A Sketch of Nash's Theorem from Fixed Point Theorems

Joseph Chuang-Chieh Lin

Dept. CSIE, Tamkang University, Taiwan

E DQC

Reference

- Lecture Notes in 6.853 Topics in Algorithmic Game Theory [link].
- Fixed Point Theorems and Applications to Game Theory. Allen Yuan. The University of Chicago Mathematics REU 2017. [link].
 - REU = Research Experience for Undergraduate students.

Э

Outline

Brouwer's Fixed Point Theorem

Sketch of the Proof of Nash's Theorem (from Brouwer's Theorem)

Kakutani's Fixed Point Theorem

Pure Nash Equilibria of Pure Strategic Games Preliminaries Main Theorem I & The Proof
Mixed Nash Equilibria of Finite Strategies Games Preliminaries & Assumptions Main Theorem II & the Proof

= nar

Outline

Brouwer's Fixed Point Theorem

Sketch of the Proof of Nash's Theorem (from Brouwer's Theorem)

Kakutani's Fixed Point Theorem

Pure Nash Equilibria of Pure Strategic Games Preliminaries Main Theorem I & The Proof Mixed Nash Equilibria of Finite Strategies Games Preliminaries & Assumptions Main Theorem II & the Proof

э.

The Setting

- \blacktriangleright A set *N* of *n* players.
- Strategy set $S_i = \{s_{i,1}, \ldots, s_{i,k_i}\}$ for each player $i \in N$, k_i is bounded.
- Utility function: u_i for each player i.
- $\blacktriangleright \Delta := \Delta_1 \times \Delta_2 \times \cdots \Delta_n$: a Cartesian product of $(\Delta_i)_{i \in N}$.
 - For x ∈ Δ, x_i(s) denotes the probability mass on strategy s ∈ S_i.
 Δ_i = {(x_i(s_{i,1}), x_i(s_{i,2}),..., x_i(s_{i,ki})) | x_i(s_{i,j}) ≥ 0 ∀j; ∑_j x_i(s_{i,j}) = 1}.
 x_i ∈ Δ_i: a mixed strategy.

Nash's Theorem

Nash (1950) Every game $\langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$ has a Nash equilibrium.

▶ Note: $u_i(x) := \sum_{s \in S_i} x_i(s) \cdot u_i(s; x_{-i}).$

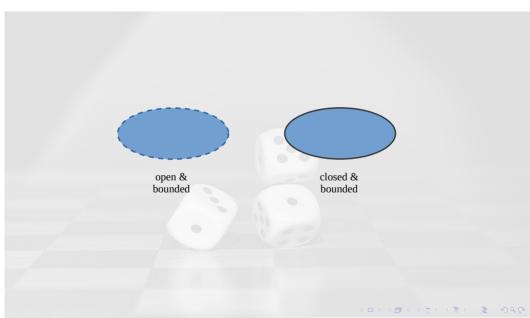
Nash's Theorem

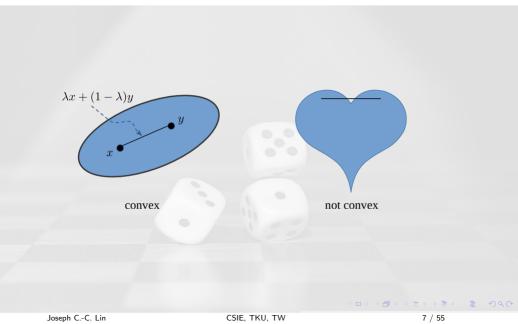
Nash (1950)

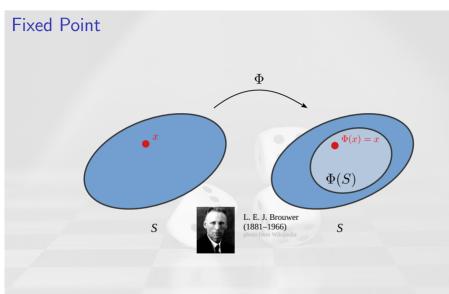
Every game $\langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$ has a Nash equilibrium.

▶ Note: $u_i(\mathbf{x}) := \sum_{s \in S_i} x_i(s) \cdot u_i(s; \mathbf{x}_{-i}).$

▶ No player wants to deviate to the other strategy unilaterally.







Brouwer's Fixed-Point Theorem

Let D be a convex, compact (closed and bounded) subset of the Euclidean space. If $f : D \mapsto D$ is continuous, then there exists $x \in D$ such that

f(x)=x.

Idea: We want the function f to satisfy the conditions of Brouwer's fixed point theorem.

Brouwer's Fixed-Point Theorem

Let D be a convex, compact (closed and bounded) subset of the Euclidean space. If $f : D \mapsto D$ is continuous, then there exists $x \in D$ such that

f(x) = x.

Idea: We want the function f to satisfy the conditions of Brouwer's fixed point theorem.

Try to relate utilities of players to a function f like above.

The Gain function

Gain

Suppose that $\mathbf{x}' \in \mathbf{\Delta}$ is given. For a player *i* and strategy $s_i \in S_i$ (or $s_i \in \mathbf{\Delta}_i$), we define the gain as

$$Gain_{i,s_i}(\boldsymbol{x}') = \max\{u_i(s_i; \boldsymbol{x}'_{-i}) - u_i(\boldsymbol{x}), 0\},\$$

which is non-negative.

►
$$\mathbf{x}'_{-i}$$
 := $(x_j)_{j \in N}$, $(\mathbf{x}_{-i}, x_i) = \mathbf{x}$.

It's equal to the increase in payoff for player *i* if he/she were to switch to pure strategy s_i.

= nar

Proof of Nash's Theorem (Define a response function)

- Define a function f : ∆ → ∆ that satisfies the conditions of Brouwer's fixed point theorem.
- For all $x \in \Delta$, y = f(x) where for all $i \in N$ and $s_i \in S_i$,

$$y_i(s_i) := rac{x_i(s_i) + {\operatorname{Gain}}_{i;s_i}(oldsymbol{x})}{1 + \sum_{s_i' \in S_i} {\operatorname{Gain}}_{i;s_i'}(oldsymbol{x})}.$$

f tries to boost the probability mass where strategy switching results in gains in payoff.

SA E A E AQA

Proof of Nash's Theorem (Define a response function)

▶ Define a function f : ∆ → ∆ that satisfies the conditions of Brouwer's fixed point theorem.

For all $x \in \Delta$, y = f(x) where for all $i \in N$ and $s_i \in S_i$,

$$y_i(s_i) := rac{x_i(s_i) + \operatorname{Gain}_{i;s_i}(\boldsymbol{x})}{1 + \sum_{s_i' \in S_i} \operatorname{Gain}_{i;s_i'}(\boldsymbol{x})}.$$

- $f : \Delta \mapsto \Delta$ is continuous (verify this by yourself).
- Δ is a product of simplicies so it is convex (verify this by yourself).
- Δ is closed and bounded, so it is compact.

