
Linked List

Linked List
Singly Linked Lists, Chains, & Linked Stacks and Queues

Joseph Chuang-Chieh Lin (林莊傑)

Department of Computer Science & Engineering,
National Taiwan Ocean University

Fall 2024

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 1 / 34

Linked List

Outline

1 Singly Linked List and Chains

2 Representing Chains in C

3 Linked Stacks and Queues
Linked Stacks
Linked Queues

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 2 / 34

Linked List
Singly Linked List and Chains

Outline

1 Singly Linked List and Chains

2 Representing Chains in C

3 Linked Stacks and Queues
Linked Stacks
Linked Queues

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 3 / 34

Linked List
Singly Linked List and Chains

Definition

We have learned array and sequential mapping (e.g., polynomial
ADT).

Successive nodes of the data objects are stored in a fixed distance.

Issue: When a sequential mapping is used for ordered lists:
no more available storage
waste of storage
Excessive data movement is required for deletions and insertions.

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 4 / 34

Linked List
Singly Linked List and Chains

Definition

We have learned array and sequential mapping (e.g., polynomial
ADT).

Successive nodes of the data objects are stored in a fixed distance.

Issue: When a sequential mapping is used for ordered lists:
no more available storage
waste of storage

Excessive data movement is required for deletions and insertions.

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 4 / 34

Linked List
Singly Linked List and Chains

Definition

We have learned array and sequential mapping (e.g., polynomial
ADT).

Successive nodes of the data objects are stored in a fixed distance.

Issue: When a sequential mapping is used for ordered lists:
no more available storage
waste of storage
Excessive data movement is required for deletions and insertions.

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 4 / 34

Linked List
Singly Linked List and Chains

Example

Alan Bill Carter David Elvis Frank

Insert “Charlie” after Carter.

Alan Bill Carter Charlie David Elvis Frank

Three elements are moved.

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 5 / 34

Linked List
Singly Linked List and Chains

Example

Alan Bill Carter David Elvis Frank

Insert “Charlie” after Carter.

Alan Bill Carter Charlie David Elvis Frank

Three elements are moved.

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 5 / 34

Linked List
Singly Linked List and Chains

Example

Alan Bill Carter David Elvis Frank

Insert “Charlie” after Carter.

Alan Bill Carter Charlie David Elvis Frank

Three elements are moved.

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 5 / 34

Linked List
Singly Linked List and Chains

Example

Alan Bill Carter Charlie David Elvis Frank

Delete “Carter” after Bill.

Alan Bill Charlie David Elvis Frank

Four elements are moved.

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 6 / 34

Linked List
Singly Linked List and Chains

Example

Alan Bill Carter Charlie David Elvis Frank

Delete “Carter” after Bill.

Alan Bill Charlie David Elvis Frank

Four elements are moved.

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 6 / 34

Linked List
Singly Linked List and Chains

Example

Alan Bill Carter Charlie David Elvis Frank

Delete “Carter” after Bill.

Alan Bill Charlie David Elvis Frank

Four elements are moved.

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 6 / 34

Linked List
Singly Linked List and Chains

Solution: linked presentation

A linked list is comprised of nodes; each node has zero or more data
fields and one or more link or pointer fields.

The nodes may be placed anywhere in memory.
The address of the next (or another) node in the list.

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 7 / 34

Linked List
Singly Linked List and Chains

Singly Linked List

In a singly linked list, each node has

exactly one

pointer field.

A singly linked list in which the last node has a null link is called a
chain.

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 8 / 34

Linked List
Singly Linked List and Chains

Singly Linked List

In a singly linked list, each node has exactly one pointer field.

A singly linked list in which the last node has a null link is called a
chain.

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 8 / 34

Linked List
Singly Linked List and Chains

Functions of Linked Lists (1/2)

Insert (“Charlie”) after “Carter”.
1 Get an unused node a and set the data field of a to “Charlie”.
2 Set the link field of a to the node after “Carter”, which contains

“David”.
3 Set the link field of the node containing “Carter” to a.

