
C++

程式語言(二)
Introduction to Programming (II)

Dynamic Memory Allocation

Joseph Chuang-Chieh Lin

Dept. CSE, NTOU

C++ Programming Languages, CSE, NTOU, Taiwan 2

Platform/IDE

● Dev-C++

● Codeblocks

● OnlineGDB (https://www.onlinegdb.com/)

● Real-Time Collaborative Online IDE
(https://ide.usaco.guide/)

https://www.pngegg.com/en/search?q=Dev-C

https://icons8.com/icons/set/code-blocks

https://www.onlinegdb.com/
https://ide.usaco.guide/

C++ Programming Languages, CSE, NTOU, Taiwan 3

Textbooks (We focusing on C++11)

● Learn C++ Programming by Refactoring (由重構學習C++程式設
計). Pang-Feng Liu (劉邦鋒). NTU Press. 2023.

● C++ Primer. 5th Edition. Stanley B. Lippman, Josée Lajoie,
Barbara E. Moo. 2019.

● Effective C++. Scott Meyers. O’Reilly. 2016.

● Thinking in C++. Vol. 1: Introducing to Standard C++. 2nd Edition.
Bruce Eckel. Prentice Hall PTR. 2000.

C++ Programming Languages, CSE, NTOU, Taiwan 4

Useful Resources

● Tutorialspoint
– https://www.tutorialspoint.com/cplusplus/index.htm
– Online C++ Compiler

● Programiz
– https://www.programiz.com/cpp-programming

● LEARN C++
– https://www.learncpp.com/

● MIT OpenCourseWare - Introduction to C++
– https://ocw.mit.edu/courses/6-096-introduction-to-c-january-iap-2011/pages/lecture-notes/

● Learning C++ Programming
– https://www.programiz.com/cpp-programming

● GeeksforGeeks
– https://www.geeksforgeeks.org/c-plus-plus/

https://www.tutorialspoint.com/cplusplus/index.htm
https://www.programiz.com/cpp-programming/online-compiler/
https://www.programiz.com/cpp-programming
https://www.learncpp.com/
https://ocw.mit.edu/courses/6-096-introduction-to-c-january-iap-2011/pages/lecture-notes/
https://www.programiz.com/cpp-programming
https://www.geeksforgeeks.org/c-plus-plus/

C++ Programming Languages, CSE, NTOU, Taiwan 5

Dynamic Memory Allocation
in C++

C++ Programming Languages, CSE, NTOU, Taiwan 6

Purpose of using dynamic memory

● Properly freeing dynamic objects turns out to be a surprisingly rich
source of bugs.

● Programs tend to use dynamic memory for one of three purposes:

1. They don’t know how many objects they’ll need.
2. They don’t know the precise type of the objects they need.
3. They want to share data between several objects.

C++ Programming Languages, CSE, NTOU, Taiwan 7

new and delete?

● In C++, people are used to use new operator (cf., malloc() in C) to
allocate memory and delete (cf., free() in C) to free memory
allocated by new.

● However, using these operators to manage memory is considerably
more error-prone.

● From C++11 and newer versions, we are encouraged to use smart
pointers to manage dynamic objects.

– They are safer and easier.

C++ Programming Languages, CSE, NTOU, Taiwan 8

Smart Pointers (the shared_ptr class)

shared_ptr<string> p1;
unique_ptr<int> p2;

//use make_shared function
shared_ptr<int> p3 = make_shared<int>(42);
//42
shared_ptr<string> p4 = make_shared<string>(10, '9');
//9999999999
shared_ptr<int> p5 = make_shared<int>();

//we can also use "auto"
auto p3 = make_shared<int>(42);
//42
auto p4 = make_shared<string>(10, '9');
//9999999999
auto p5 = make_shared<int>();

*Actually there is also make_unique but it’s in C++14 standard.

C++ Programming Languages, CSE, NTOU, Taiwan 9

An Example
https://onlinegdb.com/dSS35GJ2l

#include <iostream>
#include <memory>

using namespace std;

class Grade {
private:
 int math;
 int eng;
 int sum;
public:
 Grade() = default;
 Grade(int m, int e): math(m), eng(e) {};
 ~Grade() { cout << "destructor of 'Grade' works here" << endl; } ;
 void SumUp() { sum = math + eng; }
 int ShowSum() { return sum; }
};

int main()
{
 auto ptr = make_shared<Grade>(100, 90);
 ptr->SumUp();
 cout << "The total grades: "

<< ptr->ShowSum() << endl;
 return 0;
}

The total grades: 190
destructor of 'Grade' works here

https://onlinegdb.com/dSS35GJ2l

C++ Programming Languages, CSE, NTOU, Taiwan 10

Copying and Assigning shared_ptr

auto p = make_shared<int>(42); // object to which p points has one user
auto q(p); // p and q point to the same object; q is a copy of p
// object to which p and q point has two users

auto r = make_shared<int>(42); // new object; r has its own separate
 // shared_ptr with one user

r = q; // r is assigned to q, so now r points to the same object as q
// The object r previously pointed to has no users and is freed
// The object now pointed to by p, q, and r has 3 users

cout << r.unique(); // 0; print out whether p.use_count() is 1 or not
cout << r.use_count(); // 3; print out number of objects sharing with r

● When we copy or assign a shared_ptr, each shared_ptr keeps track of how
many other shared_ptrs point to the same object.

https://onlinegdb.com/i2OgvL1k
L

https://onlinegdb.com/i2OgvL1kL
https://onlinegdb.com/i2OgvL1kL

C++ Programming Languages, CSE, NTOU, Taiwan 11

More on shared_ptr

● shared_ptr’s automatically

– destroy their objects (by a destructor of the class).

