DFS & BFS

Depth-First Search and Breadth-First Search
(DFS & BFS)

Joseph Chuang-Chieh Lin (##1)

Department of Computer Science & Engineering,
National Taiwan Ocean University

Fall 2024

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 1/19

DFS & BFS

Outline

@ Introduction

@ Depth First Search (DFS)

© Breadth-First Search (BFS)

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS

Fall 2024

DFS & BFS
Introduction

Outline

@ Introduction

Joseph C. C. Lin (CSE, NTOU, TW)

DFS & BFS

Fall 2024

DFS & BFS
Introduction

Elementary Graph Operations

Reachability
e Given: an undirected graph G = (V, E), and a vertex v € V(G)

@ Goal: visit all vertices in G that are reachable from v.

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 4/19

DFS & BFS
Introduction

Elementary Graph Operations

Reachability
e Given: an undirected graph G = (V, E), and a vertex v € V(G)

@ Goal: visit all vertices in G that are reachable from v.

@ The two ways of completing this task:
o Depth-First Search (DFS)

o Similar to the preorder tree traversal.
o Breadth-Frist Search (BFS)

o Similar to the level-order tree traversal.

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 4/19

DFS & BFS
Introduction

Elementary Graph Operations

Reachability
e Given: an undirected graph G = (V, E), and a vertex v € V(G)

@ Goal: visit all vertices in G that are reachable from v.

@ The two ways of completing this task:
o Depth-First Search (DFS)

o Similar to the preorder tree traversal.
o Breadth-Frist Search (BFS)

o Similar to the level-order tree traversal.

In the following discussion, we shall assume that the linked adjacency
list representation for graphs is used.

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 4/19

DFS & BFS
Depth First Search (DFS)

Outline

@ Depth First Search (DFS)

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS

Fall 2024

DFS & BFS
Depth First Search (DFS)

Depth First Search (DFS) (1/2)

@ We begin the search by visiting the start vertex, v.

o Next, we select an unvisited vertex, w, from v's adjacency lists and
carry out a DFS on w.

@ We preserve our current position in v's adjacency list by placing it on
a stack.

@ Eventually our search reaches a vertex, say u, that has no unvisited
vertices on its adjacency list.

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 6/19

DFS & BFS
Depth First Search (DFS)

Depth First Search (DFS) (2/2)

@ At this point, we remove a vertex from stack and continue processing
its adjacency list.

@ Previously visited vertices are discarded; unvisited vertices are visited
and placed on the stack.

@ The search terminates when the stack is empty.

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 7/19

DFS & BFS
Depth First Search (DFS)

DFS Example

@ Using a stack and recursion.
o It resembles the preoder tree traversal.

adjLists data link

0 ——>|1{—}—>|2I0|
1 o] {3]
2 fof[ESmias | —
2l sl
N nEan
e an
=R EEEan

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 8/19

DFS & BFS
Depth First Search (DFS)

The Pseudocode of DFS

DFS(G, u) {
u.visited = True
for each v in G.Adj[ul
if v.visited == False
DFS(G, v)

driving main () {

for each u in

u.visited

for each u in
DFS(G, w)

false

QI @

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS

Fall 2024

DFS & BFS
Depth First Search (DFS)

DFS in C

#define FALSE O

#define TRUE 1

short int visited[MAX_VERTICES];

/* intializing to be FALSE for all */

void DFS(int v) {
/* DFS beginning at vertex v */
nodePointer w;
visited[v] = true;
printf ("%54",v) ;
for(w = graph[v]; w; w = w->link)
if (!visited[w->vertex])
DFS (w->vertex) ;

v

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 10/19

DFS & BFS
Depth First Search (DFS)

Analysis of DFS

@ For G= (V, E) represented by an adjacency list, vertices adjacent to v
can be determined in |[N(v)|, where N(v) denotes the set of vertices
adjacent to vin G.

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 11/19

DFS & BFS
Depth First Search (DFS)

Analysis of DFS

@ For G= (V, E) represented by an adjacency list, vertices adjacent to v
can be determined in |[N(v)|, where N(v) denotes the set of vertices

adjacent to vin G.
o Follow the chain of links, O(1) for deriving each neighbor of v.
@ DFS examines each node in the adjacency lists at most once, the time
cost for the search is O(e), where e = |E].

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024

DFS & BFS
Depth First Search (DFS)

Analysis of DFS

@ For G= (V, E) represented by an adjacency list, vertices adjacent to v
can be determined in |N(v)|, where N(v) denotes the set of vertices
adjacent to vin G.

o Follow the chain of links, O(1) for deriving each neighbor of v.

