
DFS & BFS

Depth-First Search and Breadth-First Search
(DFS & BFS)

Joseph Chuang-Chieh Lin (林莊傑)

Department of Computer Science & Engineering,
National Taiwan Ocean University

Fall 2024

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 1 / 19

DFS & BFS

Outline

1 Introduction

2 Depth First Search (DFS)

3 Breadth-First Search (BFS)

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 2 / 19

DFS & BFS
Introduction

Outline

1 Introduction

2 Depth First Search (DFS)

3 Breadth-First Search (BFS)

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 3 / 19

DFS & BFS
Introduction

Elementary Graph Operations

Reachability
Given: an undirected graph G = (V,E), and a vertex v ∈ V(G)
Goal: visit all vertices in G that are reachable from v.

The two ways of completing this task:
Depth-First Search (DFS)

Similar to the preorder tree traversal.
Breadth-Frist Search (BFS)

Similar to the level-order tree traversal.

In the following discussion, we shall assume that the linked adjacency
list representation for graphs is used.

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 4 / 19

DFS & BFS
Introduction

Elementary Graph Operations

Reachability
Given: an undirected graph G = (V,E), and a vertex v ∈ V(G)
Goal: visit all vertices in G that are reachable from v.

The two ways of completing this task:
Depth-First Search (DFS)

Similar to the preorder tree traversal.
Breadth-Frist Search (BFS)

Similar to the level-order tree traversal.

In the following discussion, we shall assume that the linked adjacency
list representation for graphs is used.

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 4 / 19

DFS & BFS
Introduction

Elementary Graph Operations

Reachability
Given: an undirected graph G = (V,E), and a vertex v ∈ V(G)
Goal: visit all vertices in G that are reachable from v.

The two ways of completing this task:
Depth-First Search (DFS)

Similar to the preorder tree traversal.
Breadth-Frist Search (BFS)

Similar to the level-order tree traversal.

In the following discussion, we shall assume that the linked adjacency
list representation for graphs is used.

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 4 / 19

DFS & BFS
Depth First Search (DFS)

Outline

1 Introduction

2 Depth First Search (DFS)

3 Breadth-First Search (BFS)

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 5 / 19

DFS & BFS
Depth First Search (DFS)

Depth First Search (DFS) (1/2)

We begin the search by visiting the start vertex, v.
Next, we select an unvisited vertex, w, from v’s adjacency lists and
carry out a DFS on w.
We preserve our current position in v’s adjacency list by placing it on
a stack.
Eventually our search reaches a vertex, say u, that has no unvisited
vertices on its adjacency list.

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 6 / 19

DFS & BFS
Depth First Search (DFS)

Depth First Search (DFS) (2/2)

At this point, we remove a vertex from stack and continue processing
its adjacency list.
Previously visited vertices are discarded; unvisited vertices are visited
and placed on the stack.
The search terminates when the stack is empty.

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 7 / 19

DFS & BFS
Depth First Search (DFS)

DFS Example

Using a stack and recursion.
It resembles the preoder tree traversal.

The DFS order: v0 → v1 → v3 → v7 → v4 → v5 → v2 → v6.

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 8 / 19

DFS & BFS
Depth First Search (DFS)

The Pseudocode of DFS

DFS(G, u) {
u.visited = True
for each v in G.Adj[u]

if v.visited == False
DFS(G, v)

}

driving main () {
for each u in G

u.visited = false
for each u in G

DFS(G, u)
}

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 9 / 19

DFS & BFS
Depth First Search (DFS)

DFS in C

#define FALSE 0
#define TRUE 1
short int visited[MAX_VERTICES];
/* intializing to be FALSE for all */

void DFS(int v) {
/* DFS beginning at vertex v */

nodePointer w;
visited[v] = true;
printf("%5d",v);
for(w = graph[v]; w; w = w->link)

if (!visited[w->vertex])
DFS(w->vertex);

}

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 10 / 19

DFS & BFS
Depth First Search (DFS)

Analysis of DFS

For G = (V,E) represented by an adjacency list, vertices adjacent to v
can be determined in |N(v)|, where N(v) denotes the set of vertices
adjacent to v in G.

Follow the chain of links, O(1) for deriving each neighbor of v.
DFS examines each node in the adjacency lists at most once, the time
cost for the search is O(e), where e = |E|.

For G = (V,E) represented by an adjacency matrix, vertices adjacent
to v can be determined in O(n) time, where n = |V|.

One needs to scan the corresponding row of the adjacency matrix.
Total time: O(n2).

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 11 / 19

DFS & BFS
Depth First Search (DFS)

Analysis of DFS

For G = (V,E) represented by an adjacency list, vertices adjacent to v
can be determined in |N(v)|, where N(v) denotes the set of vertices
adjacent to v in G.

Follow the chain of links, O(1) for deriving each neighbor of v.
DFS examines each node in the adjacency lists at most once, the time
cost for the search is O(e), where e = |E|.

For G = (V,E) represented by an adjacency matrix, vertices adjacent
to v can be determined in O(n) time, where n = |V|.

One needs to scan the corresponding row of the adjacency matrix.
Total time: O(n2).

