
C++

程式語言(二)
Introduction to Programming (II)

Inheritance

Joseph Chuang-Chieh Lin

Dept. CSE, NTOU

C++ Programming Languages, CSE, NTOU, Taiwan 2

Platform/IDE

● Dev-C++

● Codeblocks

● OnlineGDB (https://www.onlinegdb.com/)

● Real-Time Collaborative Online IDE
(https://ide.usaco.guide/)

https://www.pngegg.com/en/search?q=Dev-C

https://icons8.com/icons/set/code-blocks

https://www.onlinegdb.com/
https://ide.usaco.guide/

C++ Programming Languages, CSE, NTOU, Taiwan 3

Textbooks (We focusing on C++11)

● Learn C++ Programming by Refactoring (由重構學習C++程式設
計). Pang-Feng Liu (劉邦鋒). NTU Press. 2023.

● C++ Primer. 5th Edition. Stanley B. Lippman, Josée Lajoie,
Barbara E. Moo. 2019.

● Effective C++. Scott Meyers. O’Reilly. 2016.

● Thinking in C++. Vol. 1: Introducing to Standard C++. 2nd Edition.
Bruce Eckel. Prentice Hall PTR. 2000.

C++ Programming Languages, CSE, NTOU, Taiwan 4

Useful Resources

● Tutorialspoint
– https://www.tutorialspoint.com/cplusplus/index.htm
– Online C++ Compiler

● Programiz
– https://www.programiz.com/cpp-programming

● LEARN C++
– https://www.learncpp.com/

● MIT OpenCourseWare - Introduction to C++
– https://ocw.mit.edu/courses/6-096-introduction-to-c-january-iap-2011/pages/lecture-notes/

● Learning C++ Programming
– https://www.programiz.com/cpp-programming

● GeeksforGeeks
– https://www.geeksforgeeks.org/c-plus-plus/

https://www.tutorialspoint.com/cplusplus/index.htm
https://www.programiz.com/cpp-programming/online-compiler/
https://www.programiz.com/cpp-programming
https://www.learncpp.com/
https://ocw.mit.edu/courses/6-096-introduction-to-c-january-iap-2011/pages/lecture-notes/
https://www.programiz.com/cpp-programming
https://www.geeksforgeeks.org/c-plus-plus/

C++ Programming Languages, CSE, NTOU, Taiwan 5

Inheritance

C++ Programming Languages, CSE, NTOU, Taiwan 6

Inheritance

● Get rid of duplication of the same codes.
● Decrease the chance of error.
● Increase code and data reusability.
● Abstraction + Hierarchy

https://www.geeksforgeeks.org/inheritance-in-c/?ref=lbp

Class
Car

Class
Bus

Class
Track

Class
Vehicle

Class
Bus

Class
Car

Class
Truck

base (基底)

derived (衍生) derived (衍生) derived (衍生)

https://www.geeksforgeeks.org/inheritance-in-c/?ref=lbp

C++ Programming Languages, CSE, NTOU, Taiwan 7

An Easy Illustrating Example

class A
{
public:
 int x;
protected:
 int y;
private:
 int z;
};

class B : public A
{
 // x is public
 // y is protected
 // z is not accessible from B
};

class C : protected A
{
 // x is protected
 // y is protected
 // z is not accessible from C
};

class D : private A
// 'private' is default for classes
{
 // x is private
 // y is private
 // z is not accessible from D
};

access mode

C++ Programming Languages, CSE, NTOU, Taiwan 8

Modes of Inheritance

● Public

– public member of the base class => public in the derived class.
– protected members of the base class => protected in derived class.
– private members of the base class => not accessible.

● Protected

– public member of the base class => protected in the derived class.
– protected members of the base class => protected in derived class.
– private members of the base class => not accessible.

● Private

– public member of the base class => private in the derived class.
– protected members of the base class => private in derived class.
– private members of the base class => not accessible.

Just like going through a mask...

Example: https://onlinegdb.com/Z7tf4BU0x

https://onlinegdb.com/Z7tf4BU0x

C++ Programming Languages, CSE, NTOU, Taiwan 9

Single Inheritance

Class
Vehicle

Class
Car

#include<iostream>
using namespace std;

class Vehicle {
public:

Vehicle() {
 cout << "This is a Vehicle.\n";
 }
};

class Car : public Vehicle {
// nothing to do here so far...
};

int main()
{
 // invoke the constructors
 Car obj;
 return 0;
}

This is a Vehicle.

Output:

C++ Programming Languages, CSE, NTOU, Taiwan 10

Multiple Inheritance

Class
FourWheeler

Class
Car

#include<iostream>
using namespace std;

class Vehicle {
public:
 Vehicle() {
 cout << "This is a Vehicle.\n";
 }
};
class FourWheeler {
public:
 FourWheeler() {
 cout << "This is a 4 wheeler

Vehicle.\n";
 }
};

int main()
{
 // invoke the constructors
 Car obj;
 return 0;
}

This is a Vehicle.
This is a 4 wheeler Vehicle.

Output:

Class
Vehicle

class Car : public Vehicle, public FourWheeler {
// nothing to do here so far...

};

C++ Programming Languages, CSE, NTOU, Taiwan 11

Multilevel Inheritance

#include<iostream>
using namespace std;

class Vehicle {
public:
 Vehicle() {
 cout << "This is a Vehicle.\n";
 }
};
class FourWheeler: public Vehicle {
public:
 FourWheeler() {
 cout << "A 4 wheeler Vehicle.\n";
 }
};

int main()
{
 // invoke the constructors
 Car obj;
 return 0;
}

This is a Vehicle.
A 4 wheeler Vehicle.
A Car has 4 Wheels.

Output:

class Car: public FourWheeler {
public:
 Car() {
 cout << "A Car has 4 Wheels.\n";
 }
};

Class
FourWheeler

Class
Vehicle

Class
Car

C++ Programming Languages, CSE, NTOU, Taiwan 12

More Details in Examples

● https://www.programiz.com/cpp-programming/public-protected-private-inheritance

https://www.programiz.com/cpp-programming/public-protected-private-inheritance

C++ Programming Languages, CSE, NTOU, Taiwan 13

Class Exercise (1%)

class Shape {
public:

string type;
protected:
 double parameter;
};

class Circle : protected Shape {
private:
 double area = 0.0;
public:

void compute_area() {
/* please implement this member function */

}
void setRadius() {

/* please implement this member function */
}
double getArea() {

/* please implement this member function */
 }
};

int main()
{

Circle obj;
obj.setRadius();
obj.compute_area();
cout << "Area: " << obj.getArea();
return 0;

}

3.2
Area: 32.1699

Sample Input & Output:

C++ Programming Languages, CSE, NTOU, Taiwan 14

Exercise
class A {
public:

int x = 0;
int get_pvt() { return z; }

protected:
int y = 1;

private:
 int z = 2;
};

class B : public A {
 // x is public
 // y is protected
 // z is not accessible from B
};

class C : protected A {
 // x is protected
 // y is protected
 // z is not accessible from C
};

class D : private A {
// 'private' is default for classes
 // x is private
 // y is private
 // z is not accessible from D
};

int main (){
B obj1;
C obj2;
D obj3;
cout << obj1.x << obj2.y << obj3.y;
// try to print these values
// by adding appropriate member
// functions

}

Please modify the code here by “adding
appropriate member functions” in the
the classes B, C, and D.