@ DFS examines each node in the adjacency lists at most once, the time
cost for the search is O(e), where e = |E].

@ For G= (V| E) represented by an adjacency matrix, vertices adjacent
to v can be determined in O(n) time, where n = |V/.
e One needs to scan the corresponding row of the adjacency matrix.

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 11/19

DFS & BFS
Depth First Search (DFS)

Analysis of DFS

@ For G= (V, E) represented by an adjacency list, vertices adjacent to v
can be determined in |N(v)|, where N(v) denotes the set of vertices
adjacent to vin G.

o Follow the chain of links, O(1) for deriving each neighbor of v.

@ DFS examines each node in the adjacency lists at most once, the time
cost for the search is O(e), where e = |E].

@ For G= (V| E) represented by an adjacency matrix, vertices adjacent
to v can be determined in O(n) time, where n = |V/.

e One needs to scan the corresponding row of the adjacency matrix.

o Total time: O(n?).

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 11/19

DFS & BFS
Breadth-First Search (BFS)

Outline

© Breadth-First Search (BFS)

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS

Fall 2024

DFS & BFS
Breadth-First Search (BFS)

Breadth First Search (BFS) (1/2)

@ The algorithm starts at vertex v and marks it as visited.
@ Then visiting each of the vertices on v's adjacency list.

@ When we have visited all the vertices on v's adjacency list, we visit all
the unvisited vertices that are adjacent to the first vertex on v's
adjacency list.

@ To implement this scheme, as we visit each vertex we place the vertex
in a queue.

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 13/19

DFS & BFS
Breadth-First Search (BFS)

Breadth-First Search (BFS) (2/2)

@ When we have exhausted an adjacency list, we remove a vertex from

the queue and proceed by examining each of the vertices on its
adjacency list.

@ Unvisited vertices are visited and placed on the queue; visited are
ignored.

@ Finish the search when the queue is empty.

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024

DFS & BFS
Breadth-First Search (BFS)

BFS Example

@ Using a queue.
o It resembles the level-order tree traversal.

adjlLists data link

B =
ERoENeer
R e

- s
Ny
e

o G
S e

@ The DFS order: vy — vi — vo — v3 — vg —> V5 — Vg —> V7. @

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 15/19

DFS & BFS
Breadth-First Search (BFS)

The Pseudocode of BFS

BFS(G, u) { // let Q be the queue
Q. enqueue (u)
u.visited = True
while (Q.empty() == False) { // when Q is not empty
v = dequeue(Q)
for all w in N(v) {
if (w.visited == False) {
Q.enqueue (w)
w.visited = True

}
}
driving main () {
for each u in
u.visited = false
BFS(G, u)

«

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 16 /19

DFS & BFS
Breadth-First Search (BFS)

BFS in C

void bfs(int v) {
nodePointer w;
front = rear = NULL; /* initialize queue */
printf ("%5d4",v) ;
visited[v] = TRUE;
addq(v) ;

while (fromnt) {
v = dequeue();
for (w = graph[v]; w ; w->1link)
if (!visited[w->vertex]) {
printf ("%5d", w->vertex);
enqueue (w->vertex) ;
visited[w->vertex] = TRUE;

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 17/19

DFS & BFS
Breadth-First Search (BFS)

Analysis of BFS

@ Since each vertex is placed on the queue exactly once, the while loop
is iterated at most n times.

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 18/19

DFS & BFS
Breadth-First Search (BFS)

Analysis of BFS

@ Since each vertex is placed on the queue exactly once, the while loop
is iterated at most n times.
e For the adjacency list representation, this loop has a total cost of
do+di + ...+ dy—1 = O(e), where d; = degree(v;).

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 18/19

DFS & BFS
Breadth-First Search (BFS)

Analysis of BFS

@ Since each vertex is placed on the queue exactly once, the while loop
is iterated at most n times.

e For the adjacency list representation, this loop has a total cost of
do+di + ...+ dy—1 = O(e), where d; = degree(v;).

@ For the adjacency matrix representation, the while loop takes O(n)
time for each vertex visited.

o Therefore, the total time is O(n?).

As was true of DFS, all vertices visited, together with all edges incident to
them, form a connected component of G.

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024

DFS & BFS

Discussions

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 19/19

	Introduction
	Depth First Search (DFS)
	Breadth-First Search (BFS)
	

