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Linked List
Polynomial Representation

Goal
Represent the polynomial:

am−1xem−1 + am−2xem−2 + · · ·+ a0xe0 .

Idea: Represent each term as a node containing
coefficient field
exponent field
pointer to the next term
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Linked List
Polynomial Representation

Declaration

typedef struct polyNode *polyPointer;
struct polyNode {

int coef;
int expon;
polyPointer link;

};
polyPointer a, b;
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Polynomial Representation

Examples

a = 3x14 + 2x8 + 1

b = 8x14 − 3x10 + 10x6

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 6 / 26



Linked List
Polynomial Representation

Generating the first three terms of c = a + b
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Linked List
Polynomial Representation

Addition of Two Polynomials
polyPointer polyAdd(polyPointer a, polyPointer b) { /* return a polynomial which is the sum of a and b */

polyPointer front, rear, temp;
int sum; rear = (polyPointer)malloc(sizeof(*rear));
if (IS_FULL(rear)) { printf("The memory is full\n"); exit(1) }
front = rear;
while (a && b) {

switch (COMPARE(a->expon, b->expon)) {
case -1: /* a->expon < b->expon */

attach(b->coef, b->expon, &rear);
b = b->link;
break;

case 0: /* a->expon = b->expon */
sum = a->coef + b->coef;
if (sum)

attach(sum, a->expon, &rear);
a = a->link; b = b->link; break;

case 1: /* a->expon > b->expon */
attach(a->coef, a->expon, &rear);
a = a->link;

}
/* copy rest of list a and then list b*/
for (; a; a = a->link) attach(a->coef, a->expon, &rear);
for (; b; b = b->link) attach(b->coef, b->expon, &rear);
rear->link = NULL:
/* delete extra initial node */
temp = front; front = front->link; free(temp);
return front;

}
}
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Linked List
Polynomial Representation

Attach a new node to the end of a list

void attach(float coefficient, int exponent, polyPointer *ptr) {
/* create a new node with coef = coefficient and expon = exponent,
attach it to the node pointed by ptr and update ptr to point to this new node */

polyPointer temp;
temp = (polyPointer)malloc(sizeof(*temp));
if (IS_FULL(temp)) {

printf("The memory is full\n");
exit(1);

}
temp->coef = coefficient;
temp->expon = exponent;
(*ptr)->link = temp;
*ptr = temp;

}
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Linked List
Polynomial Representation

Analysis of polyAdd

Consider
A(x) = am−1xem−1 + am−2xem−2 + · · ·+ a0xe0 ,

B(x) = bm−1xfm−1 + bm−2xfm−2 + · · ·+ b0xf0

coefficient additions:
0 ≤ #coefficient additions ≤ min{m, n}

exponent comparisons:
In each iteration, either pointer a or b or both move to the next
term(s).
The maximum number of exponent comparisons is m + n

create new nodes for C:
The maximum number of terms in C isO(m + n).
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Linked List
Polynomial Representation

Erasing Polynomials

One by one, free the nodes pointed by ptr.

void erase(polyPointer *ptr) {
/* erase the polynomial pointed to by ptr */

polyPointer temp;
while (*ptr) {

temp = *ptr;
*ptr = (*ptr)->link;
free(temp);

}
}
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Linked List
Polynomial Representation

A Question

Can we free all the nodes of a polynomial more efficiently?

Consider the circular list representation.
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Linked List
Polynomial Representation

Circular List Representation

Circular List
A singly linked list in which the link field of the last node points to the
first node is called a circular list.

3x14 + 2x8 + 1:

In order to obtain an efficient erase algorithm, we maintain a list of
nodes that have been freed.

Only when the list is empty do we need to use malloc to create a
new node.
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Linked List
Polynomial Representation

Functions to deal with free nodes of polynomials

Let avail be a variable of type polyPointer which points to the
first node in the list of freed nodes.

Instead of using malloc() and free(), we now use getNode() and
retNode().
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Linked List
Polynomial Representation

getNode()
⋆ To avoid the case of zero polynomials, we introduce a header into each polynomial.

polyPointer getNode(void) {
/* provide a node header for use */

polyPointer header;
if (avail) {

header = avail;
avail = avail->link;

} else
malloc(header, sizeof(*header));
return header;

}
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Linked List
Polynomial Representation

retNode()

void retNode(polyPointer ptr) {
/* return a node to the available list */

ptr->link = avail;
avail = ptr;

}
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Linked List
Polynomial Representation

Erasing a circular list
void cir_erase(polyPointer *ptr) {

polyPointer temp;
if (*ptr) {

temp = (*ptr)->link;
(*ptr)->link = avail;
avail = temp;
*ptr = NULL;

}
}
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Linked List
Polynomial Representation

Polynomials with header nodes (Examples)
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Linked List
Additional List Operations

Additional List Operations

a chain (singly linked list in which the last node has a null link):
inversion (反轉)
concatenation (連接) of two chains

a circular list (singly linked list in which the last node points to the
first node):

insert a node at the front of a circular list
determine the length of a circular list
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Linked List
Additional List Operations

Inversion of a chain

listPointer invert (listPointer lead) {
// invert the list pointed to by lead

listPointer middle, trail;
middle = NULL;
while (lead) {

trail = middle;
middle = lead;
lead = lead->link;
middle->link = trail;

}
return middle;

}
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Linked List
Additional List Operations

Concatenation of two singly linked lists

listPointer concatenate (listPointer ptr1, listPointer ptr2) {
/* produce a new list that contains the list

ptr1 followed by the list ptr2. */
listPointer temp;
// check for empty lists
if (!ptr1) return ptr2;
if (!ptr2) return ptr1;
/* neither list is empty, find end of first list */
for (temp = ptr1; temp->link; temp = temp->link);
// linked end of first to start of second
temp->link = ptr2;

}
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Linked List
Additional List Operations

Inserting at the front of a circular list
void insertFront (listPointer *last, listPointer node) {
/* insert node at the front of the circular list

whose last node is last */
if (! (*last)){
// list is empty, change last to point to new entry

*last = node;
node->link = node;

} else {
// list is not empty, add a new entry at front

node->link = (*last)->link;
(*last)->link = node;

}
}
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Additional List Operations

Find the length of a circular list

int length (listPointer last) {
/* find the length of circular list last */^^I

listPointer temp;
int count = 0;
if (last) {

temp = last;
do {

count++;
temp = temp->link;

} while (temp != last);
}
return count;

}
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Discussions
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