Proof of Nash's Theorem (Define a response function)

▶ Define a function f : ∆ → ∆ that satisfies the conditions of Brouwer's fixed point theorem.

For all $x \in \Delta$, y = f(x) where for all $i \in N$ and $s_i \in S_i$,

$$y_i(s_i) := rac{x_i(s_i) + \operatorname{Gain}_{i;s_i}(oldsymbol{x})}{1 + \sum_{s_i' \in S_i} \operatorname{Gain}_{i;s_i'}(oldsymbol{x})}.$$

- $f : \Delta \mapsto \Delta$ is continuous (verify this by yourself).
- Δ is a product of simplicies so it is convex (verify this by yourself).
- Δ is closed and bounded, so it is compact.

 \star Brouwer's fixed point theorem guarantees the existence of a fixed point of f.

Claim: Any fixed point of *f* is a Nash equilibrium

It suffices to prove that a fixed point x = f(x) satisfies:
 Gain_{i:si}(x) = 0, for each i ∈ N and each s_i ∈ S_i.

I DOG

Claim: Any fixed point of *f* is a Nash equilibrium

Prove it by contradiction.

- Assume that there is some player p who can improve his/her payoff by switching to a pure strategy, say s_p:
 - Gain_{$p;s_p}(\boldsymbol{x}) > 0$.</sub>

э.

Claim: Any fixed point of *f* is a Nash equilibrium

Prove it by contradiction.

- Assume that there is some player p who can improve his/her payoff by switching to a pure strategy, say s_p:
 - Gain_{$p;s_p}(\boldsymbol{x}) > 0$.</sub>
- Note that we must have x_p(s_p) > 0, otherwise x cannot be a fixed point of f.

From the definition of f; the numerator would be > 0.

$$y_{
ho}(s_{
ho}) := rac{x_{
ho}(s_{
ho}) + \operatorname{Gain}_{
ho;s_{
ho}}(oldsymbol{x})}{1 + \sum_{s'_{
ho} \in S_{
ho}} \operatorname{Gain}_{
ho;s'_{
ho}}(oldsymbol{x})}.$$

EN EN ENQO

Assume that there is some player p who can improve his/her payoff by switching to a pure strategy, say s_p:

• Gain_{$p;s_p}(\boldsymbol{x}) > 0$ </sub>

э.

Assume that there is some player p who can improve his/her payoff by switching to a pure strategy, say sp:

• Gain_{p;sp}(\boldsymbol{x}) > 0 \Rightarrow $u_p(s_p; \boldsymbol{x}_{-p}) - u_p(\boldsymbol{x}) > 0$.

I DOG

Assume that there is some player p who can improve his/her payoff by switching to a pure strategy, say sp:

• Gain_{p;s_p}(**x**) > 0 \Rightarrow $u_p(s_p; \mathbf{x}_{-p}) - u_p(\mathbf{x}) > 0$.

• We argue that there must be some other pure strategy \hat{s}_p such that:

•
$$x_p(\hat{s}_p) > 0$$
 and

•
$$u_p(\hat{s}_p; \mathbf{x}_{-p}) - u_p(\mathbf{x}) < 0$$

 \star Notice that

$$u_p(\mathbf{x}) := \sum_{s \in S_p} x_p(s) \cdot u_p(s; \mathbf{x}_{-p}).$$

- Assume that there is some player p who can improve his/her payoff by switching to a pure strategy, say sp:
 - Gain_{$p;s_p}(\mathbf{x}) > 0 \Rightarrow u_p(s_p; \mathbf{x}_{-p}) u_p(\mathbf{x}) > 0.$ </sub>
- We argue that there must be some other pure strategy \hat{s}_p such that:
 - $x_p(\hat{s}_p) > 0$ and

 - \star Notice that

$$u_p(\boldsymbol{x}) := \sum_{s \in S_p} x_p(s) \cdot u_p(s; \boldsymbol{x}_{-p}).$$

• We obtain that (x is not a fixed point $\Rightarrow \leftarrow$)

$$y_p(\hat{s}_p) := \frac{x_p(\hat{s}_p) + \mathsf{Gain}_{p;\hat{s}_p}(\boldsymbol{x})}{1 + \sum_{s'_p \in S_p} \mathsf{Gain}_{p;s'_p}(\boldsymbol{x})} < x_p(\hat{s}_p).$$

Outline

Brouwer's Fixed Point Theorem

Sketch of the Proof of Nash's Theorem (from Brouwer's Theorem)

Kakutani's Fixed Point Theorem

Pure Nash Equilibria of Pure Strategic Games Preliminaries Main Theorem I & The Proof Mixed Nash Equilibria of Finite Strategies Games Preliminaries & Assumptions Main Theorem II & the Proof

э.

An Extension of Brouwer's work

Focus: set-valued functions.

- Refer here for further readings.
- Why do we consider set-valued functions?

з.

An Extension of Brouwer's work

Focus: set-valued functions.

- Refer here for further readings.
- Why do we consider set-valued functions?
 - Best-responses.

э.

Upper Semi-Continuous (having a closed graph)

Upper semi-continuous functions

Let

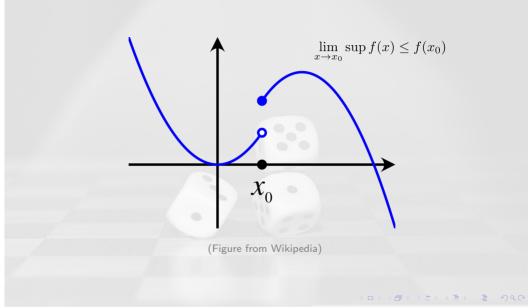
- ▶ $\mathbb{P}(X)$: all nonempty, closed, convex subsets of X.
- S: a nonempty, compact, and convex set.

Then the set-valued function $\Phi: S \mapsto \mathbb{P}(S)$ is upper semi-continuous if

for arbitrary sequences
$$(\mathbf{x}_n)_{n \in \mathbb{N}}, (\mathbf{y}_n)_{n \in \mathbb{N}}$$
 in S , we have
 $\blacktriangleright \lim_{n \to \infty} \mathbf{x}_n = \mathbf{x}_0$,
 $\blacktriangleright \lim_{n \to \infty} \mathbf{y}_n = \mathbf{y}_0$,
 $\blacktriangleright \mathbf{y}_n \in \Phi(\mathbf{x}_n)$ for all $n \in \mathbb{N}$,
imply that $\mathbf{y}_0 \in \Phi(\mathbf{x}_0)$.

Removable discontinuity, Sequentially compact, Bolzano-Weierstrass theorem.

Kakutani's Fixed Point Theorem



Fixed Point of Set-Valued Functions

Fixed Point (Set-Valued)

A fixed point of a set-valued function $\Phi : S \mapsto \mathbb{P}(S)$ is a point $\mathbf{x}^* \in S$ such that $\mathbf{x}^* \in \Phi(\mathbf{x}^*)$.