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 11 / 19

DFS & BFS
Depth First Search (DFS)

Analysis of DFS

For G = (V,E) represented by an adjacency list, vertices adjacent to v
can be determined in |N(v)|, where N(v) denotes the set of vertices
adjacent to v in G.

Follow the chain of links, O(1) for deriving each neighbor of v.
DFS examines each node in the adjacency lists at most once, the time
cost for the search is O(e), where e = |E|.

For G = (V,E) represented by an adjacency matrix, vertices adjacent
to v can be determined in O(n) time, where n = |V|.

One needs to scan the corresponding row of the adjacency matrix.

Total time: O(n2).

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 11 / 19

DFS & BFS
Depth First Search (DFS)

Analysis of DFS

For G = (V,E) represented by an adjacency list, vertices adjacent to v
can be determined in |N(v)|, where N(v) denotes the set of vertices
adjacent to v in G.

Follow the chain of links, O(1) for deriving each neighbor of v.
DFS examines each node in the adjacency lists at most once, the time
cost for the search is O(e), where e = |E|.

For G = (V,E) represented by an adjacency matrix, vertices adjacent
to v can be determined in O(n) time, where n = |V|.

One needs to scan the corresponding row of the adjacency matrix.
Total time: O(n2).

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 11 / 19

DFS & BFS
Breadth-First Search (BFS)

Outline

1 Introduction

2 Depth First Search (DFS)

3 Breadth-First Search (BFS)

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 12 / 19

DFS & BFS
Breadth-First Search (BFS)

Breadth First Search (BFS) (1/2)

The algorithm starts at vertex v and marks it as visited.
Then visiting each of the vertices on v’s adjacency list.
When we have visited all the vertices on v’s adjacency list, we visit all
the unvisited vertices that are adjacent to the first vertex on v’s
adjacency list.
To implement this scheme, as we visit each vertex we place the vertex
in a queue.

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 13 / 19

DFS & BFS
Breadth-First Search (BFS)

Breadth-First Search (BFS) (2/2)

When we have exhausted an adjacency list, we remove a vertex from
the queue and proceed by examining each of the vertices on its
adjacency list.
Unvisited vertices are visited and placed on the queue; visited are
ignored.
Finish the search when the queue is empty.

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 14 / 19

DFS & BFS
Breadth-First Search (BFS)

BFS Example

Using a queue.
It resembles the level-order tree traversal.

The DFS order: v0 → v1 → v2 → v3 → v4 → v5 → v6 → v7.

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 15 / 19

DFS & BFS
Breadth-First Search (BFS)

The Pseudocode of BFS

BFS(G, u) { // let Q be the queue
Q.enqueue(u)
u.visited = True
while (Q.empty() == False) { // when Q is not empty

v = dequeue(Q)
for all w in N(v) {

if (w.visited == False) {
Q.enqueue(w)
w.visited = True

}
}

}
}
driving main () {

for each u in G
u.visited = false

BFS(G, u)
}

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 16 / 19

DFS & BFS
Breadth-First Search (BFS)

BFS in C

void bfs(int v) {
nodePointer w;
front = rear = NULL; /* initialize queue */
printf("%5d",v);
visited[v] = TRUE;
addq(v);

while (front) {
v = dequeue();
for (w = graph[v]; w ; w->link)

if (!visited[w->vertex]) {
printf("%5d", w->vertex);
enqueue(w->vertex);
visited[w->vertex] = TRUE;

}
}

}

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 17 / 19

DFS & BFS
Breadth-First Search (BFS)

Analysis of BFS

Since each vertex is placed on the queue exactly once, the while loop
is iterated at most n times.

For the adjacency list representation, this loop has a total cost of
d0 + d1 + . . .+ dn−1 = O(e), where di = degree(vi).

For the adjacency matrix representation, the while loop takes O(n)
time for each vertex visited.

Therefore, the total time is O(n2).

As was true of DFS, all vertices visited, together with all edges incident to
them, form a connected component of G.

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 18 / 19

DFS & BFS
Breadth-First Search (BFS)

Analysis of BFS

Since each vertex is placed on the queue exactly once, the while loop
is iterated at most n times.

For the adjacency list representation, this loop has a total cost of
d0 + d1 + . . .+ dn−1 = O(e), where di = degree(vi).

For the adjacency matrix representation, the while loop takes O(n)
time for each vertex visited.

Therefore, the total time is O(n2).

As was true of DFS, all vertices visited, together with all edges incident to
them, form a connected component of G.

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 18 / 19

DFS & BFS
Breadth-First Search (BFS)

Analysis of BFS

Since each vertex is placed on the queue exactly once, the while loop
is iterated at most n times.

For the adjacency list representation, this loop has a total cost of
d0 + d1 + . . .+ dn−1 = O(e), where di = degree(vi).

For the adjacency matrix representation, the while loop takes O(n)
time for each vertex visited.

Therefore, the total time is O(n2).

As was true of DFS, all vertices visited, together with all edges incident to
them, form a connected component of G.

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 18 / 19

DFS & BFS

Discussions

Joseph C. C. Lin (CSE, NTOU, TW) DFS & BFS Fall 2024 19 / 19

	Introduction
	Depth First Search (DFS)
	Breadth-First Search (BFS)
	

