
Linked List

Linked List
Polynomials

Joseph Chuang-Chieh Lin (林莊傑)

Department of Computer Science & Engineering,
National Taiwan Ocean University

Fall 2024

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 1 / 26



Linked List

Outline

1 Polynomial Representation

2 Additional List Operations

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 2 / 26



Linked List
Polynomial Representation

Outline

1 Polynomial Representation

2 Additional List Operations

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 3 / 26



Linked List
Polynomial Representation

Goal
Represent the polynomial:

am−1xem−1 + am−2xem−2 + · · ·+ a0xe0 .

Idea: Represent each term as a node containing
coefficient field
exponent field
pointer to the next term

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 4 / 26



Linked List
Polynomial Representation

Goal
Represent the polynomial:

am−1xem−1 + am−2xem−2 + · · ·+ a0xe0 .

Idea: Represent each term as a node containing
coefficient field
exponent field
pointer to the next term

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 4 / 26



Linked List
Polynomial Representation

Declaration

typedef struct polyNode *polyPointer;
struct polyNode {

int coef;
int expon;
polyPointer link;

};
polyPointer a, b;

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 5 / 26



Linked List
Polynomial Representation

Examples

a = 3x14 + 2x8 + 1

b = 8x14 − 3x10 + 10x6

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 6 / 26



Linked List
Polynomial Representation

Generating the first three terms of c = a + b

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 7 / 26



Linked List
Polynomial Representation

Generating the first three terms of c = a + b

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 7 / 26



Linked List
Polynomial Representation

Generating the first three terms of c = a + b

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 7 / 26



Linked List
Polynomial Representation

Addition of Two Polynomials
polyPointer polyAdd(polyPointer a, polyPointer b) { /* return a polynomial which is the sum of a and b */

polyPointer front, rear, temp;
int sum; rear = (polyPointer)malloc(sizeof(*rear));
if (IS_FULL(rear)) { printf("The memory is full\n"); exit(1) }
front = rear;
while (a && b) {

switch (COMPARE(a->expon, b->expon)) {
case -1: /* a->expon < b->expon */

attach(b->coef, b->expon, &rear);
b = b->link;
break;

case 0: /* a->expon = b->expon */
sum = a->coef + b->coef;
if (sum)

attach(sum, a->expon, &rear);
a = a->link; b = b->link; break;

case 1: /* a->expon > b->expon */
attach(a->coef, a->expon, &rear);
a = a->link;

}
/* copy rest of list a and then list b*/
for (; a; a = a->link) attach(a->coef, a->expon, &rear);
for (; b; b = b->link) attach(b->coef, b->expon, &rear);
rear->link = NULL:
/* delete extra initial node */
temp = front; front = front->link; free(temp);
return front;

}
}

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 8 / 26



Linked List
Polynomial Representation

Attach a new node to the end of a list

void attach(float coefficient, int exponent, polyPointer *ptr) {
/* create a new node with coef = coefficient and expon = exponent,
attach it to the node pointed by ptr and update ptr to point to this new node */

polyPointer temp;
temp = (polyPointer)malloc(sizeof(*temp));
if (IS_FULL(temp)) {

printf("The memory is full\n");
exit(1);

}
temp->coef = coefficient;
temp->expon = exponent;
(*ptr)->link = temp;
*ptr = temp;

}

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 9 / 26



Linked List
Polynomial Representation

Analysis of polyAdd

Consider
A(x) = am−1xem−1 + am−2xem−2 + · · ·+ a0xe0 ,

B(x) = bm−1xfm−1 + bm−2xfm−2 + · · ·+ b0xf0

coefficient additions:
0 ≤ #coefficient additions ≤ min{m, n}

exponent comparisons:
In each iteration, either pointer a or b or both move to the next
term(s).
The maximum number of exponent comparisons is m + n

create new nodes for C:
The maximum number of terms in C isO(m + n).

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 10 / 26



Linked List
Polynomial Representation

Analysis of polyAdd

Consider
A(x) = am−1xem−1 + am−2xem−2 + · · ·+ a0xe0 ,

B(x) = bm−1xfm−1 + bm−2xfm−2 + · · ·+ b0xf0

coefficient additions:
0 ≤ #coefficient additions ≤ min{m, n}

exponent comparisons:
In each iteration, either pointer a or b or both move to the next
term(s).
The maximum number of exponent comparisons is m + n

create new nodes for C:
The maximum number of terms in C isO(m + n).

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 10 / 26



Linked List
Polynomial Representation

Analysis of polyAdd

Consider
A(x) = am−1xem−1 + am−2xem−2 + · · ·+ a0xe0 ,

B(x) = bm−1xfm−1 + bm−2xfm−2 + · · ·+ b0xf0

coefficient additions:
0 ≤ #coefficient additions ≤ min{m, n}

exponent comparisons:
In each iteration, either pointer a or b or both move to the next
term(s).
The maximum number of exponent comparisons is m + n

create new nodes for C:

The maximum number of terms in C isO(m + n).

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 10 / 26



Linked List
Polynomial Representation

Analysis of polyAdd

Consider
A(x) = am−1xem−1 + am−2xem−2 + · · ·+ a0xe0 ,

B(x) = bm−1xfm−1 + bm−2xfm−2 + · · ·+ b0xf0

coefficient additions:
0 ≤ #coefficient additions ≤ min{m, n}

exponent comparisons:
In each iteration, either pointer a or b or both move to the next
term(s).
The maximum number of exponent comparisons is m + n

create new nodes for C:
The maximum number of terms in C is

O(m + n).