Kakutani's Theorem for Simplices

Kakutani's Theorem for Simplices (1941)

If S is an r-dimensional closed simplex in a Euclidean space and $\Phi : S \mapsto \mathbb{P}(S)$ is upper semi-continuous, then Φ has a fixed point.

Kakutani's Fixed-Point Theorem

Kakutani's Fixed-Point Theorem (1941)

If S is a nonempty, compact, convex set in a Euclidean space and $\Phi : S \mapsto \mathbb{P}(S)$ is upper semi-continuous, then Φ has a fixed point.

Kakutani's Fixed-Point Theorem

Kakutani's Fixed-Point Theorem (1941)

If S is a nonempty, compact, convex set in a Euclidean space and $\Phi : S \mapsto \mathbb{P}(S)$ is upper semi-continuous, then Φ has a fixed point.

We won't go over its proof.

Instead, we will delve into how it can be used to prove Nash's Theorem from the perspectives of set-valued functions and best-responses.

= nar

Outline

Brouwer's Fixed Point Theorem

Kakutani's Fixed Point Theorem Pure Nash Equilibria of Pure Strategic Games Preliminaries

Main Theorem I & The Proof Mixed Nash Equilibria of Finite Strategies Games Preliminaries & Assumptions Main Theorem II & the Proof

з.

Cartesian product of Sets

Cartesian Product

For a family of sets $\{A_i\}_{i \in N}$, $\prod_{i \in N} A_i = A_1 \times A_2 \times \cdots \times A_n$ denotes the Cartesian product of A_i for $i \in N$.

Profile

for $x_i \in A_i$, then $(x_i)_{i \in N}$ is called a (strategy) profile.

I DOG

Binary Relation

Binary Relation

- A binary relation on a set A is a subset of A × A consisting of all pairs of elements.
- For $a, b \in A$, we denote by R(a, b) if a is related to b.

= nar

Binary Relation

Binary Relation

- A binary relation on a set A is a subset of A × A consisting of all pairs of elements.
- For $a, b \in A$, we denote by R(a, b) if a is related to b.

Properties on Binary Relations

- **Completeness**: For all $a, b \in A$, we have R(a, b), R(b, a), or both.
- **Reflexivity**: For all $a \in A$, we have R(a, a).
- **Transitivity**: For $a, b, c \in A$, if R(a, b) and R(b, c), then we have R(a, c).

I DOG

Preference Relation

Preference Relation

A preference relation is a complete, reflexive, and transitive binary relation.

- Denote by $a \succeq b$ if a is related to b.
- Denote by $a \succ b$ if $a \succeq b$ but $b \not\gtrsim a$.
- Denote by $a \sim b$ if $a \succeq b$ and $b \succeq a$.

Preference Relation

Preference Relation

A preference relation is a complete, reflexive, and transitive binary relation.

- Denote by $a \succeq b$ if a is related to b.
- Denote by $a \succ b$ if $a \succeq b$ but $b \not\succeq a$.
- Denote by $a \sim b$ if $a \succeq b$ and $b \succeq a$.
- $a \succeq b$: *a* is weakly preferred to *b*.
- ▶ $a \sim b$: agent is indifferent between a and b.

I DOG

Continuity on a Preference relation

Continuous Preference Relation

A preference relation is continuous if:

whenever there exist sequences $(a_k)_{k\in\mathbb{N}}$ and $(b_k)_{k\in\mathbb{N}}$ in A such that

$$\blacktriangleright \ \lim_{k\to\infty}a_k=a_k$$

$$\blacktriangleright \ \lim_{k\to\infty} b_k = b_k$$

▶ and
$$a_k \succeq b_k$$
 for all $k \in \mathbb{N}$

we have $a \succeq b$.

I DOG

Strategic Games

Strategic Games

A strategic game is a tuple $\langle N, (A_i), (\succeq_i) \rangle$ consisting of

- ► a finite set of **players** *N*.
- ▶ for each player $i \in N$, a nonempty set of actions A_i .
- ▶ for each player $i \in N$, a **preference relation** \succeq_i on $A = \prod_{i \in N} A_i$.

▶ A strategic game is finite if A_i is finite for all $i \in N$.

A DAGE A E A CA

Strategic Games

Strategic Games

A strategic game is a tuple $\langle N, (A_i), (\succeq_i) \rangle$ consisting of

- ► a finite set of **players** *N*.
- ▶ for each player $i \in N$, a nonempty set of actions A_i .
- ▶ for each player $i \in N$, a **preference relation** \succeq_i on $A = \prod_{i \in N} A_i$.

▶ A strategic game is finite if A_i is finite for all $i \in N$.

▶ Note: \succeq_i is not defined on A_i only, but instead on the set of all $(A_j)_{j \in N}$.

PNE w.r.t. a Preference Relation

Pure Nash Equilibrium (PNE) with (\succeq_i)

A (pure) Nash equilibrium (PNE) of a strategic game $\langle N, (A_i), (\succeq_i) \rangle$ is a profile $a^* := (a_i)_{i \in N}$ such that for all $i \in N$, we have

$$(\boldsymbol{a}_{-i}^*, a_i^*) \succeq_i (\boldsymbol{a}_{-i}^*, a_i')$$
 for all $a_i' \in A_i$.

Best-Response Function

Best-Response Functions

The best-response function of player *i*,

$$BR_i: \prod_{j\in N\setminus\{i\}} A_j \mapsto \mathbb{P}(A_i),$$

is given by

$$BR_i(\boldsymbol{a}_{-i}) = \{ \boldsymbol{a}_i \in A_i \mid (\boldsymbol{a}_{-i}, \boldsymbol{a}_i) \succeq_i (\boldsymbol{a}_{-i}, \boldsymbol{a}_i') \text{ for all } \boldsymbol{a}_i' \in A_i \}.$$

э.

Best-Response Function

Best-Response Functions

The best-response function of player *i*,

$$BR_i: \prod_{j\in N\setminus\{i\}} A_j \mapsto \mathbb{P}(A_i),$$

is given by

$$BR_i(\boldsymbol{a}_{-i}) = \{ \boldsymbol{a}_i \in A_i \mid (\boldsymbol{a}_{-i}, \boldsymbol{a}_i) \succsim_i (\boldsymbol{a}_{-i}, \boldsymbol{a}_i') \text{ for all } \boldsymbol{a}_i' \in A_i \}.$$

BR_i is set-valued.

Recall: $\mathbb{P}(X)$ includes all nonempty, closed, and convex subsets of X.

Joseph C.-C. Lin

CSIE, TKU, TW

Э

PNE w.r.t. a Preference Relation

Alternative definition of NE.

Pure Nash Equilibrium (PNE) with (\succeq_i)

A Nash equilibrium of a strategic game $\langle N, (A_i), (\succeq_i) \rangle$ is a profile $\mathbf{a}^* := (a_i)_{i \in N}$ such that $\mathbf{a}_i^* \in BR_i(\mathbf{a}_{-i}^*)$ for all $i \in N$.

