Joseph Chuang-Chieh Lin (林莊傑)

Department of Computer Science & Engineering, National Taiwan Ocean University

Fall 2024

Joseph C. C. Lin (CSE, NTOU, TW) [Disjoint Sets](#page-31-0) Fall 2024 1/21

(ロ) (日)

[Disjoint Sets](#page-0-0)

Outline

Joseph C. C. Lin (CSE, NTOU, TW) [Disjoint Sets](#page-0-0) Fall 2024 2/21

 \equiv

1þ

K ロ ト K 倒 ト K ミ ト K

Outline

Joseph C. C. Lin (CSE, NTOU, TW) [Disjoint Sets](#page-0-0) Fall 2024 3/21

 \equiv

1þ

K ロ ト K 倒 ト K ミ ト K

Introduction

- In this class, we study the use of trees in the representation of sets.
- For simplicity, we assume that the elements of the sets are $0, 1, 2, \ldots, n-1.$
- We also assume that the sets being represented are pairwise disjoint.

(ロ) (同) (ヨ)

Introduction

- In this class, we study the use of trees in the representation of sets.
- For simplicity, we assume that the elements of the sets are $0, 1, 2, \ldots, n-1.$
- We also assume that the sets being represented are pairwise disjoint.
	- If *Sⁱ* and *S^j* are two disjoint sets, then *Sⁱ ∩ S^j* = *∅*, that is, no element that is in both S_i and S_j .

(□) (何) (三)

Set Representation (1/2)

• Suppose that we have $S_1 = \{0, 6, 7, 8\}$, $S_2 = \{1, 4, 9\}$ and $S_3 = \{2, 3, 5\}.$

K ロ ト K 倒 ト K ミ ト K ミ ト

Set Representation (1/2)

- Suppose that we have $S_1 = \{0, 6, 7, 8\}$, $S_2 = \{1, 4, 9\}$ and $S_3 = \{2, 3, 5\}.$
- The following figure illustrates one possible representation for these sets.

K ロ ▶ K 倒 ▶ K ミ ▶ K 三 ▶

Set Representation $(1/2)$

- Suppose that we have $S_1 = \{0, 6, 7, 8\}$, $S_2 = \{1, 4, 9\}$ and $S_3 = \{2, 3, 5\}.$
- The following figure illustrates one possible representation for these sets.

4 ロ ト ィ 何 ト ィ ヨ ト ィ

Set Representation (1/2)

- Suppose that we have $S_1 = \{0, 6, 7, 8\}$, $S_2 = \{1, 4, 9\}$ and $S_3 = \{2, 3, 5\}.$
- The following figure illustrates one possible representation for these sets.

Note: for each set, we have linked the nodes from the children to the parent.

4 ロ ト 4 何 ト 4 三

Set Representation (2/2)

The operations that we wish to perform on these sets are:

Joseph C. C. Lin (CSE, NTOU, TW) [Disjoint Sets](#page-0-0) Fall 2024 6/21

4 ロ ト 4 何 ト

Set Representation (2/2)

• The operations that we wish to perform on these sets are:

- **Disjoint set union:** If *Sⁱ* and *S^j* are two disjoint sets, then their union $S_i \cup S_i = \{x \mid x \in S_i \text{ or } x \in S_i\}.$
- **Find(i):** find the set containing the element *i*.

4 ロ 4 ラ 4 ラ 4 コ 4 ラ 4

[Disjoint Sets](#page-0-0) [Set Representation](#page-2-0)

Possible Representations of the Union of Two Sets

Joseph C. C. Lin (CSE, NTOU, TW) [Disjoint Sets](#page-0-0) Fall 2024 7/21

Ξ

4 ロ ▶ 4 何 ▶

[Disjoint Sets](#page-0-0) [Set Representation](#page-2-0)

Possible Representations of the Union of Two Sets

• Since we have linked the nodes from the children to parent, we simply make one of the trees a subtree of the other.

4 **D** F

Find() Operation

We can find which set an element is in by following the parent links to the root and then returning the pointer to the set name.

 \leftarrow

Array Representation of Sets

- We identify the sets by the roots of the trees representing them.
- We can use the node's number as the index in our simplified example.
- This means that each node needs only one field: the index of its parents, to link to its parent,

Note: The root nodes have a parent of *−*1.

Union and Find Operations

We can now find element *i* by simply following the parent values starting at *i* and continuing until we reach a negative parent value.

For example, to **find** 5, we start at 5, and then move to 5's parent, 2. Since node 2 has a negative parent value, we have reached the root.

Union and Find Operations

We can now find element *i* by simply following the parent values starting at *i* and continuing until we reach a negative parent value.

For example, to **find** 5, we start at 5, and then move to 5's parent, 2. Since node 2 has a negative parent value, we have reached the root.

 \bullet To union two trees with root *i* and *j*, we can simply set parent $|i| = j$.

Initial Attempt for the Union-Find Functions

```
int simpleFind (int i) {
    for (; parent[i] >= 0; i = parent[i])
        ;
    return i;
}
void simpleUnion (int i, int j) {
    parent [i] = j;
}
```


Joseph C. C. Lin (CSE, NTOU, TW) [Disjoint Sets](#page-0-0) Fall 2024 11/21

4 ロ > 4 何 > 4 ミ > 4 ミ

Analysis of the Functions

Consider the following case:

Joseph C. C. Lin (CSE, NTOU, TW) [Disjoint Sets](#page-0-0) Fall 2024 12 / 21

 \equiv

4 ロ ▶ 4 団 ▶

Analysis of the Functions

Consider the following case:

• We start with *p* elements, each in a set of its own, that is, $S_i = \{i\}$.