– free the associated memory.
// factory returns a shared_ptr pointing to a dynamically allocated object
shared_ptr<Foo> factory(T arg)
{

// process arg as appropriate
// shared_ptr will take care of deleting this memory
return make_shared<Foo>(arg);

}// the object will be appropriately deleted with the allocated memory freed

void use_factory(T arg)
{

shared_ptr<Foo> p = factory(arg); // use p
} // p goes out of scope; the memory to which p points is automatically freed

C++ Programming Languages, CSE, NTOU, Taiwan 12

More on shared_ptr

● shared_ptr’s automatically

– destroy their objects (by a destructor of the class).

– free the associated memory.
// factory returns a shared_ptr pointing to a dynamically allocated object
shared_ptr<Foo> factory(T arg)
{

// process arg as appropriate
// shared_ptr will take care of deleting this memory
return make_shared<Foo>(arg);

}

// factory returns a shared_ptr pointing to a dynamically allocated object
shared_ptr<Foo> use_factory(T arg)
{

shared_ptr<Foo> p = factory(arg); // use p
return p; // reference count is incremented when we return p

} // p goes out of scope; the memory to which p points is NOT freed

C++ Programming Languages, CSE, NTOU, Taiwan 13

Managing Memory Directly (new & delete)

int *pi = new int;
string *ps = new string;
int *pi = new int(1024);
string *ps2 = new string(10, '9');
// allocate and initialize a const int
const int *pci = new const int(1024);
// allocate and initialize an empty string
const string *pcs = new const string;

int i, *pi1 = &i, *pi2 = nullptr;
double *pd = new double(33), *pd2 = pd;
delete i; // error: i is not a pointer
delete pi1; // undefined: pi1 refers to a local
delete pd; // ok
delete pd2; // undefined: the memory pointed to by pd2 was already freed
delete pi2; // ok: it is always ok to delete a null pointer

C++ Programming Languages, CSE, NTOU, Taiwan 14

Using shared_ptrs with new

shared_ptr<double> p1;
shared_ptr<int> p2(new int(42)); //direct initialization

Note that the following initialization is wrong:
shared_ptr<int> p1 = new int(42);
//error: we must use direct initialization

Note that the following implicit conversion is also wrong:
shared_ptr<int> clone(int p) {

return new int(p);
}

shared_ptr<int> clone(int p) {
return shared_ptr<int>(new int(p));

}

correction

C++ Programming Languages, CSE, NTOU, Taiwan 15

Dynamic Arrays

int *pia = new int[10]; // uninitialized 10 ints
int *pia2 = new int[10](); //initialized to be 10 0’s;
string *psa = new string[10]; // block of 10 empty strings
string *psa2 = new string[10](); // block of 10 empty strings
int *pia3 = new int[5]{0,1,2,3,4};
string *psa3 = new string[10]{"a", "b", string(3,'x')};
// the first three elements are initialized from given initializers
// remaining elements are value initialized

// Freeing dynamic arrays
delete [] pia;
delete [] psa;
...

C++ Programming Languages, CSE, NTOU, Taiwan 16

*Remark

● Using a library container (e.g., vector, see STL in the future lectures,
if it’s possible) is better (safer, easier, and more efficient) and even
more pronounced under the new standard.

vector<int> v1(10); // v1 has 10 elements with value 0
vector<int> v2(10, 1); // v2 has 10 elements with value 1
vector<int> v3{1, 2, 3}; // v3 has two elements with values 1, 2, and 3
v1.push_back(9); // add 9 into the rear of v1
...

C++ Programming Languages, CSE, NTOU, Taiwan 17

Exercise:
Try to use new and delete instead

https://onlinegdb.com/dSS35GJ2l

#include <iostream>
#include <memory>

using namespace std;

class Grade {
private:
 int math;
 int eng;
 int sum;
public:
 Grade() = default;
 Grade(int m, int e): math(m), eng(e) {};
 ~Grade() { cout << "destructor of 'Grade' works here" << endl; } ;
 void SumUp() { sum = math + eng; }
 int ShowSum() { return sum; }
};

int main()
{
 auto ptr = make_shared<Grade>(100, 90);
 ptr->SumUp();
 cout << "The total grades: "

<< ptr->ShowSum() << endl;
 return 0;
}

The total grades: 190
destructor of 'Grade' works here

https://onlinegdb.com/dSS35GJ2l

C++ Programming Languages, CSE, NTOU, Taiwan 18

More Exercises

● https://onlinegdb.com/2oqsenisJp

● Design a constructor which can assign values of the data members of Vehicle.

● Prompt the user to input the number n of vehicles.

● Use new and delete to construct a set of n vehicles.

● Print all the vehicles with total prices and brands.

https://onlinegdb.com/2oqsenisJp

C++ Programming Languages, CSE, NTOU, Taiwan 19

Sample input & output

2
Constructor works here!
100 200 300 Volswagen
Constructor works here!
200 300 400 BMW
VolswagenTotal price: 600
VolswagenTotal price: 900
destructor of 'Vehicle' works here
destructor of 'Vehicle' works here

C++ Programming Languages, CSE, NTOU, Taiwan 20

Discussions & Questions