► Thus, to prove the existence of a PNE for a strategic game (N, (A_i), (≿_i)), it suffices to show that:

I DOG

PNE w.r.t. a Preference Relation

Alternative definition of NE.

Pure Nash Equilibrium (PNE) with (\succeq_i)

A Nash equilibrium of a strategic game $\langle N, (A_i), (\succeq_i) \rangle$ is a profile $\mathbf{a}^* := (a_i)_{i \in N}$ such that $\mathbf{a}_i^* \in BR_i(\mathbf{a}_{-i}^*)$ for all $i \in N$.

► Thus, to prove the existence of a PNE for a strategic game (N, (A_i), (≿_i)), it suffices to show that:

There exists a profile $\mathbf{a}^* \in A$ such that for all $i \in N$ we have $a_i^* \in BR_i(\mathbf{a}_{-i}^*)$.

Outline

Brouwer's Fixed Point Theorem Sketch of the Proof of Nash's Theorem (from Brouwer's Theor

Kakutani's Fixed Point Theorem Pure Nash Equilibria of Pure Strategic Games Preliminaries Main Theorem I & The Proof Mixed Nash Equilibria of Finite Strategies Gam Preliminaries & Assumptions

Main Theorem II & the Proof

э.

General Idea

• Let $BR : A \mapsto \mathbb{P}(A)$ be

$$BR(\boldsymbol{a}) = \prod_{i \in N} BR_i(\boldsymbol{a}_{-i}).$$

• We seek for some $a^* \in A$ such that $a^* \in BR(a^*)$.

E DQC

General Idea

• Let $BR : A \mapsto \mathbb{P}(A)$ be

$$BR(\boldsymbol{a}) = \prod_{i \in N} BR_i(\boldsymbol{a}_{-i}).$$

- We seek for some $a^* \in A$ such that $a^* \in BR(a^*)$.
- ▶ We can then use Kakutani's Fixed-Point Theorem to show that **a**^{*} exists.

General Idea

• Let $BR : A \mapsto \mathbb{P}(A)$ be

$$BR(\boldsymbol{a}) = \prod_{i \in N} BR_i(\boldsymbol{a}_{-i}).$$

- We seek for some $a^* \in A$ such that $a^* \in BR(a^*)$.
- ▶ We can then use Kakutani's Fixed-Point Theorem to show that **a**^{*} exists.
- Yet, we need to verify the conditions under which Kakutani's Fixed-Point Theorem holds.

Quasi-Concave

Quasi-Concave of \succeq_i

A preference relation \succeq_i over A is quasi-concave on A_i if for all $a \in A$, the set

$$\{a'_i \in A_i \mid (a_{-i}, a'_i) \succeq_i (a_{-i}, a_i)\}$$

is convex.

Then, we can consider the following theorem which guarantees the condition of a PNE.

An example of quasi-concave function.

 $f(\lambda x + (1 - \lambda y)) \ge \min\{f(x), f(y)\}, \text{ for } \lambda \in [0, 1]$

The Main Theorem I

Main Theorem I

The strategic game $\langle N, (A_i), (\succeq_i) \rangle$ has a (pure) Nash equilibrium if

- \blacktriangleright A_i is a nonempty, compact, and convex subset of a Euclidean space
- ▶ \succeq_i is continuous and quasi-concave on A_i for all $i \in N$.

We will show that A (cf. S) and BR (cf. Φ) satisfy the conditions to apply Kakutani's Fixed-Point Theorem.

I DOG

► A_i is nonempty, compact and convex for all i ∈ N, so their Cartesian product (i.e., A) must also be nonempty, compact and convex.

э

- ► A_i is nonempty, compact and convex for all i ∈ N, so their Cartesian product (i.e., A) must also be nonempty, compact and convex.
- Note that in Kakutani's Theorem, Φ : S → P(S), where P(S) denotes all nonempty, closed, and convex subsets of S.

- ► A_i is nonempty, compact and convex for all i ∈ N, so their Cartesian product (i.e., A) must also be nonempty, compact and convex.
- Note that in Kakutani's Theorem, Φ : S → P(S), where P(S) denotes all nonempty, closed, and convex subsets of S.
- ▶ We need to show that $BR_i(\mathbf{a}_{-i})$ is nonempty, closed, and convex for all $\mathbf{a}_{-i} \in \prod_{j \in N \setminus \{i\}} A_j$.

- A_i is nonempty, compact and convex for all i ∈ N, so their Cartesian product (i.e., A) must also be nonempty, compact and convex.
- Note that in Kakutani's Theorem, Φ : S → P(S), where P(S) denotes all nonempty, closed, and convex subsets of S.
- We need to show that $BR_i(\mathbf{a}_{-i})$ is nonempty, closed, and convex for all $\mathbf{a}_{-i} \in \prod_{j \in N \setminus \{i\}} A_j$.
 - Their Cartesian product BR(a) is then nonempty, closed and convex, too.
 - We then have $BR : A \mapsto \mathbb{P}(A)$.

Assume that we can construct a continuous function (utility function) $u_i : A_i \mapsto \mathbb{R}$ such that for $a_i, a'_i \in A_i$, $(\mathbf{a}_{-i}, a_i) \succeq (\mathbf{a}_{-i}, a'_i)$ if and only if $u_i(a_i) \ge u_i(a'_i)$.

- Assume that we can construct a continuous function (utility function) $u_i : A_i \mapsto \mathbb{R}$ such that for $a_i, a'_i \in A_i$, $(\mathbf{a}_{-i}, a_i) \succeq (\mathbf{a}_{-i}, a'_i)$ if and only if $u_i(a_i) \ge u_i(a'_i)$.
- Since A_i is compact and u_i is continuous, $u_i(A_i)$ is compact as well.
- ▶ By the Extreme Value Theorem, there must exist some $a_i^* \in A_i$ such that $u_i(a_i^*) \ge u_i(a_i)$ for all $a_i \in A_i$.

A DAGE A E A CA

- Assume that we can construct a continuous function (utility function) $u_i : A_i \mapsto \mathbb{R}$ such that for $a_i, a'_i \in A_i$, $(\mathbf{a}_{-i}, a_i) \succeq (\mathbf{a}_{-i}, a'_i)$ if and only if $u_i(a_i) \ge u_i(a'_i)$.
- Since A_i is compact and u_i is continuous, $u_i(A_i)$ is compact as well.
- ▶ By the Extreme Value Theorem, there must exist some $a_i^* \in A_i$ such that $u_i(a_i^*) \ge u_i(a_i)$ for all $a_i \in A_i$.
- ▶ By definition of u_i , it follows that $(\mathbf{a}_{-i}, a_i^*) \succeq (\mathbf{a}_{-i}, a_i)$ for all $a_i \in A_i$, thus $a_i^* \in BR_i(\mathbf{a}_{-i})$.