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 9 / 34

Linked List
Singly Linked List and Chains

Functions of Linked Lists (2/2)

Delete the node containing “Carter”.
1 Find the node a that immediately precedes the node containing

“Carter”.
2 Set the link of a to point to “Carter”’s link.
⋆ We don’t need to move any data.
⋆ If possible, free the memory space of node containing “Carter”.

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 10 / 34

Linked List
Representing Chains in C

Outline

1 Singly Linked List and Chains

2 Representing Chains in C

3 Linked Stacks and Queues
Linked Stacks
Linked Queues

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 11 / 34

Linked List
Representing Chains in C

Pointers

C provides extensive supports for pointers.

&: address operator
*: dereferencing (indirect) operator

int i, *pi; // i:integer variable; pi: a pointer to an integer.
pi = &i; // pi gets the address of i.
i = 10; // assign the value 10 to i
*pi = 20; // assign the value 20 to i
if (pi == NULL) ... // or if (!pi); test if the pointer is null.

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 12 / 34

Linked List
Representing Chains in C

Dynamically Allocated Storage

C provides a mechanism, called heap, for allocating storage at
run-time.

malloc or calloc: dynamic memory allocation.
free: free the memory previously (dynamically) allocated.

int i, *pi;
float f, *pf;
pi = (int *) malloc(sizeof(int));
pf = (float *)malloc(sizeof(float));
*pi = 1024; *pf = 3.14;
free(pi);
free(pf);

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 13 / 34

Linked List
Representing Chains in C

Dynamically Allocated Storage

How about C++?

new: dynamic memory allocation.
delete: free the memory previously (dynamically) allocated.

int i, *pi;
float f, *pf;
pi = new int;
pf = new float;
*pi = 1024; *pf = 3.14;
delete pi;
delete pf;

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 14 / 34

Linked List
Representing Chains in C

Using struct and typedef

struct employee {
char name[4];
struct employee *link;

};
typedef struct employee human; //usage: human h1, h2;
typedef struct employee *hPointer; // usage: hPointer link;

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 15 / 34

Linked List
Representing Chains in C

Variable or Structure?

struct {
char name[4];
int age;

} person;

struct person {
char name[4];
int age;

} human;

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 16 / 34

https://onlinegdb.com/6ddil_GTF
https://onlinegdb.com/lfqXOMAAt

Linked List
Representing Chains in C

Self-Referential Structure

Demo code.

struct Node {
int data;
struct Node *link;

};

typedef struct Node Node;

struct Node {
int data;
Node *link;

};

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 17 / 34

https://onlinegdb.com/RtygU-Uf_

Linked List
Representing Chains in C

Self-Referential Structure

C allows us to create a pointer to a type that does not yet exist.

typedef struct listNode *listPointer; // listNode is still unknown!

struct listNode {
char data[4];
listPointer link;

};

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 18 / 34

Linked List
Representing Chains in C

More functions for linked lists

To create a new empty list:
listPointer first = NULL;

To test for an empty set:
#define IS_EMPTY (first) (!(first))

To obtain a new node:
first = (listPointer) malloc(sizeof(*first));

Enter “data” into the new node:
strcpy(first->data, "data");
first->link = NULL;

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 19 / 34

Linked List
Representing Chains in C

Further example: Create a two-node list

listPointer createTwo() {
/* create a linked list with two nodes */

listPointer first, second;
first = (listPointer)malloc(sizeof(*first));
second = (listPointer)malloc(sizeof(*second));
second->link = NULL;
second->data = 20; // or (*second).data = 20;
first->data = 10;
first->link = second;
return first;

}

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 20 / 34

Linked List
Representing Chains in C

Simple insert into front of the list

void insert(listPointer *first, listPointer x) {
/* insert a new node with data = 50 into the chain first after node x */

listPointer temp;
temp = (listPointer)malloc(sizeof(*temp));
if(IS_FULL(temp)){ // check the capacity of the list first!

printf("The memory is full\n");
exit(1);

