) — fe(xer1) = (Lo, Xe — Xeq1)
@ Let’s go back to use the notation of MWU.
o wy (i) =1 (initialization).
o wi1(i) = wy(i) - e &)/e

@ So, x; = S W)
@ Then,

xera(i) = we1(F) _ wt(i)e*lf(")/c < wt(i)e*lf(")/c
" diwera() 2 ywena() T X we())
> xe(i)-e V> (1 —1/c)x(i).

assume 0 < £4(i) <1
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Follow The Regularized Leader (FTRL)

MWU Revisited

Regret of FTRL + Negative-Entropy Regularization

@ At each step,
fr(xe) = fe(Xer1) = (€e, Xe — Xeq1) < D2 Le(i) - xe(i) < L.
@ Let’s go back to use the notation of MWU.
o wy (i) =1 (initialization).
o wi1(i) = wy(i) - e &l)/e

@ So, x; = S W)
@ Then,

xera(i) = we1(7) _ wt(i)e*lf(")/c < wt(i)e*lf(")/c
" diwera() 2 ywena() T X we())
> xe(i)- eV > (1—1/c)x(i).
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Follow The Regularized Leader (FTRL)

MWU Revisited

Regret of FTRL + Negative-Entropy Regularization

@ By Theorem 3, for any x,
T
regret7(x) < 3 (fxe) — filxes1)) + R(x) — R(xt) <

t=1
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Follow The Regularized Leader (FTRL)

MWU Revisited

Regret of FTRL + Negative-Entropy Regularization

@ By Theorem 3, for any x,
T
regretr(x) < 3 (fixe) — filxes1)) + R(x) — R(x1) <

t=1

*.» max entropy for uniform distribution
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Follow The Regularized Leader (FTRL)

MWU Revisited

Regret of FTRL + Negative-Entropy Regularization

@ By Theorem 3, for any x,
T
regretr(x) < Y (fi(xe) — fi(xe1)) + R(x) — R(x1) <

t=1

Again, we have regret; < 2+ T Inn by choosing ¢ = \/%
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Follow The Regularized Leader (FTRL)

MWU Revisited

Regret of FTRL + Negative-Entropy Regularization

@ By Theorem 3, for any x,
T
regretr(x) < Y (fi(xe) — fi(xe1)) + R(x) — R(x1) <

t=1

Again, we have regret; < 2+ T Inn by choosing ¢ = \/%
o Note the slight difference b/w regret and regret*.
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Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

Outline

© Follow The Regularized Leader (FTRL)

@ FTRL with 2-norm regularizer
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Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

L2 Regularization

@ Let’s try to apply the FTRL to the case that the regularizer is of L2
norm!
@ Consider also linear cost functions but IC = R" first.

@ What kind of problem we might encounter?
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FTRL with 2-norm regularizer

L2 Regularization

@ Let’s try to apply the FTRL to the case that the regularizer is of L2
norm!

@ Consider also linear cost functions but IC = R" first.

@ What kind of problem we might encounter?

@ The offline optimum could be —oc.

o FTL will also tend to find a solution of “big” size, too.
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FTRL with 2-norm regularizer

L2 Regularization

@ Let’s try to apply the FTRL to the case that the regularizer is of L2
norm!

Consider also linear cost functions but IC = R" first.
What kind of problem we might encounter?
The offline optimum could be —oo.

FTL will also tend to find a solution of “big” size, too.

To fight this tendency, it makes sense to use a regularizer which
penalizes the size of a solution.

R(x) := c||x||.
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FTRL with 2-norm regularizer

The regularizer of 2-norm tells us...

0X1:0.

® Xr11 = arg Minyern c||x||> + 35 _; (k, x).
@ Compute the gradient:

t
2cx + Zﬁk =0
k=1

1 t
= xX=—7> 4.
x ZC;k

Hence, x1 = 0, x;11 = x; — 2—1c£t.

Joseph C. C. Lin (CSIE, TKU, TW) No-Regret Online Learning 27 Dec 2021 — 11 Jan 2022 52/81



No-Regret Online Learning

Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

The regularizer of 2-norm tells us...

0X1:0.

® Xr11 = arg minyern c||x||> + >4 _; €k, x).
convex

@ Compute the gradient:

t
2cx + Zﬁk =0
k=1

1 t
= xX=—7> 4.
x ZC;k

Hence, x1 = 0, x;11 = x; — 2—1c£t.