- Assume that we can construct a continuous function (utility function) $u_i : A_i \mapsto \mathbb{R}$ such that for $a_i, a'_i \in A_i$, $(\mathbf{a}_{-i}, a_i) \succeq (\mathbf{a}_{-i}, a'_i)$ if and only if $u_i(a_i) \ge u_i(a'_i)$.
- Since A_i is compact and u_i is continuous, $u_i(A_i)$ is compact as well.
- ▶ By the Extreme Value Theorem, there must exist some $a_i^* \in A_i$ such that $u_i(a_i^*) \ge u_i(a_i)$ for all $a_i \in A_i$.
- ▶ By definition of u_i , it follows that $(\mathbf{a}_{-i}, a_i^*) \succeq (\mathbf{a}_{-i}, a_i)$ for all $a_i \in A_i$, thus $a_i^* \in BR_i(\mathbf{a}_{-i})$.
- So $BR_i(\mathbf{a}_{-i})$ is nonempty.

Take an arbitrary $p \in \overline{BR_i(\boldsymbol{a}_{-i})}$.

There must exist some sequence (p_k)_{k∈ℕ} such that p_k ∈ BR_i(**a**_{-i}) for all k ∈ ℕ and lim_{k→∞} p_k = p.

Take an arbitrary $p \in \overline{BR_i(\mathbf{a}_{-i})}$.

- ▶ There must exist some sequence $(p_k)_{k \in \mathbb{N}}$ such that $p_k \in BR_i(\mathbf{a}_{-i})$ for all $k \in \mathbb{N}$ and $\lim_{k\to\infty} p_k = p$.
- ▶ By the definition of BR_i , we know that $(a_{-i}, p_k) \succeq_i (a_{-i}, a_i)$ for all $a_i \in A_i$.

I DOG

Take an arbitrary $p \in \overline{BR_i(\mathbf{a}_{-i})}$.

- ▶ There must exist some sequence $(p_k)_{k \in \mathbb{N}}$ such that $p_k \in BR_i(\mathbf{a}_{-i})$ for all $k \in \mathbb{N}$ and $\lim_{k\to\infty} p_k = p$.
- ▶ By the definition of BR_i , we know that $(a_{-i}, p_k) \succeq_i (a_{-i}, a_i)$ for all $a_i \in A_i$.
- For each $a_i \in A_i$, we can construct
 - ▶ a sequence $((a_{-i}, p_k))_{k \in \mathbb{N}}$ such that $\lim_{k \to \infty} (a_{-i}, p_k) = (a_{-i}, p)$.
 - ▶ a sequence $((a_{-i}, a_i))_{k \in \mathbb{N}}$ such that $\lim_{k \to \infty} (a_{-i}, a_i) = (a_{-i}, a_i)$.

Take an arbitrary $p \in \overline{BR_i(\mathbf{a}_{-i})}$.

- ▶ There must exist some sequence $(p_k)_{k \in \mathbb{N}}$ such that $p_k \in BR_i(\mathbf{a}_{-i})$ for all $k \in \mathbb{N}$ and $\lim_{k\to\infty} p_k = p$.
- ▶ By the definition of BR_i , we know that $(a_{-i}, p_k) \succeq_i (a_{-i}, a_i)$ for all $a_i \in A_i$.

For each $a_i \in A_i$, we can construct

- ▶ a sequence $((a_{-i}, p_k))_{k \in \mathbb{N}}$ such that $\lim_{k \to \infty} (a_{-i}, p_k) = (a_{-i}, p)$.
- ► a sequence $((\mathbf{a}_{-i}, a_i))_{k \in \mathbb{N}}$ such that $\lim_{k \to \infty} (\mathbf{a}_{-i}, a_i) = (\mathbf{a}_{-i}, a_i)$.
- Note that (a_{-i}, p_k) ≿_i (a_{-i}, a_i) for all k ∈ N.
 By the continuity of ≿_i, we have (a_{-i}, p) ≿_i (a_{-i}, a_i) for all a_i ∈ A_i.

Take an arbitrary $p \in \overline{BR_i(\mathbf{a}_{-i})}$.

- ▶ There must exist some sequence $(p_k)_{k \in \mathbb{N}}$ such that $p_k \in BR_i(\mathbf{a}_{-i})$ for all $k \in \mathbb{N}$ and $\lim_{k\to\infty} p_k = p$.
- ▶ By the definition of BR_i , we know that $(a_{-i}, p_k) \succeq_i (a_{-i}, a_i)$ for all $a_i \in A_i$.

For each $a_i \in A_i$, we can construct

- ▶ a sequence $((a_{-i}, p_k))_{k \in \mathbb{N}}$ such that $\lim_{k \to \infty} (a_{-i}, p_k) = (a_{-i}, p)$.
- ► a sequence $((\boldsymbol{a}_{-i}, a_i))_{k \in \mathbb{N}}$ such that $\lim_{k \to \infty} (\boldsymbol{a}_{-i}, a_i) = (\boldsymbol{a}_{-i}, a_i)$.
- Note that (a_{-i}, p_k) ≿_i (a_{-i}, a_i) for all k ∈ N.
 By the continuity of ≿_i, we have (a_{-i}, p) ≿_i (a_{-i}, a_i) for all a_i ∈ A_i.
 ⇒ p ∈ BR_i(a_{-i})

Take an arbitrary $p \in \overline{BR_i(\mathbf{a}_{-i})}$.

- ▶ There must exist some sequence $(p_k)_{k \in \mathbb{N}}$ such that $p_k \in BR_i(\mathbf{a}_{-i})$ for all $k \in \mathbb{N}$ and $\lim_{k\to\infty} p_k = p$.
- ▶ By the definition of BR_i , we know that $(a_{-i}, p_k) \succeq_i (a_{-i}, a_i)$ for all $a_i \in A_i$.

For each $a_i \in A_i$, we can construct

- ▶ a sequence $((a_{-i}, p_k))_{k \in \mathbb{N}}$ such that $\lim_{k \to \infty} (a_{-i}, p_k) = (a_{-i}, p)$.
- ▶ a sequence $((\boldsymbol{a}_{-i}, a_i))_{k \in \mathbb{N}}$ such that $\lim_{k \to \infty} (\boldsymbol{a}_{-i}, a_i) = (\boldsymbol{a}_{-i}, a_i)$.
- Note that (a_{-i}, p_k) ≿_i (a_{-i}, a_i) for all k ∈ N.
 By the continuity of ≿_i, we have (a_{-i}, p) ≿_i (a_{-i}, a_i) for all a_i ∈ A_i.
 ⇒ p ∈ BR_i(a_{-i}) (∴ BR_i(a_{-i}) is closed).