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 10 / 26



Linked List
Polynomial Representation

Analysis of polyAdd

Consider
A(x) = am−1xem−1 + am−2xem−2 + · · ·+ a0xe0 ,

B(x) = bm−1xfm−1 + bm−2xfm−2 + · · ·+ b0xf0

coefficient additions:
0 ≤ #coefficient additions ≤ min{m, n}

exponent comparisons:
In each iteration, either pointer a or b or both move to the next
term(s).
The maximum number of exponent comparisons is m + n

create new nodes for C:
The maximum number of terms in C isO(m + n).

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 10 / 26



Linked List
Polynomial Representation

Erasing Polynomials

One by one, free the nodes pointed by ptr.

void erase(polyPointer *ptr) {
/* erase the polynomial pointed to by ptr */

polyPointer temp;
while (*ptr) {

temp = *ptr;
*ptr = (*ptr)->link;
free(temp);

}
}

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 11 / 26



Linked List
Polynomial Representation

A Question

Can we free all the nodes of a polynomial more efficiently?

Consider the circular list representation.

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 12 / 26



Linked List
Polynomial Representation

A Question

Can we free all the nodes of a polynomial more efficiently?

Consider the circular list representation.

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 12 / 26



Linked List
Polynomial Representation

Circular List Representation

Circular List
A singly linked list in which the link field of the last node points to the
first node is called a circular list.

3x14 + 2x8 + 1:

In order to obtain an efficient erase algorithm, we maintain a list of
nodes that have been freed.

Only when the list is empty do we need to use malloc to create a
new node.

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 13 / 26



Linked List
Polynomial Representation

Circular List Representation

Circular List
A singly linked list in which the link field of the last node points to the
first node is called a circular list.

3x14 + 2x8 + 1:

In order to obtain an efficient erase algorithm, we maintain a list of
nodes that have been freed.
Only when the list is empty do we need to use malloc to create a
new node.

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 13 / 26



Linked List
Polynomial Representation

Functions to deal with free nodes of polynomials

Let avail be a variable of type polyPointer which points to the
first node in the list of freed nodes.

Instead of using malloc() and free(), we now use getNode() and
retNode().

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 14 / 26



Linked List
Polynomial Representation

Functions to deal with free nodes of polynomials

Let avail be a variable of type polyPointer which points to the
first node in the list of freed nodes.
Instead of using malloc() and free(), we now use getNode() and
retNode().

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 14 / 26



Linked List
Polynomial Representation

getNode()
⋆ To avoid the case of zero polynomials, we introduce a header into each polynomial.

polyPointer getNode(void) {
/* provide a node header for use */

polyPointer header;
if (avail) {

header = avail;
avail = avail->link;

} else
malloc(header, sizeof(*header));
return header;

}

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 15 / 26



Linked List
Polynomial Representation

retNode()

void retNode(polyPointer ptr) {
/* return a node to the available list */

ptr->link = avail;
avail = ptr;

}

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 16 / 26



Linked List
Polynomial Representation

Erasing a circular list
void cir_erase(polyPointer *ptr) {

polyPointer temp;
if (*ptr) {

temp = (*ptr)->link;
(*ptr)->link = avail;
avail = temp;
*ptr = NULL;

}
}

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 17 / 26



Linked List
Polynomial Representation

Polynomials with header nodes (Examples)

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 18 / 26



Linked List
Additional List Operations

Outline

1 Polynomial Representation

2 Additional List Operations

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 19 / 26



Linked List
Additional List Operations

Additional List Operations

a chain (singly linked list in which the last node has a null link):
inversion (反轉)
concatenation (連接) of two chains

a circular list (singly linked list in which the last node points to the
first node):

insert a node at the front of a circular list
determine the length of a circular list

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 20 / 26



Linked List
Additional List Operations

Inversion of a chain

listPointer invert (listPointer lead) {
// invert the list pointed to by lead

listPointer middle, trail;
middle = NULL;
while (lead) {

trail = middle;
middle = lead;
lead = lead->link;
middle->link = trail;

}
return middle;

}

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 21 / 26



Linked List
Additional List Operations

Inversion of a chain

listPointer invert (listPointer lead) {
// invert the list pointed to by lead

listPointer middle, trail;
middle = NULL;
while (lead) {

trail = middle;
middle = lead;
lead = lead->link;
middle->link = trail;

}
return middle;

}

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 22 / 26



Linked List
Additional List Operations

Concatenation of two singly linked lists

listPointer concatenate (listPointer ptr1, listPointer ptr2) {
/* produce a new list that contains the list

ptr1 followed by the list ptr2. */
listPointer temp;
// check for empty lists
if (!ptr1) return ptr2;
if (!ptr2) return ptr1;
/* neither list is empty, find end of first list */
for (temp = ptr1; temp->link; temp = temp->link);
// linked end of first to start of second
temp->link = ptr2;

}

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 23 / 26



Linked List
Additional List Operations

Inserting at the front of a circular list
void insertFront (listPointer *last, listPointer node) {
/* insert node at the front of the circular list

whose last node is last */
if (! (*last)){
// list is empty, change last to point to new entry

*last = node;
node->link = node;

} else {
// list is not empty, add a new entry at front

node->link = (*last)->link;
(*last)->link = node;

}
}

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 24 / 26



Linked List
Additional List Operations

Find the length of a circular list

int length (listPointer last) {
/* find the length of circular list last */^^I

listPointer temp;
int count = 0;
if (last) {

temp = last;
do {

count++;
temp = temp->link;

} while (temp != last);
}
return count;

}

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 25 / 26



Linked List

Discussions

Joseph C. C. Lin (CSE, NTOU, TW) Linked List Fall 2024 26 / 26


	Polynomial Representation
	Additional List Operations
	