Joseph C. C. Lin (CSIE, TKU, TW) No-Regret Online Learning 27 Dec 2021 — 11 Jan 2022 52/81



No-Regret Online Learning

Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

The regularizer of 2-norm tells us...

0X1:0.

® Xr11 = arg Minyern c||x||> + 35 _; (k, x).
@ Compute the gradient:

t
2cx + Zﬁk =0
k=1

1 t
= xX=—7> 4.
x ZC;k

Hence, x1 = 0, x;31 = x; — iét.
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FTRL with 2-norm regularizer

The regularizer of 2-norm tells us...

0X1:0.

® Xr11 = arg Minyern c||x||> + 35 _; (k, x).
@ Compute the gradient:

t
2cx + Zﬁk =0
k=1

1 t
= xX=—7> 4.
x ZC;k

Hence, x1 = 0, x;31 = x; — iﬂt.
— penalize the experts that performed badly in the past!
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FTRL with 2-norm regularizer

The regret of FTRL with 2-norm regularization

o First, we have

1 1
ft(xt) - ft(xt+1) = <et,xt - Xt+1> = <£t7 2C£t> = 27C||Et||2'

@ So, with respect to a solution x,

T

regretr(x) < R(x) = R(x1)+ 3 fi(xe) — filxe1)
t=1

1 T
el x| + 5 > llel.
t=1

@ Suppose that [|€;|| < L for each t and ||x|| < D. Then by optimizing

c= we have

_TI
2D2[2!
regrett(x) < DLV2T.
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FTRL with 2-norm regularizer

Dealing with constraints

@ Let's deal with the constraint that K is an arbitrary convex set
instead of R".

@ Using the same regularizer, we have our FTRL which gives

xy = arg min cf|x|?,

t
Xy1 = arg Lnei,gCHXIF + > (8, ).
k=1
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Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

Dealing with constraints

@ Let's deal with the constraint that K is an arbitrary convex set
instead of R".

@ Using the same regularizer, we have our FTRL which gives

xy = arg min cf|x|?,

t
Xy1 = arg Lnei,gCHXIF + > (8, ).
k=1

@ The idea: First solve the unconstrained optimization and then
project the solution on K.
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FTRL with 2-norm regularizer

Unconstrained optimization + projection

t
Yi+1 = 3rgy”£]i}£‘n cllyll* + Z<£t7y>‘
k=1

X£+1 = MNic(ye41) = arg )f(nE']fC‘ |1x = ye1ll-
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Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

Unconstrained optimization + projection

t
Yi+1 = 3rgy”£]i}£‘n cllyll* + Z<£t7y>‘
k=1

x{*+1 = MNic(ye41) = arg )f(nE']fC‘ |1x = ye1ll-

o Claim: x{ | = x¢11.
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FTRL with 2-norm regularizer

Proof of the claim: x;,; = X¢11

o First, we already have that y;11 = —i Zizl L.
@ Then,

Xpy1 = arg;‘g{é [x = yes1ll = arg)r(nei’rcl 1% — yeqa|?

= argmin|[x||* = 20x, ye1) + |lyera |l
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Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

Proof of the claim: x;,; = X¢11

o First, we already have that y;11 = —i Zizl L.
@ Then,

Xpy1 = arg;‘g{é [x = yes1ll = arg)r(réilrcl 1% — yeqa|?
= argmin|[x||* = 20x, ye1) + |lyera |l
= arg)r(nei’r% ||x\|2 —2(x, ¥t+1)

. 1 ¢
= arggg,gllXHZ =2 <X7—2C ;£t>

t
_ : 2
= arg)rpellr%cHxH + <X,Z£t>
k=1
= Xt+1-
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FTRL with 2-norm regularizer

To bound the regret

fe(xe) — fe(xeq1) = ey xe — Xxer1) < |[€e]] - |[xe — Xeq1]]
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FTRL with 2-norm regularizer

To bound the regret

fe(xe) — fe(Xer1) = (e, Xe — Xev1) [[€e]] - [1xe — Xet1]|

1€l - [lye = yesall-

[} = =
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Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

To bound the regret

fe(xe) — fr(xev1) = Lo, xe — Xer1) < |[€e]] - |[xe — Xeqa]]
< el - llye — yeaal]
1
< e 2
<

So, assume maxxei ||x|| < D and |[€|| < L for all ¢, we have

T
1
regrety < cllx"|* = clball® + - > (1€
t=1

IN

1
cD? + —TI?
2¢c
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FTRL with 2-norm regularizer

