
Heaps

Heaps

Joseph Chuang-Chieh Lin (林莊傑)

Department of Computer Science & Engineering,
National Taiwan Ocean University

Fall 2024

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 1 / 23

Heaps

Outline

1 Introduction
Building a heap

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 2 / 23

Heaps
Introduction

Outline

1 Introduction
Building a heap

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 3 / 23

Heaps
Introduction

Heaps

Max Tree
A max tree is a tree in which

the key value in each node ≥ the key values in its children.

Min Tree
A min tree is a tree in which

the key value in each node ≤ the key values in its children.

Max Heap
A complete binary tree that is also a max tree.

Min Heap
A complete binary tree that is also a min tree.

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 4 / 23

Heaps
Introduction

Heaps

Max Tree
A max tree is a tree in which

the key value in each node ≥ the key values in its children.

Min Tree
A min tree is a tree in which

the key value in each node ≤ the key values in its children.

Max Heap
A complete binary tree that is also a max tree.

Min Heap
A complete binary tree that is also a min tree.

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 4 / 23

Heaps
Introduction

Heaps

Max Tree
A max tree is a tree in which

the key value in each node ≥ the key values in its children.

Min Tree
A min tree is a tree in which

the key value in each node ≤ the key values in its children.

Max Heap
A complete binary tree that is also a max tree.

Min Heap
A complete binary tree that is also a min tree.

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 4 / 23

Heaps
Introduction

Examples: Max & Min Trees

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 5 / 23

Heaps
Introduction

Examples: Max & Min Heaps

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 6 / 23

Heaps
Introduction

The Key Application: Priority Queues

Heaps are frequently used to implement priority queues.

In this kind of queue,
the element to be deleted is the one with highest (or lowest) priority.
at any time, an element with arbitrary priority can be inserted into
the queue.

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 7 / 23

Heaps
Introduction

Some Important Notes

It’s straightforward to implement a heap using an array (WHY?).

Insert the new node next to the last element in the array.

A heap is a complete binary tree.

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 8 / 23

Heaps
Introduction

Some Important Notes

It’s straightforward to implement a heap using an array (WHY?).

Insert the new node next to the last element in the array.

A heap is a complete binary tree.

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 8 / 23

Heaps
Introduction

Some Important Notes

It’s straightforward to implement a heap using an array (WHY?).

Insert the new node next to the last element in the array.

A heap is a complete binary tree.

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 8 / 23

Heaps
Introduction

Insertion into a Max Heap

The bubbling process.
It begins at the new node of the tree and moves toward the root.

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 9 / 23

Heaps
Introduction

Insertion into a Max Heap

The bubbling process.
It begins at the new node of the tree and moves toward the root.

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 10 / 23

Heaps
Introduction

Insertion into a Max Heap

The bubbling process.
It begins at the new node of the tree and moves toward the root.

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 11 / 23

Heaps
Introduction

The Code for Insertion into a Max Heap

Consider the following declarations:

#define MAX_ELEMENTS 200 /* maximum heap size+1 */
#define HEAP_FULL (n) (n == MAX_ELEMENTS −1)
#define HEAP_EMPTY (n) (!n)
typedef struct {

int key;
/* other fields */

} element;
element heap[MAX_ELEMENTS];
int n = 0;

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 12 / 23

Heaps
Introduction

The Code for Insertion into a Max Heap

void push (element item, int *n) {
/* insert item into a max heap of current size *n */

int i;
if (HEAP_FULL(*n)) {

printf("The heap is full.\n");
exit(EXIT_FAILURE);

} // O(1) time
i = ++(*n);
while ((i != 1) && (item.key > heap[i/2].key)) {

heap[i] = heap[i/2];
i /= 2;

} // O(lg n) time
heap[i] = item; // O(1) time

}

The time complexity of the insertion: O(lg n).

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 13 / 23

Heaps
Introduction

Deletion from a Max Heap

When an element is to be deleted from a max heap, it is ALWAYS
taken from the root of the heap.

The steps of deletion from a Max heap:
delete the root node.
insert the last node into the root (say r).
use the bubbling up process to ensure that the resulting heap remains a
max heap (a.k.a. heapify at r).

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 14 / 23

Heaps
Introduction

Deletion from a Max Heap

When an element is to be deleted from a max heap, it is ALWAYS
taken from the root of the heap.
The steps of deletion from a Max heap:

delete the root node.
insert the last node into the root (say r).
use the bubbling up process to ensure that the resulting heap remains a
max heap (a.k.a. heapify at r).

