Basic Concepts: Overview

Basic Concepts
Overview & Algorithm Specification

Joseph Chuang-Chieh Lin (#RiE#)

Department of Computer Science & Engineering,
National Taiwan Ocean University

Fall 2024

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview Fall 2024 1/30

Basic Concepts: Overview

Outline

@ System Life Cycle

© Algorithm Specification
@ Recursive Algorithms

© Data Abstraction

Joseph C. C. Lin (CSE, NTOU, TW)

Basic Concepts: Overview

Fall 2024

Basic Concepts: Overview
System Life Cycle

Outline

@ System Life Cycle

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview Fall 2024 3/30

Basic Concepts: Overview
System Life Cycle

System Life Cycle

Requirements.

Analysis.
e Bottom-up vs. top-down.
o Design.
o Data objects.
e Operations.

Refinement and coding.
Verification.

o Correctness proofs.
o Testing.
o Error removal (debugging).

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview Fall 2024 4/30

Basic Concepts: Overview
System Life Cycle

Requirement

@ Purpose of the project.

@ We should rigorously define the input and the output.

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview Fall 2024 5/30

Basic Concepts: Overview
System Life Cycle

Analysis

@ Bottom-up:
o Older and unstructured.

e Due to not having a master plan for the project, the resulting program
frequently has many loosely connected, error-ridden segments.

@ Top-down:
o Begin with the purpose.

o Use the end (purpose) to divide the program into manageable
segments.

o Generate diagrams that are used to design the system.

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview Fall 2024 6/30

Basic Concepts: Overview
System Life Cycle

Design

@ The designer starts to approach the system...

@ The data objects that the program needs and the operations
performed on them.

@ For example, consider a scheduling system for a university.

o Data objects: students, courses, assistants, professors, etc.
e Operations: inserting, removing, searching within each object or
between them.

@ We postpone the implementation decisions because the abstract data
types and the algorithms specifications are

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview Fall 2024 7/30

Basic Concepts: Overview
Algorithm Specification

Outline

© Algorithm Specification

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview

Fall 2024

Basic Concepts: Overview
Algorithm Specification

Algorithm Specification

Algorithm

An algorithm is a finite set of instructions that accomplishes a particular
task.

Criteria of an algorithm
@ Input.
Output.
Definiteness (clear & unambiguous).

Finiteness* (terminate after a finite number of steps).

e 6 o6 o

Effectiveness (each instruction must be basic enough to be carried

out).
(&) £

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview Fall 2024 9/30

Basic Concepts: Overview
Algorithm Specification

Example: Selection Sort

e Goal: Sort a set of n (unsorted) integers.

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview

Fall 2024

o

10/30

Basic Concepts: Overview
Algorithm Specification

Example: Selection Sort

e Goal: Sort a set of n (unsorted) integers.

@ A solution:

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview

Fall 2024

o

10/30

Basic Concepts: Overview
Algorithm Specification

Example: Selection Sort

e Goal: Sort a set of n (unsorted) integers.
@ A solution: Find the smallest and place it next in the sorted list.

What's the issue/problem here?

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview Fall 2024 10/30

Basic Concepts: Overview
Algorithm Specification

Example: Selection Sort

e Goal: Sort a set of n (unsorted) integers.
@ A solution: Find the smallest and place it next in the sorted list.

What's the issue/problem here?

@ How the integers are initially stored?

@ Where should we place the result?

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview Fall 2024 10/30

Basic Concepts: Overview
Algorithm Specification

Selection Sort

@ Assume that the integers are stored in an array ‘list’, such that the
ith integer is stored in the ith position 1ist[i].

for (i = 0; i<m; i++) {
Examine list[i] to list[n-1] and suppose that the smallest
integer is at list[min];
Interchange list[i] and list[min];

}

= sample code.

o

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview Fall 2024 11/30

https://onlinegdb.com/Ck7_s7HX0

Basic Concepts: Overview
Algorithm Specification

#include <stdio.h>
#include <stdlib.h>
#define MAX_SIZE 101

void sort(int list[], int n) {

int i, j, min, temp;

for (i = 0; i < nj; i++) {
void SWAP(int *x, int *y) { min =.i; . . .