To bound the regret

fe(xe) — fr(xev1) = Lo, xe — Xer1) < |[€e]] - |[xe — Xeqa]]
< el - llye — yeaal]
1
< e 2
<

So, assume maxxei ||x|| < D and |[€|| < L for all ¢, we have

T
1
regrety < cllx"|* = clball® + - > (1€
t=1

IN

1
cD? + 2—TL2 < DLV?2T.
C
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© Multi-Armed Bandit (MAB)
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Multi-Armed Bandit

Fig.: Image credit: Microsoft Research
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The setting

@ We can see N arms as N experts.
@ Arms give are independent.
@ We can only pull an arm and observe the reward of it.
e It's NOT possible to observe the reward of pulling the other arms...

e Each arm i/ has its own reward r; € [0,1].
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The setting

@ We can see N arms as IV experts.
@ Arms give are independent.
@ We can only pull an arm and observe the reward of it.
e It's NOT possible to observe the reward of pulling the other arms...
e Each arm i has its own reward r; € [0,1].
o j: the mean of reward of arm i
@ [ij: the empirical mean of reward of arm i
1*: the mean of reward of the BEST arm.
Ajp” — pi.
Index of the best arm: [ := argmax;cyq . wyHi-
The associated highest expected reward: p* = p~.
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The regret formulation for MAB

Let /; be the arm played by the algorithm at time t.
The regret of the algorithm in T rounds is

T

regrety = Y (4" — )

t=1
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The regret formulation for MAB

Let /; be the arm played by the algorithm at time t.
The regret of the algorithm in T rounds is

T

regrety = Y (u* —u/t)—zz )

t=1 i=1 t:ly=i
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The regret formulation for MAB

Let /; be the arm played by the algorithm at time t.
The regret of the algorithm in T rounds is

.
Z( —u/t)—zz — i)
t=1 i=1 t:ly=i
N
2

regret =
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The regret formulation for MAB

Let /; be the arm played by the algorithm at time t.
The regret of the algorithm in T rounds is

T

regrety = Y (u* —u/t)—zz )

t=1 i=1 t:ly=i

= Zn, TA
= Z nITA

i <p*
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Outline

© Multi-Armed Bandit (MAB)
o Greedy Algorithms
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Multi-Armed Bandit (MAB)

Greedy Algorithms

A Naive Greedy Algorithm

Greedy Algorithm
© For t < ¢, select a random arm with probability 1/N and pull it.

@ For t > cN, pull the arm [; := argmax;—1,... n fii -

@ Here c is a constant.

Joseph C. C. Lin (CSIE, TKU, TW) No-Regret Online Learning 27 Dec 2021 — 11 Jan 2022 64 /81



No-Regret Online Learning

Multi-Armed Bandit (MAB)

Greedy Algorithms

A Naive Greedy Algorithm

Greedy Algorithm

© For t < ¢, select a random arm with probability 1/N and pull it.
@ For t > cN, pull the arm [; := argmax;—1,... n fii -

@ Here c is a constant.

@ This algorithm is of linear regret, hence is not a no-regret algorithm.
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Greedy Algorithms

A Naive Greedy Algorithm

Greedy Algorithm

© For t < ¢, select a random arm with probability 1/N and pull it.
@ For t > cN, pull the arm [; := argmax;—1,... n fii -

@ Here c is a constant.

@ This algorithm is of linear regret, hence is not a no-regret algorithm.
@ For example,

e Arm 1: 0/1 reward with mean 3/4.
e Arm 2: Fixed reward of 1/4.

o After cN = 2c steps, with constant probability, we have fi; ;v < fi2,cn-
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Multi-Armed Bandit (MAB)
Greedy Algorithms

A Naive Greedy Algorithm

Greedy Algorithm

© For t < ¢, select a random arm with probability 1/N and pull it.
@ For t > cN, pull the arm [; := argmax;—1,... n fii -

@ Here c is a constant.

@ This algorithm is of linear regret, hence is not a no-regret algorithm.
@ For example,

e Arm 1: 0/1 reward with mean 3/4.

e Arm 2: Fixed reward of 1/4.

o After cN = 2c steps, with constant probability, we have fi; ;v < fi2,cn-

o If this is the case, the algorithm will keep pulling arm 2 and will never
change!
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Multi-Armed Bandit (MAB)

Greedy Algorithms

e-Greedy Algorithm

e-Greedy Algorithm
Forall t=1,2,...,N:
o With probability 1 — ¢, pull arm /; := argmax;—1,_._n fli .