 $BR_i(a_{-i})$ is convex

- Consider $a_i \in BR_i(\mathbf{a}_{-i})$.
- ▶ \succeq_i is quasi-concave on $A_i \Rightarrow$

E DQC

- Consider $a_i \in BR_i(\mathbf{a}_{-i})$.
- ► \succeq_i is quasi-concave on $A_i \Rightarrow$

$$S = \{ a_i' \in A_i \mid (oldsymbol{a}_{-i},a_i') \succsim_i (oldsymbol{a}_{-i},a_i) \}$$
 is convex

Since a_i is a best response, the responses a'_i weakly preferable to a_i must be also best responses.

- Consider $a_i \in BR_i(\mathbf{a}_{-i})$.
- ► \succeq_i is quasi-concave on $A_i \Rightarrow$

$$S = \{ a_i' \in A_i \mid (oldsymbol{a}_{-i},a_i') \succsim_i (oldsymbol{a}_{-i},a_i) \}$$
 is convex

Since a_i is a best response, the responses a'_i weakly preferable to a_i must be also best responses. ⇒ S ⊆ BR_i(a_{-i}).

I DOG

- Consider $a_i \in BR_i(\mathbf{a}_{-i})$.
- ▶ \succeq_i is quasi-concave on $A_i \Rightarrow$

$$S = \{ a_i' \in A_i \mid (oldsymbol{a}_{-i},a_i') \succsim_i (oldsymbol{a}_{-i},a_i) \}$$
 is convex

- Since a_i is a best response, the responses a'_i weakly preferable to a_i must be also best responses. ⇒ S ⊆ BR_i(a_{-i}).
- Any other best response $a_i^* \in BR_i(\boldsymbol{a}_{-i})$ must be at least good as a_i

- Consider $a_i \in BR_i(\mathbf{a}_{-i})$.
- ► \succeq_i is quasi-concave on $A_i \Rightarrow$

$$S = \{ a_i' \in A_i \mid (oldsymbol{a}_{-i},a_i') \succsim_i (oldsymbol{a}_{-i},a_i) \}$$
 is convex

- Since a_i is a best response, the responses a'_i weakly preferable to a_i must be also best responses. ⇒ S ⊆ BR_i(a_{-i}).
- Any other best response a^{*}_i ∈ BR_i(a_{-i}) must be at least good as a_i ⇒ BR_i(a_{-i}) ⊆ S.
- Hence, we have $BR_i(\mathbf{a}_{-i}) = S$, so $BR_i(\mathbf{a}_{-i})$ is convex.

▶ Next, we will show that *BR* is upper semi-continuous.

E DQC

Recall: Upper Semi-Continuous

Upper semi-continuous functions

Let

- ▶ $\mathbb{P}(X)$: all nonempty, closed, convex subsets of X.
- S: a nonempty, compact, and convex set.

Then the set-valued function $\Phi: S \mapsto \mathbb{P}(S)$ is upper semi-continuous if

for arbitrary sequences
$$(\mathbf{x}_n)_{n \in \mathbb{N}}, (\mathbf{y}_n)_{n \in \mathbb{N}}$$
 in *S*, we have
 $\blacktriangleright \lim_{n \to \infty} \mathbf{x}_n = \mathbf{x}_0$,
 $\blacktriangleright \lim_{n \to \infty} \mathbf{y}_n = \mathbf{y}_0$,
 $\blacktriangleright \mathbf{y}_n \in \Phi(\mathbf{x}_n)$ for all $n \in \mathbb{N}$,
imply that $\mathbf{y}_0 \in \Phi(\mathbf{x}_0)$.

I DOG

BR is upper semi-continuous

Consider two sequences $(\mathbf{x}^k), (\mathbf{y}^k)$ in A such that $\lim_{k \to \infty} \mathbf{x}^k = \mathbf{x}^0,$ $\lim_{k \to \infty} \mathbf{y}^k = \mathbf{y}^0.$ $\mathbf{y}^k \in BR_i(\mathbf{x}^k) \text{ for all } k \in \mathbb{N}.$

▶ Then we have $y_i^k \in BR_i(\mathbf{x}_{-i}^k)$ for all $i \in N, k \in \mathbb{N}$.

= nar

BR is upper semi-continuous

- Consider two sequences $(\mathbf{x}^k), (\mathbf{y}^k)$ in A such that $\lim_{k \to \infty} \mathbf{x}^k = \mathbf{x}^0,$ $\lim_{k \to \infty} \mathbf{y}^k = \mathbf{y}^0.$ $\mathbf{y}^k \in BR_i(\mathbf{x}^k) \text{ for all } k \in \mathbb{N}.$
- ▶ Then we have $y_i^k \in BR_i(\mathbf{x}_{-i}^k)$ for all $i \in N, k \in \mathbb{N}$.
- For an arbitrary i ∈ N, we have (x^k_{-i}, y^k_i) ≿_i (x^k_{-i}, a_i) for all a_i ∈ A_i and k ∈ N (∵ best response).

I DOG

(日) (ヨン (ヨン)

For each $a_i \in A_i$, we can construct:

- ▶ a sequence $((\mathbf{x}_{-i}^k, y_i^k))_{k \in \mathbb{N}}$ such that $\lim_{k \to \infty} (\mathbf{x}_{-i}^k, y_i^k) = (\mathbf{x}_{-i}^0, y_i^0)$. ▶ a sequence $((\mathbf{x}_{-i}^k, a_i))_{k \in \mathbb{N}}$ such that $\lim_{k \to \infty} (\mathbf{x}_{-i}^k, a_i) = (\mathbf{x}_{-i}^0, a_i)$.
- ▶ Note that we have $(\mathbf{x}_{-i}^k, y_i^k) \succeq_i (\mathbf{x}_{-i}^k, a_i)$ for all $k \in \mathbb{N}$.
 - ▶ By continuity of \succeq_i , we have $(\mathbf{x}_{-i}^0, y_i^0) \succeq_i (\mathbf{x}_{-i}^0, a_i)$ for all $a_i \in A_i$.

For each $a_i \in A_i$, we can construct:

- ▶ a sequence $((\mathbf{x}_{-i}^k, y_i^k))_{k \in \mathbb{N}}$ such that $\lim_{k \to \infty} (\mathbf{x}_{-i}^k, y_i^k) = (\mathbf{x}_{-i}^0, y_i^0)$. ▶ a sequence $((\mathbf{x}_{-i}^k, a_i))_{k \in \mathbb{N}}$ such that $\lim_{k \to \infty} (\mathbf{x}_{-i}^k, a_i) = (\mathbf{x}_{-i}^0, a_i)$.
- ▶ Note that we have $(\mathbf{x}_{-i}^k, y_i^k) \succeq_i (\mathbf{x}_{-i}^k, a_i)$ for all $k \in \mathbb{N}$.
 - ▶ By continuity of \succeq_i , we have $(\mathbf{x}_{-i}^0, y_i^0) \succeq_i (\mathbf{x}_{-i}^0, a_i)$ for all $a_i \in A_i$.
- Thus, we have $y_i^0 \in BR_i(\mathbf{x}_{-i}^0)$ for all $i \in N$.
 - $\blacktriangleright \mathbf{y}^0 \in BR_i(\mathbf{x}^0).$