Joseph C. C. Lin (CSE, NTOU, TW) [Disjoint Sets](#page-0-0) Fall 2024 12 / 21

4 ロ ▶ 4 何 ▶

Analysis of the Functions

- Consider the following case:
	- We start with *p* elements, each in a set of its own, that is, $S_i = \{i\}$.
- The following sequence of union-find operations produces the degenerate tree (退化樹):

4 ロ 4 ラ 4 ラ 4 コ 4 ラ 4

Analysis of the Functions

- Consider the following case:
	- We start with *p* elements, each in a set of its own, that is, $S_i = \{i\}$.
- The following sequence of union-find operations produces the degenerate tree (退化樹):
	- \bullet union(0,1), find(0).
	- 2 $union(1,2)$, $find(0)$. .

3 . . \bullet union(n-2, n-1), find(0).

- The time complexity of union operations is *^O*(*n*).
- \triangleright The time complexity of find operations is $\sum_{i=2}^{n} i = O(n^2)$.

← ロ ▶ ← 何 ▶ ← ミ ▶ ←

Weighting Rule for Union comes to the Rescue!

Weighting Rule for union(*i, j*)

- If the number of nodes in tree *i* is less than the number in tree *j*, make *j* the parent of *i*
- If the number of nodes in tree *i* is greater than the number in tree *j*, make *i* the parent of *j*.
- **Note:** If *i* is a root node, we set parent[*i*] to be the negative number of nodes in that tree.

Example of Using the Weight Rule

 \cdots (n-1)

initial

(0

 (-1)

Union $(0, 1)$

 $(n-1)$ 3 \cdots

Union $(0, 2)$

Union $(0, n-1)$

Joseph C. C. Lin (CSE, NTOU, TW) [Disjoint Sets](#page-0-0) Fall 2024 15 / 21

 \cdots

4 ロ ト 4 何 ト 4 ミ ト 4 ミ ト

The Code of Union Function Using Weighting Rule

```
void weightedUnion(int i, int j) {
/* union the sets with roots i and j,
   i != j, using the weighting rule.
   parent [i] = -count [i]
   and parent [j] = -count[j] */
    int temp = parent[i] + parent[j];if (parent[i] > parent[j]) {
        parent[i] = j; /*make j the new root */
       parent[i] = temp;} else {
        parent[j] = i; /*make i the new root */
       parent[i] = temp;}
}
```


Joseph C. C. Lin (CSE, NTOU, TW) [Disjoint Sets](#page-0-0) Fall 2024 16 / 21

4 ロ > 4 何 > 4 ミ > 4 ミ

[Disjoint Sets](#page-0-0) [Set Representation](#page-2-0)

Trees Achieving the Worst Case

Another Rule: Collapsing Rule

Collapsing Rule for union(*i, j*)

- If *j* is a node on the path from *i* to its root and parent $[i] \neq \text{root}(i)$, then set parent[*j*] to root(*i*).
- Consider the previous example, and process the following eight find():

$$
\overbrace{\text{find}(7),\text{find}(7),\ldots,\text{find}(7)}^{\text{8 times}}.
$$

• The SimpleFind() needs $3 \times 8 = 24$ moves.

← ロ ▶ → 何 ▶ → 三 ▶ →

Another Rule: Collapsing Rule

Collapsing Rule for union(*i, j*)

- If *j* is a node on the path from *i* to its root and parent $[i] \neq \text{root}(i)$, then set parent[*j*] to root(*i*).
- Consider the previous example, and process the following eight find():

$$
\overbrace{\text{find}(7),\text{find}(7),\ldots,\text{find}(7)}^{\text{8 times}}.
$$

- The SimpleFind() needs $3 \times 8 = 24$ moves.
- The CollapsingFind() needs $3+3+7=13$ moves.
	- \bullet first find(7): 3 moves.
	- reset 3 links: 3 moves.
	- remaining 7 finds: 7 moves.

4 ロ ▶ 4 何 ▶

Collapsing Rule (contd.)

- **•** When collapsingFind is used, the first find(7) requires going up three links and then resetting two links.
- **Note:** Even though only two parent links need to be reset, collapsingFind will actually reset three (the parent of 4 is reset to 0).

4 **D** F

The Code for the Collapsing Rule

```
int collapsingFind (int i) {
/* find the root of the tree containing element i.
   Use the collapsing rule to collapse all nodes
   from i to root */
    int root, trail, lead;
    for (root=i; parent[root]>=0; root=parent[root])
        ;
    for (trail=i; trail != root; trail=lead) {
        lead = parent[trail];
        parent[trail] = root;
    }
    return root;
}
             \alpha4 ロ > 4 何 > 4 ミ > 4 ミ
```
Consider $i = 7$: root $= 0$ (after the 1st for-loop) $trail = 7$ $lead = parent[7] = 6$ $parent[train] = parent[7] = 0$ $trail = 6$ $lead = parent[6] = 4$ $parent[6] = 0$ $trail = 4$ $lead = parent[4] = 0$ parent $[4] = 0$ $trail = 0$

Joseph C. C. Lin (CSE, NTOU, TW) [Disjoint Sets](#page-0-0) Fall 2024 20 / 21

Discussions

Joseph C. C. Lin (CSE, NTOU, TW) [Disjoint Sets](#page-0-0) Fall 2024 21/21

目 1þ

4 ロ > 4 御 > 4 ミ > 4