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 14 / 23

Heaps
Introduction

Illustration of Deletion from a Max Heap

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 15 / 23

Heaps
Introduction

Illustration of Deletion from a Max Heap

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 15 / 23

Heaps
Introduction

The Code for Deletion from a Max Heap
element pop(int *n) {
/* delete element with the highest key from the heap */

int parent, child;
element item, temp;
if (HEAP_EMPTY(*n)) {

fprintf(stderr, "The heap is empty\n");
exit(EXIT_FAILURE);

}
/* save value of the element with the highest key */
item = heap[1];
/* use last element in heap to adjust heap */
temp = heap[(*n)--];
parent = 1;
child = 2; // default: the left child
while (child <= *n) { // O(lg n) time
/* find the larger child of the current parent */

if ((child < *n) && (heap[child].key < heap[child+1].key))
child++; // okay, it's the right child!

if (temp.key >= heap[child].key) break; // the new root is the maximum!
/* if the max-child gets larger key, move to the next lower level */
heap[parent] = heap[child];
parent = child;
child *= 2;

}
heap[parent] = temp;
return item;

}

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 16 / 23

Heaps
Introduction

Time Complexity of the Deletion from a Max Heap

Delete the root node: O(1).

Insert the last node to the root: O(1).

Since the height of the heap is ⌈lg(n + 1))⌉, the while loop is iterated
for O(lg n) times.

Thus, the overall time complexity: the time complexity of the
deletion: O(log n).

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 17 / 23

Heaps
Introduction

Building a heap

Outline

1 Introduction
Building a heap

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 18 / 23

Heaps
Introduction

Building a heap

How to build a heap for a set of n input numbers?

For each input number x, execute push(x).

The above process is correct and requires O(n log n) time.

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 19 / 23

Heaps
Introduction

Building a heap

How to build a heap for a set of n input numbers?

For each input number x, execute push(x).

The above process is correct and requires

O(n log n) time.

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 19 / 23

Heaps
Introduction

Building a heap

How to build a heap for a set of n input numbers?

For each input number x, execute push(x).

The above process is correct and requires O(n log n) time.

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 19 / 23

Heaps
Introduction

Building a heap

An O(n) time algorithm for building a (max) heap

Input: n numbers: x1, x2, . . . , xn.

Efficient Heap Construction
1 For each input number xi, insert xi into array A at A[i − 1]

one by one.
2 For i = ⌊n/2⌋ − 1 down to 0:

Run heapify(A, i)

That is, we build a heap in a bottom-up fashion!

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 20 / 23

Heaps
Introduction

Building a heap

An O(n) time algorithm for building a (max) heap

Input: n numbers: x1, x2, . . . , xn.

Efficient Heap Construction
1 For each input number xi, insert xi into array A at A[i − 1]

one by one.
2 For i = ⌊n/2⌋ − 1 down to 0:

Run heapify(A, i)

That is, we build a heap in a bottom-up fashion!

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 20 / 23

Heaps
Introduction

Building a heap

Heap recursive view (bottom-up)

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 21 / 23

Heaps
Introduction

Building a heap

Nodes to be Heapified

Heapify steps: ≤
lg n−1∑
h=1

h · nh =

lg n−1∑
h=1

h · 2⌈lg n⌉−h ≤ 2n
lg n−1∑
h=1

h
2h .

nh: the number of nodes at level h.

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 22 / 23

Heaps
Introduction

Building a heap

Nodes to be Heapified

Heapify steps: ≤
lg n−1∑
h=1

h · nh =

lg n−1∑
h=1

h · 2⌈lg n⌉−h ≤ 2n
lg n−1∑
h=1

h
2h .

nh: the number of nodes at level h.

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 22 / 23

Heaps
Introduction

Building a heap

Nodes to be Heapified

Heapify steps: ≤
lg n−1∑
h=1

h · nh =

lg n−1∑
h=1

h · 2⌈lg n⌉−h

≤ 2n
lg n−1∑
h=1

h
2h .

nh: the number of nodes at level h.

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 22 / 23

Heaps
Introduction

Building a heap

Nodes to be Heapified

Heapify steps: ≤
lg n−1∑
h=1

h · nh =

lg n−1∑
h=1

h · 2⌈lg n⌉−h ≤ 2n
lg n−1∑
h=1

h
2h .

nh: the number of nodes at level h.

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 22 / 23

Heaps

Discussions

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 23 / 23

	Introduction
	Building a heap

	