For each $a_i \in A_i$, we can construct:

- ▶ a sequence $((\mathbf{x}_{-i}^k, y_i^k))_{k \in \mathbb{N}}$ such that $\lim_{k \to \infty} (\mathbf{x}_{-i}^k, y_i^k) = (\mathbf{x}_{-i}^0, y_i^0)$. ▶ a sequence $((\mathbf{x}_{-i}^k, a_i))_{k \in \mathbb{N}}$ such that $\lim_{k \to \infty} (\mathbf{x}_{-i}^k, a_i) = (\mathbf{x}_{-i}^0, a_i)$.
- ▶ Note that we have $(\mathbf{x}_{-i}^k, y_i^k) \succeq_i (\mathbf{x}_{-i}^k, a_i)$ for all $k \in \mathbb{N}$.
 - ▶ By continuity of \succeq_i , we have $(\mathbf{x}_{-i}^0, y_i^0) \succeq_i (\mathbf{x}_{-i}^0, a_i)$ for all $a_i \in A_i$.

Thus, we have
$$y_i^0 \in BR_i(\mathbf{x}_{-i}^0)$$
 for all $i \in N$.
 $\mathbf{y}^0 \in BR_i(\mathbf{x}^0)$.

► Therefore, *BR* is upper semi-continuous.

For each $a_i \in A_i$, we can construct:

- ▶ a sequence $((\mathbf{x}_{-i}^k, y_i^k))_{k \in \mathbb{N}}$ such that $\lim_{k \to \infty} (\mathbf{x}_{-i}^k, y_i^k) = (\mathbf{x}_{-i}^0, y_i^0)$. ▶ a sequence $((\mathbf{x}_{-i}^k, a_i))_{k \in \mathbb{N}}$ such that $\lim_{k \to \infty} (\mathbf{x}_{-i}^k, a_i) = (\mathbf{x}_{-i}^0, a_i)$.
- ▶ Note that we have $(\mathbf{x}_{-i}^k, y_i^k) \succeq_i (\mathbf{x}_{-i}^k, a_i)$ for all $k \in \mathbb{N}$.
 - ▶ By continuity of \succeq_i , we have $(\mathbf{x}_{-i}^0, y_i^0) \succeq_i (\mathbf{x}_{-i}^0, a_i)$ for all $a_i \in A_i$.

 Therefore, BR is upper semi-continuous.
 By Kakutani's Fixed-Point Theorem, there exists some a^{*} ∈ A such that a^{*} ∈ BR(a^{*})

For each $a_i \in A_i$, we can construct:

- ▶ a sequence $((\mathbf{x}_{-i}^k, y_i^k))_{k \in \mathbb{N}}$ such that $\lim_{k \to \infty} (\mathbf{x}_{-i}^k, y_i^k) = (\mathbf{x}_{-i}^0, y_i^0)$. ▶ a sequence $((\mathbf{x}_{-i}^k, a_i))_{k \in \mathbb{N}}$ such that $\lim_{k \to \infty} (\mathbf{x}_{-i}^k, a_i) = (\mathbf{x}_{-i}^0, a_i)$.
- ▶ Note that we have $(\mathbf{x}_{-i}^k, y_i^k) \succeq_i (\mathbf{x}_{-i}^k, a_i)$ for all $k \in \mathbb{N}$.
 - ▶ By continuity of \succeq_i , we have $(\mathbf{x}_{-i}^0, y_i^0) \succeq_i (\mathbf{x}_{-i}^0, a_i)$ for all $a_i \in A_i$.

▶ Thus, we have
$$y_i^0 \in BR_i(\mathbf{x}_{-i}^0)$$
 for all $i \in N$.
▶ $\mathbf{y}^0 \in BR_i(\mathbf{x}^0)$.

▶ Therefore, *BR* is upper semi-continuous.

By Kakutani's Fixed-Point Theorem, there exists some $a^* \in A$ such that $a^* \in BR(a^*) \Rightarrow a^*$ is a PNE of the strategic game.

Outline

Brouwer's Fixed Point Theorem

Sketch of the Proof of Nash's Theorem (from Brouwer's Theorem)

Kakutani's Fixed Point Theorem

Pure Nash Equilibria of Pure Strategic Games Preliminaries Main Theorem I & The Proof

Mixed Nash Equilibria of Finite Strategies Games Preliminaries & Assumptions

Main Theorem II & the Proof

э.

Limitations of the Previous PNE Result

Any finite game cannot satisfy the conditions.

э

Limitations of the Previous PNE Result

- Any finite game cannot satisfy the conditions.
 - Each A_i cannot be convex if it is finite and nonempty.
- * Next, we consider extending finite games into non-deterministic (randomized) strategies.

Assumptions

- ▶ For a strategic game $\langle N, (A_i), (\succeq_i) \rangle$, we assume that we can construct a utility function $u_i : A \mapsto \mathbb{R}$, where $A = \prod_{i \in N} A_i$.
- Each player's expected utility is coupled with the set of probability distributions over A.
- $\Delta(X)$: the set of probability distributions over X.
- ▶ If X is finite and $\delta \in \Delta(X)$, then
 - $\delta(x)$: the probability that δ assigns to $x \in X$.
 - The support of δ : $\chi(\delta) = \{x \in X \mid \delta(x) > 0\}.$

Mixed Strategy

Mixed Strategy

Given a strategic game $\langle N, (A_i), (u_i) \rangle$, we call

- $\alpha_i \in \Delta(A_i)$ a mixed strategy.
- $a_i \in A_i$ a pure strategy.

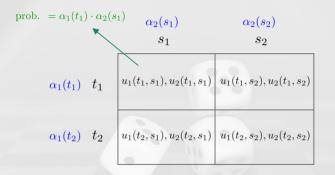
A profile of mixed strategies $\alpha = (\alpha_j)_{j \in N}$ induces a probability distribution over A.

• The probability of
$$oldsymbol{a}=(a_j)_{j\in N}$$
 under $oldsymbol{lpha}$:

$$\boldsymbol{\alpha}(\boldsymbol{a}) = \prod_{j \in N} \alpha_j(\boldsymbol{a}_j).$$
 (a normal product)

 $(A_i \text{ is finite } \forall i \in N \text{ and each player's strategy is resolved independently.})$

= nar



E DQC

ロトメロトメヨトメヨト

Mixed Extension of $\langle N, (A_i), (u_i) \rangle$

Mixed Extension of the Strategic Games $\langle N, (\Delta(A_i)), (U_i) \rangle$:

- ► $U_i : \prod_{i \in N} \Delta(A_i) \mapsto \mathbb{R}$; expected utility over A induced by $\alpha \in \prod_{i \in N} \Delta(A_i)$.
- ▶ If A_j is finite for all $j \in N$, then

$$\begin{aligned} \mathcal{U}_i(\boldsymbol{\alpha}) &= \sum_{\boldsymbol{a} \in \mathcal{A}} \left(\boldsymbol{\alpha}(\boldsymbol{a}) \cdot u_i(\boldsymbol{a}) \right) \\ &= \sum_{\boldsymbol{a} \in \mathcal{A}} \left(\left(\prod_{j \in \mathcal{N}} \alpha_j(\boldsymbol{a}_j) \right) \cdot u_i(\boldsymbol{a}) \right) \end{aligned}$$

.

