Heaps

Heaps

Joseph Chuang-Chieh Lin (#RiE1%)

Department of Computer Science & Engineering,
National Taiwan Ocean University

Fall 2024

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 1/23

Heaps

Outline

@ Introduction
@ Building a heap

Joseph C. C. Lin (CSE, NTOU, TW) Heaps

Fall 2024

Heaps
Introduction

Outline

@ Introduction

Joseph C. C. Lin (CSE, NTOU, TW) Heaps

Fall 2024

Heaps
Introduction

Heaps

A max tree is a tree in which

@ the key value in each node > the key values in its children.

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 4/23

Heaps
Introduction

Heaps

A max tree is a tree in which

@ the key value in each node > the key values in its children. |

A min tree is a tree in which

@ the key value in each node < the key values in its children.

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 4/23

Heaps
Introduction

Heaps

A max tree is a tree in which

@ the key value in each node > the key values in its children. |

A min tree is a tree in which
@ the key value in each node < the key values in its children.

A

Max Heap
A complete binary tree that is also a max tree.

A complete binary tree that is also a min tree.

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 4/23

Heaps
Introduction

Examples: Max & Min Trees

Max Trees
Min Trees

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 5/23

Heaps
Introduction

Examples: Max & Min Heaps

Max Heaps
& (19 (1)
) D ® ® @
ONOIONO
Min Heaps

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 6/23

Heaps
Introduction

The Key Application: Priority Queues

@ Heaps are frequently used to implement priority queues.

@ In this kind of queue,
o the element to be deleted is the one with highest (or lowest) priority.
e at any time, an element with arbitrary priority can be inserted into
the queue.

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 7/23

Heaps
Introduction

Some Important Notes

e It's straightforward to implement a heap using an array (WHY?).

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 8/23

Heaps
Introduction

Some Important Notes

e It's straightforward to implement a heap using an array (WHY?).

@ Insert the new node next to the last element in the array.

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 8/23

Heaps
Introduction

Some Important Notes

e It's straightforward to implement a heap using an array (WHY?).
@ Insert the new node next to the last element in the array.

@ A heap is a complete binary tree.

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 8/23

Heaps
Introduction

Insertion into a Max Heap

@ The bubbling process.
o It begins at the new node of the tree and moves toward the root.

insert 1
Er=OR AR s 0

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 9/23

Heaps
Introduction

Insertion into a Max Heap

@ The bubbling process.
o It begins at the new node of the tree and moves toward the root.

G @
@ e insert 5 @ e
=
19 W 1 ©@E

% not max heap !

@ e bubbling up
1 @G

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 10/23

Heaps
Introduction

Insertion into a Max Heap

@ The bubbling process.
o It begins at the new node of the tree and moves toward the root.

@ i 2.1 @
@ e insert @ a
—>
(9. () OROIS

f not max heap !

@ @ bubbling up
@ @0

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 11/23

Heaps
Introduction

The Code for Insertion into a Max Heap

@ Consider the following declarations:

#define MAX_ELEMENTS 200 /% mazimum heap size+l */
#define HEAP_FULL (n) (n == MAX_ELEMENTS -1)
#define HEAP_EMPTY (n) (!n)
typedef struct {
int key;
/* other fields */
} element;
element heap[MAX_ELEMENTS] ;
int n = 0;

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 12/23

Heaps
Introduction

The Code for Insertion into a Max Heap

void push (element item, int #*n) {
/* insert item into a max heap of current size *n */
int i;
if (HEAP_FULL(#n)) {
printf ("The heap is full.\n");
exit (EXIT_FAILURE) ;
Y // 0(1) time
i = ++(*n);
while ((i !'= 1) &% (item.key > heap[i/2].key)) {
heap[i] = heap[i/2];
i/=2;
Y // 0(ig n) time
heap[i] = item; // 0(1) time

@ The time complexity of the insertion: O(lg n).

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 13/23

Heaps
Introduction

Deletion from a Max Heap

@ When an element is to be deleted from a max heap, it is ALWAYS
taken from the root of the heap.

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 14 /23

Heaps
Introduction

Deletion from a Max Heap

@ When an element is to be deleted from a max heap, it is ALWAYS
taken from the root of the heap.

@ The steps of deletion from a Max heap:
o delete the root node.
e insert the last node into the root (say r).
e use the to ensure that the resulting heap remains a
max heap (a.k.a. heapify at r).