@ With probability €, select an arm uniformly at random (i.e., each with
probability 1/N).
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Multi-Armed Bandit (MAB)

Greedy Algorithms

e-Greedy Algorithm

e-Greedy Algorithm
Forall t=1,2,...,N:
o With probability 1 — ¢, pull arm /; := argmax;—1,_._n fli .

@ With probability €, select an arm uniformly at random (i.e., each with
probability 1/N).

o It looks good.
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Multi-Armed Bandit (MAB)

Greedy Algorithms

e-Greedy Algorithm

e-Greedy Algorithm
Forall t=1,2,...,N:
o With probability 1 — ¢, pull arm /; := argmax;—1,_._n fli .

@ With probability €, select an arm uniformly at random (i.e., each with
probability 1/N).

o It looks good.

@ Unfortunately, this algorithm still incurs linear regret.
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Multi-Armed Bandit (MAB)

Greedy Algorithms

e-Greedy Algorithm

e-Greedy Algorithm
Forall t=1,2,...,N:
o With probability 1 — ¢, pull arm /; := argmax;—1,_._n fli .

@ With probability €, select an arm uniformly at random (i.e., each with
probability 1/N).

o It looks good.

@ Unfortunately, this algorithm still incurs linear regret.
@ Indeed,
e Each arm is pulled in average ¢ T /N times.
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Multi-Armed Bandit (MAB)

Greedy Algorithms

e-Greedy Algorithm

e-Greedy Algorithm
Forall t=1,2,...,N:
o With probability 1 — ¢, pull arm /; := argmax;—1,_._n fli .

@ With probability €, select an arm uniformly at random (i.e., each with
probability 1/N).

o It looks good.

@ Unfortunately, this algorithm still incurs linear regret.
@ Indeed,

e Each arm is pulled in average ¢ T /N times.

o Hence the (expected) regret will be at least 5 > A

i <p*
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Upper Confidence Bound (UCB)

Outline

© Multi-Armed Bandit (MAB)

@ Upper Confidence Bound (UCB)
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Multi-Armed Bandit (MAB)

Upper Confidence Bound (UCB)

The upper confidence bound algorithm (UCB)

@ At each time step (round), we simply pull the arm with the highest
“empirical reward estimate + high-confidence interval size”.

@ The empirical reward estimate of arm / at time t:

22:1 s - rs

nit

)

Hit =

n; ¢ the number of times arm i is played.
ls.iz 1 if the choice of arm is / at time s and 0 otherwise.

@ Reward estimate + confidence interval:

Int
UCB, ¢ := it + .

nit
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Multi-Armed Bandit (MAB)

Upper Confidence Bound (UCB)

Algorithm UCB

UCB Algorithm

N arms, T rounds such that T > N.
Q@ Fort=1,...,N, play arm t.
Q@ Fort=N-+1,...,T, play arm

Ae = argmaxieqy  ppUCB; 1.
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Multi-Armed Bandit (MAB)

Upper Confidence Bound (UCB)

Algorithm UCB

o = :
@ l2  Empirical mean

< I P

H—/
hj Confidence interval
@ < » Nt
) e
0 1
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Upper Confidence Bound (UCB)

Algorithm UCB (after more time steps...)

—Ff—>

[io Empirical mean
—Ft—r
Y ,/ Int
/
\ i

Confidence interval

BB B BB
;

[ ]
[ ]
\4

o
=
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Upper Confidence Bound (UCB)

From the Chernoff bound (proof skipped)

For each arm i at time t, we have

I < Int
Mit — [ nie

with probability > 1 — 2/t

Immediately, we know that

@ with prob. > 1 — 2/t2, UCB; ¢ = fij+ + 'nr:—: > ;.

e with prob. > 1 —2/t?, flie < pi+ % when n;; > 4int
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Upper Confidence Bound (UCB)

From the Chernoff bound (proof skipped)

For each arm i at time t, we have
I < Int
it — K —
i i ni,t

To understand why, please take my Randomized Algorithms course. :)
Immediately, we know that

@ with prob. > 1 — 2/t2, UCB;; = fij+ + 'nr:—: > ;.

with probability > 1 — 2/t

e with prob. > 1 —2/t?, flie < pi+ % when n;; > it
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Multi-Armed Bandit (MAB)

