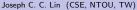
Linked List

Equivalence Relations, Sparse Matrices & Doubly Linked Lists

Joseph Chuang-Chieh Lin (林莊傑)

Department of Computer Science & Engineering, National Taiwan Ocean University

Fall 2024



Linked List

Fall 2024

< □ > < 同 > < 三 > <

Linked List

Outline

Equivalence Relations

2 Sparse Matrices Revisted

Doubly Linked Lists

Joseph C. C. Lin (CSE, NTOU, TW)

<ロ> < 国> < 国> < 国> <

Linked List Equivalence Relations

Outline

1 Equivalence Relations

2 Sparse Matrices Revisted

3 Doubly Linked Lists

Joseph C. C. Lin (CSE, NTOU, TW)

< ロ > < 回 > < 回 > <

Equivalence Relation

A relation over a set S is said to be an equivalence relation over S iff it is symmetric, reflexive, and transitive over S.

- reflexive: $x \equiv x$ for each $x \in S$.
- symmetric: for $x, y \in S$, if $x \equiv y$, then $y \equiv x$.
- transitive: for x, y, z, if $x \equiv y$ and $y \equiv z$, then $x \equiv z$.

< □ > < □ > < □ > < □ > <</p>

Equivalence Relation

A relation over a set S is said to be an equivalence relation over S iff it is symmetric, reflexive, and transitive over S.

- reflexive: $x \equiv x$ for each $x \in S$.
- symmetric: for $x, y \in S$, if $x \equiv y$, then $y \equiv x$.
- transitive: for x, y, z, if $x \equiv y$ and $y \equiv z$, then $x \equiv z$.

Example

Given $0 \equiv 4$, $3 \equiv 1$, $6 \equiv 10$, $8 \equiv 9$, $7 \equiv 4$, $6 \equiv 8$, $3 \equiv 5$, $2 \equiv 11$, $11 \equiv 1$.

< □ > < 同 > < 三 >

Equivalence Relation

A relation over a set S is said to be an equivalence relation over S iff it is symmetric, reflexive, and transitive over S.

- reflexive: $x \equiv x$ for each $x \in S$.
- symmetric: for $x, y \in S$, if $x \equiv y$, then $y \equiv x$.
- transitive: for x, y, z, if $x \equiv y$ and $y \equiv z$, then $x \equiv z$.

Example

Given $0 \equiv 4$, $3 \equiv 1$, $6 \equiv 10$, $8 \equiv 9$, $7 \equiv 4$, $6 \equiv 8$, $3 \equiv 5$, $2 \equiv 11$, $11 \equiv 1$. We have three equivalent classes:

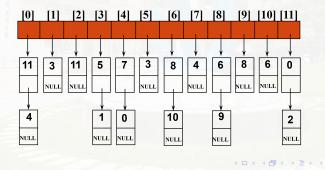
$$\{0, 2, 4, 7, 11\}, \{1, 3, 5\}, \{6, 8, 9, 10\}.$$

< □ > < □ > < 三 > <

Lists after Giving Pairs as the Input

 $\begin{array}{l} 0 \equiv 4, 3 \equiv 1, 6 \equiv 10, 8 \equiv 9, 7 \equiv 4, \\ 6 \equiv 8, 3 \equiv 5, 2 \equiv 11, 11 \equiv 0. \end{array}$

typedef struct node *nodePointer; typedef struct node { int data; nodePointer link; };



Joseph C. C. Lin (CSE, NTOU, TW)

Linked List Sparse Matrices Revisted

Outline

2 Sparse Matrices Revisted

Joseph C. C. Lin (CSE, NTOU, TW)

< ロ > < 回 > < 回 > <

Issues for Previous Representation

- When we performed matrix operations such as +, -, or *, the number of **nonzero terms** varied.
- The sequential representation of sparse matrices suffered from the same inadequacies as the similar representation of polynomials.

Solution:

• Linked list representation for sparse matrices.

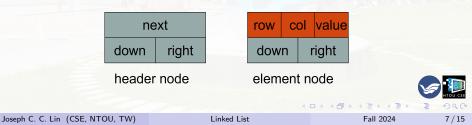
< □ > < 同 > < 三 >

Issues for Previous Representation

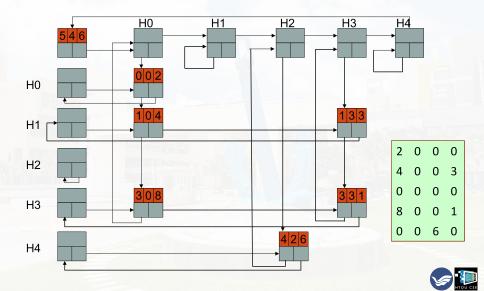
- When we performed matrix operations such as +, -, or *, the number of **nonzero terms** varied.
- The sequential representation of sparse matrices suffered from the same inadequacies as the similar representation of polynomials.

Solution:

- Linked list representation for sparse matrices.
- Two types of nodes in the representation: header nodes and element nodes.



Linked List Sparse Matrices Revisted



э

< ロ > < 回 > < 回 > <

Linked List Sparse Matrices Revisted

Sparse Matrix Representation

- We represent each column (row) of a sparse matrix as a circularly linked list with a header node.
- The header node for row *i* is also the header node for column *i*. The number of header nodes is max{numRows, numCols}.
- Each element node is simultaneously linked into two lists: a row list, and a column list.
- Each head node is belonged to three lists: a row list, a column list, and a header node list.

Linked List Doubly Linked Lists

Outline

Equivalence Relations

Sparse Matrices Revisted

3 Doubly Linked Lists

Joseph C. C. Lin (CSE, NTOU, TW)

・ ロ > ・ 日 > ・ 川 > ・

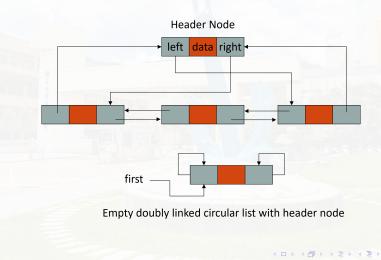
Issues for Singly Linked Lists

- The only way to find the node that precedes some node *p* is to start at the beginning of the list.
- Sometimes it is necessary to move in either direction.

Doubly linked lists:

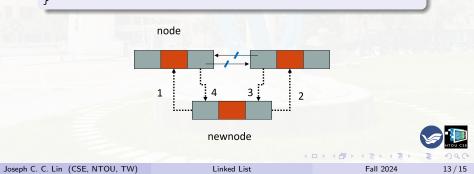
```
typedef struct node *nodePointer;
typedef struct node {
    nodePointer llink;
    element data;
    nodePointer rlink;
};
```


ptr = ptr->llink->rlink = ptr->rlink->llink



Linked List Doubly Linked Lists

Insertion into a doubly linked circular List



Linked List Doubly Linked Lists

Insertion into a doubly linked circular List

```
void d_LCL_delete(nodePointer node, nodePointer deleted) {
      /* delete from the doubly linked list */
           if (node == deleted)
               printf("Deletion of header node not permitted.\n");
           else {
               deleted->llink->rlink = deleted->rlink;^^I^// 1
               deleted->rlink->llink = deleted->llink;^I^I// 2
               free(deleted);
           }
      }
                   node
                            2
                                    deleted
Joseph C. C. Lin (CSE, NTOU, TW)
                                    Linked List
                                                              Fall 2024
                                                                            14/15
```

Discussions

Joseph C. C. Lin (CSE, NTOU, TW)

Fall 2024

・ 日 ・ ・ 日 ・ ・ 日 ・ ・

 $15 \, / \, 15$