*x = *x"*y; *y = *xA*y; *x = *xA*y; for (J = l+1; J < n; J++) {
} if (list[j] < list[min])
void sort(int [1, int); /* EFHHF »/ . min = j;
if (i != min) {

[
int main() { SWAP(&list[i], &list[min])

inGekiy N ;
int 1ist[MAX_SIZE]; ¥
scanf ("%d", &n); /* % VE A2 x/ ¥
for (i = 0; i < n; i++) { /* Mk A T J
list[i] = rand() % 1000;
printf("%d ", list[il);

}

printf("\n");

sort(list, n);

for (i = 0; i < n; i++) printf("/d ", list[il);
return O;

}

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview Fall 2024 12/30

Basic Concepts: Overview
Algorithm Specification

Example: Binary Search

@ Goal: Searching in a sorted list.

while (there are more integers to check) {

middle = (left + right) / 2;

if (searchnum < list[middle])
right = middle - 1;

else if (searchnum == list[middle])
return middle;

else
left = middle + 1;

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview Fall 2024

Basic Concepts: Overview
Algorithm Specification

Example

i |[0)| (2] |[2]| (31| [4] | [5]| (6] | (71| (8]][9] |[10]|[11]|[12]|[13]|[14]
11| 15|20 | 23|29 |31 |35 |36 |43 |47 |49 |50 | 53 [56
11|15 |20 | 23 |29 |31 35|36 |43 |47 |49 |50]|53]|56
11| 15|20 | 23 (29)31 | 35|36 | 43 | 47 | 49 | 50 | 53 | 56

i [[0] | [a] | [2] | [3] | [4] | [5]|[6] | [7] | [8] | [9] |[10]|[11]|[12]|[13]
11 [15|20 | 23 |29 |31 35|36 |43 |47 | 49 | 50 | 53
11 |15 |20 | 23 | 29 |31 [35 |36 | 43 | 47 | 49 | 50 | 53
11 |15 |20 | 23 | 29 | 31 | 35 | 36 47 | 49 | 50 | 53
1115 |20(23 |29 3135 36| 43) 47 | 49 | 50 | 53

sample code @

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview Fall 2024 14 /30

wlw|lw|w

https://onlinegdb.com/RvViyKQyv

Basic Concepts: Overview
Algorithm Specification

int binSearch(int list[], int target, int left, int right) {
/* return its position if found. Otherwise return -1 */
int middle;
while (left <= right) {
middle = (left + right)/2;
if (list[middle] < target) {
left = middle + 1;
} else if (list[middle] == target)
return middle;
else
right = middle - 1;
}

return -1;

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview Fall 2024

Basic Concepts: Overview
Algorithm Specification
Recursive Algorithms

Outline

© Algorithm Specification
@ Recursive Algorithms

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview

Fall 2024

)

.
'
NToU cse

16 /30

Basic Concepts: Overview
Algorithm Specification
Recursive Algorithms

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview Fall 2024 17 /30

Basic Concepts: Overview
Algorithm Specification
Recursive Algorithms

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview Fall 2024 18 /30

Basic Concepts: Overview
Algorithm Specification
Recursive Algorithms

Recursion

@ Direction recursion.
e Functions can call themselves.

@ Indirect recursion.

e Functions may call other functions that invoke the calling function

again.

void recurse() {
recurse();

}

int main() {

recurse();

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview

Fall 2024

S

19/30

Basic Concepts: Overview
Algorithm Specification
Recursive Algorithms

Benefits of using recursion

o Extremely powerful /elegant

@ It allow us to express an otherwise complex process in very clear term
usually.

Example:

= B

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview Fall 2024 20/30

Basic Concepts: Overview
Algorithm Specification
Recursive Algorithms

Benefits of using recursion

o Extremely powerful /elegant

@ It allow us to express an otherwise complex process in very clear term
usually.

e (), (1)

o

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview Fall 2024 20/30

Basic Concepts: Overview
Algorithm Specification
Recursive Algorithms

Another Example: Fibonacci Sequence

@ F(n)=F(n—1)+ F(n—2), for n > 2.
F(0) = 0, F(1) = 1: boundary conditions.

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview Fall 2024 21/30

Basic Concepts: Overview
Algorithm Specification
Recursive Algorithms

Another Example: Fibonacci Sequence

@ F(n)=F(n—1)+ F(n—2), for n > 2.
F(0) = 0, F(1) = 1: boundary conditions.