Upper Confidence Bound (UCB)

Appendix: Tail probability by the Chernoff/Hoeffding bound

The Chernoff/Hoeffding bound

For independent and identically distributed (i.i.d.) samples
X1,...,%n € [0,1] with E[x;] = i, we have

n

,//- -\\\

p=20 Iz n+o

\ Tail probability
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Upper Confidence Bound (UCB)

Very unlikely to play a suboptimal arm

Lemma 3
At any time step t, if a suboptimal arm i (i.e., u; < p*) has been played

for nj: > 4A”2t times, then UCB; ; < UCB« ; with probability > 1 — 4/t2.

Therefore, for any t,

4Int 4
Pr |:It+1,/' =1|nj:> —] <.
A? t2 J
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Upper Confidence Bound (UCB)

Proof of Lemma 3

With probability < 2/t? 4 2/t2 (union bound) that

Int A;
UCB,t—/L,t+ < ,ult+
n,t 2

JAY,

A

= ,lL* < UCB,‘*J

does NOT hold.
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Multi-Armed Bandit (MAB)

Upper Confidence Bound (UCB)

Playing suboptimal arms for very limited number of times

For any arm i with p; < p*,

A4InT
A2

+ 8.

Eln; 7] <

.
E[n,r] = 1+E Z]l{/tﬂ,i—l}]
t=N
T
4Int
- 1+E|) 1 {/HL,- —1me < A"Z}
t=N i

T
4int
Z 1 {It+1,i =1,ni;> A%}]

+E
t=N
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Multi-Armed Bandit (MAB)

Upper Confidence Bound (UCB)

Proof of Lemma 4 (contd.)

.
ainT 3 int
Elnir] < —5 +E [ ! {IHL/ =Le2 AQ}]

t=N
4InT & 4int
= I -I-ZPV It+1,i:1ani,t2?
i t=N i
T
4In T 4int 4int
- a o=t ez ] > ]
T
4inT 4
< mtle
! t=N
4inT
< A ts

1
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Upper Confidence Bound (UCB)

The regret bound for the UCB algorithm

Theorem 4

For all T > N, the (expected) regret by the UCB algorithm in round T is

E[regrety] <5V NT In T + 8N.
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Upper Confidence Bound (UCB)

Proof of Theorem 4

@ Divide the arms into two groups:
© Group ONE (G;): “almost optimal arms” with A; < /% In T,
@ Group TWO (Gy): “bad” arms with A; > /X in T.

[N N
Zn,-,TA,-§< T|nT>Zn,-,T§T. FInT=VNTInT.

i€eGy i€Gy
By Lemma 4,
4InT [TInT
ZE[H,’J‘]A,’ < Z A +84A; < Z 4 N +8
i€Gy i€Gy i€Gy
< 4VNTInT + 8N.

O
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Outline

© Multi-Armed Bandit (MAB)

@ Time-Decay e-Greedy
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Time-Decay e-Greedy

Time Decaying e-Greedy Algorithm

What if the horizon T is known in advance when we run e-Greedy?

Time-Decaying e-Greedy Algorithm
Forall t =1,2,..., N, set e := NY/3/T1/3:
o With probability 1 — ¢, pull arm /; := argmax;—1,_ n fli -

@ With probability €, select an arm uniformly at random (i.e., each with
probability 1/N).
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Time Decaying e-Greedy Algorithm

What if the horizon T is known in advance when we run e-Greedy?
Time-Decaying e-Greedy Algorithm

Forall t =1,2,..., N, set e := NY/3/T1/3:

o With probability 1 — ¢, pull arm /; := argmax;—1,_ n fli -

@ With probability €, select an arm uniformly at random (i.e., each with
probability 1/N).

v
Claim

Time-Decaying e-Greedy Algorithm gets roughly O(N/3T?/3) regret.
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Sketch of proving the claim

@ The expected regret E[R(T)] = Zthl Elp* — pnr,]
@ Using the greedy choice that fi;, > fij«, we have

(1 — e)E[(pur= — fu= + fu, — pu1,) | greedy choice of I;] + €T

( n? /i T) 1-T+eT (Chernoff)
np= ¢ ny,
InT
=+ T+1
( et/N t/N> el

Q/—w/Tlog T+eT +1=0(N"T%/logT).
€

E[R(T)] <

1%
IN

HM# HM# HMﬂ
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Thank you.
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