}
temp->data = 50; // get the data ready!
if(*first) { //Case 1: nonempty list

temp->link = x->link;
x->link = temp;

} else { //Case 2: empty list
temp->link = NULL;
*first = temp;

}
}

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 21 / 34

Linked List
Representing Chains in C

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 22 / 34

Linked List
Representing Chains in C

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 22 / 34

Linked List
Representing Chains in C

Delete a node from the list

void delete(listPointer first, listPointer trail, listPointer x) {
/* delete x from the list, trail points to the preceding node of x

and *first is the front of the list */
if (trail) // Case 1: nonempty list

trail->link = x->link;
else // Case 2:

*first = (*first)->link;
free(x);

}

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 23 / 34

Linked List
Representing Chains in C

Printing a list

void printList(listPointer first) {
printf("The list contains: ");
for (; first ; first = first->link)

printf("%4d", first->data);
printf("\n");

}

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 24 / 34

Linked List
Representing Chains in C

Printing a list

void printList(listPointer first) {
printf("The list contains: ");
while (first) {

printf("%4d", first->data);
first = first->link;

}
printf("\n");

}

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 25 / 34

Linked List
Linked Stacks and Queues

Outline

1 Singly Linked List and Chains

2 Representing Chains in C

3 Linked Stacks and Queues
Linked Stacks
Linked Queues

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 26 / 34

Linked List
Linked Stacks and Queues

Linked Stacks & Queues

The links facilitate the implementation of stacks and queues.

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 27 / 34

Linked List
Linked Stacks and Queues

Linked Stacks

Declarations & Initialization for Stacks

#define MAX_STACKS 10 /*maximum number of stacks*/
typedef struct {

int key;
/*other fields */

} element;

typedef struct stack* stackPointer;
struct stack {

element data;
stackPointer link;

};
stackPointer top[MAX_STACKS];
//Initialization
for (int i=0; i<MAX_STACKS; i++)

top[i] = NULL;

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 28 / 34

Linked List
Linked Stacks and Queues

Linked Stacks

Stack: push

void push(int i, element item) {^^I
/* add item to the i-th stack */

stackPointer temp = malloc(sizeof(*temp));
temp->data = item;
temp->link = top[i];
top[i] = temp;

}

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 29 / 34

Linked List
Linked Stacks and Queues

Linked Stacks

Stack: pop

element pop(int i) { /* remove top element from the i-th stack*/
stackPointer temp = top[i];
element item;
if (!temp)

return stackEmpty();
item = temp->data;
top[i] = temp->link;
free(temp); // Note: elements are dynamically allocated!
return item;

}

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 30 / 34

Linked List
Linked Stacks and Queues

Linked Queues

Declarations & Initialization for Queues

#define MAX_QUEUES 10 /*maximum number of stacks*/

typedef struct queue* queuePointer;

struct queue {
element data;
queuePointer link;

};
queuePointer front[MAX_QUEUES], queuePointer rear[MAX_QUEUES];
//Initialization
for (int i=0; i<MAX_QUEUES; i++) {

front[i] = NULL; rear[i] = NULL;
}

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 31 / 34

Linked List
Linked Stacks and Queues

Linked Queues

Queue: add (enqueue)
void add(i, item) {
/* add item to the rear of queue i */

queuePointer temp = malloc(sizeof(*temp));
temp->data = item;
temp->link = NULL;
if (front[i])

rear[i]->link = temp;
else

front[i] = temp;
rear[i] = temp;

}

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 32 / 34

Linked List
Linked Stacks and Queues

Linked Queues

Queue: delete (dequeue)

element delete(int i) {
/* delete an element from queue i */

queuePointer temp = front[i];
element item;
if (!temp)

return queueEmpty();
item = temp->data
front[i] = temp->link;
free(temp);
return item;

}

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 33 / 34

Linked List

Discussions

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 34 / 34

	Singly Linked List and Chains
	Representing Chains in C
	Linked Stacks and Queues
	Linked Stacks
	Linked Queues

	

