Arrays and Structures Multidimensional Arrays

Joseph Chuang-Chieh Lin (林莊傑)

Department of Computer Science & Engineering, National Taiwan Ocean University

Outline

Two-Dimensional Arrays

Three and More Dimensional Arrays

Representation of Multidimensional Arrays

- Implemented by a one-dimensional array.
- Two common ways of representation.
 - Row major or column major.
- Consider array A[3][2] as an example.

Representation of Multidimensional Arrays

- Implemented by a one-dimensional array.
- Two common ways of representation.
 - Row major or column major.
- Consider array A[3][2] as an example.

Representation of Multidimensional Arrays

- Implemented by a one-dimensional array.
- Two common ways of representation.
 - Row major or column major.
- Consider array A[3][2] as an example.

Arrays and Structures: Multidimensional Arrays
Two-Dimensional Arrays

Outline

Two-Dimensional Arrays

2 Three and More Dimensional Arrays

Two-Dimensional Arrays

- $A[u_0][u_1]$ is interpreted as u_0 rows: $row_0, row_1, \ldots, row_{u_0-1}$.
 - Each row contains u_1 elements.
- The address of A[i][j] is $\alpha + i \cdot u_1 + j$, where α is the address of A[0][0].

Two-Dimensional Arrays

- $A[u_0][u_1]$ is interpreted as u_0 rows: $row_0, row_1, \dots, row_{u_0-1}$.
 - Each row contains u_1 elements.
- The address of A[i][j] is $\alpha + i \cdot u_1 + j$, where α is the address of A[0][0].

	$col_0 \qquad col_1 \qquad \cdots$		col_{u_1-1}	
row_0	A[0][0]	A[0][1]	1	$A[0][u_1-1]$
row_1	A[1][0]	A[1][1]	•••	$A[1][u_1-1]$
:				
row_{u_0-1}	$A[u_0-1][0]$	$A[u_0-1][1]$		$A[u_0-1][u_1-1]$

Arrays and Structures: Multidimensional Arrays
Three and More Dimensional Arrays

Outline

Two-Dimensional Arrays

2 Three and More Dimensional Arrays

Three-Dimensional Arrays

- $A[u_0][u_1][u_2]$ is interpreted as u_0 two-dimensional arrays of dimension $u_1 \times u_2$.
- The address of A[i][0][0] is $\alpha + i \cdot u_1 \cdot u_2 + j$, where α is the address of A[0][0][0].

Three-Dimensional Arrays

- $A[u_0][u_1][u_2]$ is interpreted as u_0 two-dimensional arrays of dimension $u_1 \times u_2$.
- The address of A[i][0][0] is $\alpha + i \cdot u_1 \cdot u_2 + j$, where α is the address of A[0][0][0].
- The address of A[i][j][k] is $\alpha + i \cdot u_1 \cdot u_2 + j \cdot u_2 + k$.

Multidimensional Arrays

• The address of $A[i_0][i_1][i_2] \dots [i_{n-1}]$ is:

$$\alpha + i_{0}u_{1}u_{2}...u_{n-1}
+ i_{1}u_{2}...u_{n-1}
+ i_{2}u_{3}...u_{n-1}
\vdots
+ i_{n-2}u_{n-1}
+ i_{n-1}
= \alpha + \sum_{j=0}^{n-1} i_{j}a_{j},$$

where
$$a_j = \prod_{k=j+1}^{n-1} u_k$$
 for $0 \le j \le n-1$ and $a_{n-1} = 1$.

Arrays and Structures: Multidimensional Arrays

Discussions