Main Theorem II

Main Theorem II

Every finite strategies game has a mixed strategy Nash equilibrium.

Consider an arbitrary finite strategic game ⟨N, (A_i), (u_i)⟩, let m_i := |A_i| for all i ∈ N.

• Represent each $\Delta(A_i)$ as a collection of vectors $\boldsymbol{p}^i = (p_1, p_2, \dots, p_{m_i})$.

- $p_k \ge 0$ for all $k \in [m_i]$ and $\sum_{k=1}^{m_i} p_k = 1$.
- $\Delta(A_i)$ is a standard $m_i 1$ simplex for all $i \in N$.

Main Theorem II

Main Theorem II

Every finite strategies game has a mixed strategy Nash equilibrium.

Consider an arbitrary finite strategic game ⟨N, (A_i), (u_i)⟩, let m_i := |A_i| for all i ∈ N.

• Represent each $\Delta(A_i)$ as a collection of vectors $\boldsymbol{p}^i = (p_1, p_2, \dots, p_{m_i})$.

- $p_k \ge 0$ for all $k \in [m_i]$ and $\sum_{k=1}^{m_i} p_k = 1$.
- $\Delta(A_i)$ is a standard $m_i 1$ simplex for all $i \in N$.
- * $\Delta(A_i)$: nonempty, compact, and convex for each $i \in N$.
- ► U_i: continuous (∵ multilinear).
- Next, we show that U_i is quasi-concave in $\Delta(A_i)$.

• Consider $\alpha \in \prod_{i \in N} \Delta(A_i)$.

▶ Goal: Show that $S = \{\alpha'_i \in \Delta(A_i) \mid U_i(\alpha_{-i}, \alpha'_i) \ge U_i(\alpha_{-i}, \alpha_i)\}$ is convex.

= nar

ロトスタトスラトスラト

- Consider $\alpha \in \prod_{i \in N} \Delta(A_i)$.
- ▶ Goal: Show that $S = \{\alpha'_i \in \Delta(A_i) \mid U_i(\alpha_{-i}, \alpha'_i) \ge U_i(\alpha_{-i}, \alpha_i)\}$ is convex.
- ► Take $\beta_i, \gamma_i \in S$, $\lambda \in [0, 1]$.

• By definition of S, we have • $U_i(\alpha_{-i}, \beta_i) \ge U_i(\alpha_{-i}, \alpha_i)$, and

 $\blacktriangleright U_i(\alpha_{-i},\gamma_i) \geq U_i(\alpha_{-i},\alpha_i).$

• Consider
$$\alpha \in \prod_{i \in N} \Delta(A_i)$$
.

- ▶ Goal: Show that $S = \{\alpha'_i \in \Delta(A_i) \mid U_i(\alpha_{-i}, \alpha'_i) \ge U_i(\alpha_{-i}, \alpha_i)\}$ is convex.
- ► Take $\beta_i, \gamma_i \in S$, $\lambda \in [0, 1]$.
- ► By definition of *S*, we have
 - $U_i(\alpha_{-i}, \beta_i) \ge U_i(\alpha_{-i}, \alpha_i)$, and • $U_i(\alpha_{-i}, \gamma_i) \ge U_i(\alpha_{-i}, \alpha_i)$.
- $\lambda U_i(\boldsymbol{\alpha}_{-i},\beta_i) + (1-\lambda)U_i(\boldsymbol{\alpha}_{-i},\gamma_i) \geq \lambda U_i(\boldsymbol{\alpha}_{-i},\alpha_i) + (1-\lambda)U_i(\boldsymbol{\alpha}_{-i},\alpha_i) = U_i(\boldsymbol{\alpha}_{-i},\alpha_i).$

• By the multilinearity of U_i , we have

$$\lambda U_i(\boldsymbol{\alpha}_{-i},\beta_i) + (1-\lambda)U_i(\boldsymbol{\alpha}_{-i},\gamma_i) = U_i(\boldsymbol{\alpha}_{-i},\lambda\beta_i + (1-\lambda)\gamma_i).$$

э.

• By the multilinearity of U_i , we have

$$\lambda U_i(oldsymbol{lpha}_{-i},eta_i)+(1-\lambda)U_i(oldsymbol{lpha}_{-i},\gamma_i)=U_i(oldsymbol{lpha}_{-i},\lambdaeta_i+(1-\lambda)\gamma_i).$$

 $U_i(\boldsymbol{\alpha}_{-i},\lambda\beta_i+(1-\lambda)\gamma_i)\geq U_i(\boldsymbol{\alpha}_{-i},\alpha_i).$

= nar

• By the multilinearity of U_i , we have

$$\lambda U_i(\boldsymbol{lpha}_{-i}, eta_i) + (1-\lambda)U_i(\boldsymbol{lpha}_{-i}, \gamma_i) = U_i(\boldsymbol{lpha}_{-i}, \lambdaeta_i + (1-\lambda)\gamma_i).$$

$$U_i(\boldsymbol{\alpha}_{-i},\lambda\beta_i+(1-\lambda)\gamma_i)\geq U_i(\boldsymbol{\alpha}_{-i},\alpha_i).$$

 $\lambdaeta_i + (1-\lambda)\gamma_i \in S$

= nar

• By the multilinearity of U_i , we have

$$\lambda U_i(\boldsymbol{lpha}_{-i}, eta_i) + (1-\lambda)U_i(\boldsymbol{lpha}_{-i}, \gamma_i) = U_i(\boldsymbol{lpha}_{-i}, \lambdaeta_i + (1-\lambda)\gamma_i).$$

$$U_i(\boldsymbol{\alpha}_{-i},\lambda\beta_i+(1-\lambda)\gamma_i)\geq U_i(\boldsymbol{\alpha}_{-i},\alpha_i).$$

 $\lambda \beta_i + (1 - \lambda) \gamma_i \in S \Rightarrow U_i \text{ is convex}.$

► Thus, U_i is quasi-concave in $\Delta(A_i)$.

We are done.

Joseph C.-C. Lin

A Question

Matching Pennies of Infinite Actions

We have two players A and B having utility functions $f(x, y) = (x - y)^2$ and $g(x, y) = -(x - y)^2$ respectively. $x, y \in [-1, 1]$.

- Does this game has a pure Nash equilibrium?
- Why can't we use Kakutani's fixed point theorem?

= nar

ロトスタトスラトスラト