@ However, a recursive algorithm for computing F(n) given an arbitrary
nis NOT a good idea. ®

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview Fall 2024 21/30

Basic Concepts: Overview
Algorithm Specification
Recursive Algorithms

F(n)
F(n—1) F(n—-2)
F(n—2) F(n—3) Fn-3 F(n—4)

F(n— Fn—4) F(n-5) F(n-— (n—

/ N\ / N\ / N\ / N\ / N\ / N\ / N\ / N\

/ \ / \ / \ / \ / \ / \ / \ / \
/ \ / \ / \ / \ / \ / \ / \ / \
/ N/ \ 7/ \ 7/ \ / \ 7/ \ 7/ \ 7/ \

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview Fall 2024 22/30

Basic Concepts: Overview
Algorithm Specification
Recursive Algorithms

Recursive Binary Search

int binSearch(int list[], int target, int left, int right) {
/* return its position if found. Otherwise return -1 */
int middle;
while (left <= right) {
middle = (left + right)/2;
if (list[middle] < target) {
return binSearch(list, target, middle+l, right);
} else if (list[middle] == target)
return middle;
else
return binSearch(list, target, left, middle-1);

}

return -1;

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview Fall 2024

Basic Concepts: Overview
Data Abstraction

Outline

© Data Abstraction

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview Fall 2024 24 /30

Basic Concepts: Overview
Data Abstraction

Data Abstraction

Data Type:
A collection of
@ objects.

@ a set of operations that act on the objects.

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview Fall 2024 25/30

Basic Concepts: Overview
Data Abstraction

Data Abstraction

Data Type:
A collection of
@ objects.

@ a set of operations that act on the objects.

Recall what we have leaned in C/C++ courses.
@ The data types in C:
e Basic types: char, int, float, double, ...

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview Fall 2024

Basic Concepts: Overview
Data Abstraction

Data Abstraction

Data Type:
A collection of
@ objects.

@ a set of operations that act on the objects.

Recall what we have leaned in C/C++ courses.
@ The data types in C:

e Basic types: char, int, float, double, ...
o Group data types: array, struct, ..,

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview Fall 2024

Basic Concepts: Overview
Data Abstraction

Data Abstraction

Data Type:
A collection of
@ objects.
@ a set of operations that act on the objects.

Recall what we have leaned in C/C++ courses.

@ The data types in C:
e Basic types: char, int, float, double, ...
o Group data types: array, struct, .., Pointer data types.
o User-defined types.

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview Fall 2024 25/30

Basic Concepts: Overview
Data Abstraction

Example

struct student {
char last_name;
int student_id;
float grade;

iiE

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview

Fall 2024

)

26 /30

Basic Concepts: Overview
Data Abstraction

Abstract Data Type

Abstract Data Type (ADT):
A data type that is organized in such a way that

the of the objects and the operations on the objects

is separated from

the of the objects and the implementation of the operations.

@ We know what it does, but not necessarily how it will do it.

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview Fall 2024 27 /30

Basic Concepts: Overview
Data Abstraction

Abstract Data Type

Abstract Data Type (ADT):
A data type that is organized in such a way that

the of the objects and the operations on the objects

is separated from

the of the objects and the implementation of the operations.

@ We know what it does, but not necessarily how it will do it.
o Example in C++:

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview Fall 2024 27 /30

Basic Concepts: Overview
Data Abstraction

Abstract Data Type

Abstract Data Type (ADT):
A data type that is organized in such a way that

the of the objects and the operations on the objects

is separated from

the of the objects and the implementation of the operations.

@ We know what it does, but not necessarily how it will do it.
@ Example in C++: class.

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview Fall 2024 27 /30

Basic Concepts: Overview
Data Abstraction

Abstract Data Type

Abstract Data Type (ADT):
A data type that is organized in such a way that

the of the objects and the operations on the objects

is separated from

the of the objects and the implementation of the operations.

@ We know what it does, but not necessarily how it will do it.

@ Example in C++: class.

@ The nature of an ADT argues that we avoid implementation details.
Therefore, we will usually use a form of structured English to explain
the meaning of the functions. :

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview Fall 2024 27 /30

Basic Concepts: Overview
Data Abstraction

ADT in C

@ struct.

@ the functions that operate on the ADT defined separately from the
struct.

struct Triangle {
double a;
double b;
double c;

s

int main() {
Triangle t1
Triangle t2

: -

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview Fall 2024 28/30

It
-
(e

-

w w
w
w o

-

Basic Concepts: Overview
Data Abstraction

ADT in C

double perimeter(const Triangle *tri) {
return tri->a + tri->b + tri->c;

}

void scale(Triangle *tri, double s) {
tri->a *= s;
tri->b *= s;
tri->c *= s;
}
int main() {
Triangle t1 = { 3, 4, 5 };
scale(&tl, 2);
cout << perimeter(&tl) << endl; // 6+8+10 = 2/

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview Fall 2024 29 /30

Basic Concepts: Overview

Discussions

Joseph C. C. Lin (CSE, NTOU, TW) Basic Concepts: Overview Fall 2024 30/30

	System Life Cycle
	Algorithm Specification
	Recursive Algorithms

	Data Abstraction
	