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 14 /23

Heaps
Introduction

lllustration of Deletion from a Max Heap

d
® B e 8 ®
@ @) ® @

O
ﬂ insert 2 to
the root
(20) bubbling up (2)
O SO s (Ol
19 © 19 ©

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 15/23

Heaps
Introduction

lllustration of Deletion from a Max Heap

@ delete 20 .
O O @ Q)
19

insert 10 to
the root

@ bubbling up
1) (@ < @ @)
(9

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 15/23

Heaps
Introduction

The Code for Deletion from a Max Heap

element pop(int *n) {
/* delete element with the highest key from the heap */

int parent, child;

element item, temp;

if (HEAP_EMPTY(*n)) {
fprintf (stderr, "The heap is empty\n");
exit (EXIT_FAILURE) ;

¥

/* save value of the element with the highest key */

item = heap[1];

/* use last element in heap to adjust heap */

temp = heap[(*n)--1;

parent = 1;

child = 2; // default: the left child

while (child <= #n) { // 0(lg n) time

/* find the larger child of the current parent */
if ((child < *n) && (heap[child].key < heap[child+1].key))

child++; // okay, it's the right child!

if (temp.key >= heaplchild].key) break; // the new root is the mazimum!
/* if the maz-child gets larger key, move to the next lower level */
heap[parent] = heap[child];
parent = child;
child *= 2;

}

heap[parent] = temp;

return item;

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024

Heaps
Introduction

Time Complexity of the Deletion from a Max Heap

@ Delete the root node: O(1).
@ Insert the last node to the root: O(1).
@ Since the height of the heap is [lg(n+ 1))], the while loop is iterated

for O(lg n) times.

@ Thus, the overall time complexity: the time complexity of the
deletion: O(log n).

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 17/23

Heaps
Introduction
Building a heap

Outline

@ Introduction
@ Building a heap

Joseph C. C. Lin (CSE, NTOU, TW) Heaps

Fall 2024

Heaps
Introduction
Building a heap

How to build a heap for a set of n input numbers?

@ For each input number x, execute push(x). J

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 19/23

Heaps
Introduction
Building a heap

How to build a heap for a set of n input numbers?

@ For each input number x, execute push(x). J

@ The above process is correct and requires

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 19/23

Heaps
Introduction
Building a heap

How to build a heap for a set of n input numbers?

@ For each input number x, execute push(x). J

@ The above process is correct and requires O(nlog n) time.

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 19/23

Heaps
Introduction
Building a heap

An O(n) time algorithm for building a (max) heap

Input: n numbers: x1,xs, ..., X.

Efficient Heap Construction

@ For each input number x;, insert x; into array A at A[ji — 1]
one by one.
@ For i= |n/2] — 1 down to O:
o Run heapify(A,i)

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 20/23

Heaps
Introduction
Building a heap

An O(n) time algorithm for building a (max) heap

Input: n numbers: x1,xs, ..., X.

Efficient Heap Construction

@ For each input number x;, insert x; into array A at A[ji — 1]
one by one.
@ For i= |n/2] — 1 down to O:
o Run heapify(A,i)

@ That is, we build a heap in a bottom-up fashion!

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 20/23

Heaps
Introduction
Building a heap

Heap recursive view (bottom-up)

level: [lgn] —h —» Ao (S

height = h

max heap max heap

=] = =
Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024

Heaps
Introduction
Building a heap

Nodes to be Heapified

index |[0|1[|2(3[4|5(6]|7

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 22/23

Heaps
Introduction
Building a heap

Nodes to be Heapified

index |[0|1[|2(3[4|5(6]|7

3|5 8|2
index:
lIgn—1
o # Heapify steps: < Z h-np=
h=1

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 22/23

Heaps
Introduction
Building a heap

Nodes to be Heapified

index |[0|1[|2(3[4|5(6]|7

3(5 8|2
index: 5
lgn—1 lgn—1
@ # Heapify steps: < Z h-np= Z h.9ollgnl=h
h=1 h=1

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 22/23

Heaps
Introduction
Building a heap

Nodes to be Heapified

index |[0|1[|2(3[4|5(6]|7

3|5 8|2
index: /7/
lgn—1 lgn—1 lgn—1 h
. . : _ .ollgn]—h it
o # Heapify steps: < ; h-np= ; h-2llen=h < op ; oh"

o np: the number of nodes at level h.

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 22/23

Heaps

Discussions

Joseph C. C. Lin (CSE, NTOU, TW) Heaps Fall 2024 23/23

	Introduction
	Building a heap

	

