
Queues

Queues

Joseph Chuang-Chieh Lin (林莊傑)

Department of Computer Science & Engineering,
National Taiwan Ocean University

Fall 2024

Joseph C. C. Lin (CSE, NTOU, TW) Queues Fall 2024 1 / 14



Queues

Outline

1 Definition

2 Implementation

3 Sequential Queue & Circular Queue

Joseph C. C. Lin (CSE, NTOU, TW) Queues Fall 2024 2 / 14



Queues
Definition

Outline

1 Definition

2 Implementation

3 Sequential Queue & Circular Queue

Joseph C. C. Lin (CSE, NTOU, TW) Queues Fall 2024 3 / 14



Queues
Definition

Definition

A queue is an ordered list in which insertions take place at one end
(i.e., front) and deletions take place at the opposite end (i.e., rear).

insertions: push/add
deletions: pop/remove

First-In-First-Out (FIFO).

Joseph C. C. Lin (CSE, NTOU, TW) Queues Fall 2024 4 / 14



Queues
Implementation

Outline

1 Definition

2 Implementation

3 Sequential Queue & Circular Queue

Joseph C. C. Lin (CSE, NTOU, TW) Queues Fall 2024 5 / 14



Queues
Implementation

Functions for Queues

Create a queue (implemented by an array).
Create an empty queue with maximum size MAX_QUEUE_SIZE.

#define MAX_QUEUE_SIZE 100

typedef struct {
int key; // can be of other types...
/* other fields? */

} element;

element queue a[MAX_QUEUE_SIZE];
int front = -1; // initially no element
int front = -1; // initially no element

Joseph C. C. Lin (CSE, NTOU, TW) Queues Fall 2024 6 / 14



Queues
Implementation

Functions for Queues (2/2)

IsEmpty
Return true if the queue is empty and false otherwise.

front == rear;

IsFull
Return true if the queue is full and false otherwise.
rear == MAX_QUEUE_SIZE-1;

Push (or Add)
Insert the element into the rear of the queue.
If the queue is not full, queue[++rear] = element;

Pop (or Delete)
Remove and return the item at the front of the queue.
If the queue is not empty, return stack[++front];

Joseph C. C. Lin (CSE, NTOU, TW) Queues Fall 2024 7 / 14



Queues
Implementation

Functions for Queues (2/2)

IsEmpty
Return true if the queue is empty and false otherwise.
front == rear;

IsFull
Return true if the queue is full and false otherwise.

rear == MAX_QUEUE_SIZE-1;

Push (or Add)
Insert the element into the rear of the queue.
If the queue is not full, queue[++rear] = element;

Pop (or Delete)
Remove and return the item at the front of the queue.
If the queue is not empty, return stack[++front];

Joseph C. C. Lin (CSE, NTOU, TW) Queues Fall 2024 7 / 14



Queues
Implementation

Functions for Queues (2/2)

IsEmpty
Return true if the queue is empty and false otherwise.
front == rear;

IsFull
Return true if the queue is full and false otherwise.
rear == MAX_QUEUE_SIZE-1;

Push (or Add)
Insert the element into the rear of the queue.

If the queue is not full, queue[++rear] = element;

Pop (or Delete)
Remove and return the item at the front of the queue.
If the queue is not empty, return stack[++front];

Joseph C. C. Lin (CSE, NTOU, TW) Queues Fall 2024 7 / 14



Queues
Implementation

Functions for Queues (2/2)

IsEmpty
Return true if the queue is empty and false otherwise.
front == rear;

IsFull
Return true if the queue is full and false otherwise.
rear == MAX_QUEUE_SIZE-1;

Push (or Add)
Insert the element into the rear of the queue.
If the queue is not full, queue[++rear] = element;

Pop (or Delete)
Remove and return the item at the front of the queue.

If the queue is not empty, return stack[++front];

Joseph C. C. Lin (CSE, NTOU, TW) Queues Fall 2024 7 / 14



Queues
Implementation

Functions for Queues (2/2)

IsEmpty
Return true if the queue is empty and false otherwise.
front == rear;

IsFull
Return true if the queue is full and false otherwise.
rear == MAX_QUEUE_SIZE-1;

Push (or Add)
Insert the element into the rear of the queue.
If the queue is not full, queue[++rear] = element;

Pop (or Delete)
Remove and return the item at the front of the queue.
If the queue is not empty, return stack[++front];

Joseph C. C. Lin (CSE, NTOU, TW) Queues Fall 2024 7 / 14



Queues
Sequential Queue & Circular Queue

Outline

1 Definition

2 Implementation

3 Sequential Queue & Circular Queue

Joseph C. C. Lin (CSE, NTOU, TW) Queues Fall 2024 8 / 14



Queues
Sequential Queue & Circular Queue

Job Scheduling

front rear Q[0] Q[1] Q[2] Q[3] comments
-1 -1 queue is empty
-1 0 J1 Job J1 is added
-1 1 J1 J2 Job J2 is added
-1 2 J1 J2 J3 Job J3 is added
0 2 J2 J3 Job J1 is deleted
1 2 J3 Job J2 is deleted

If rear == MAX_QUEUE_SIZE-1, one suggests that the queue is full
(but it’s not).
We should move the ENTIRE queue to the left. ⇒
O(MAX_QUEUE_SIZE) (very time consuming!)

Joseph C. C. Lin (CSE, NTOU, TW) Queues Fall 2024 9 / 14



Queues
Sequential Queue & Circular Queue

Job Scheduling

front rear Q[0] Q[1] Q[2] Q[3] comments
-1 -1 queue is empty
-1 0 J1 Job J1 is added
-1 1 J1 J2 Job J2 is added
-1 2 J1 J2 J3 Job J3 is added
0 2 J2 J3 Job J1 is deleted
1 2 J3 Job J2 is deleted

If rear == MAX_QUEUE_SIZE-1, one suggests that the queue is full
(but it’s not).

We should move the ENTIRE queue to the left. ⇒
O(MAX_QUEUE_SIZE) (very time consuming!)

Joseph C. C. Lin (CSE, NTOU, TW) Queues Fall 2024 9 / 14



Queues
Sequential Queue & Circular Queue

Job Scheduling

front rear Q[0] Q[1] Q[2] Q[3] comments
-1 -1 queue is empty
-1 0 J1 Job J1 is added
-1 1 J1 J2 Job J2 is added
-1 2 J1 J2 J3 Job J3 is added
0 2 J2 J3 Job J1 is deleted
1 2 J3 Job J2 is deleted

If rear == MAX_QUEUE_SIZE-1, one suggests that the queue is full
(but it’s not).
We should move the ENTIRE queue to the left.

⇒
O(MAX_QUEUE_SIZE) (very time consuming!)

Joseph C. C. Lin (CSE, NTOU, TW) Queues Fall 2024 9 / 14



Queues
Sequential Queue & Circular Queue

Job Scheduling

front rear Q[0] Q[1] Q[2] Q[3] comments
-1 -1 queue is empty
-1 0 J1 Job J1 is added
-1 1 J1 J2 Job J2 is added
-1 2 J1 J2 J3 Job J3 is added
0 2 J2 J3 Job J1 is deleted
1 2 J3 Job J2 is deleted

If rear == MAX_QUEUE_SIZE-1, one suggests that the queue is full
(but it’s not).
We should move the ENTIRE queue to the left. ⇒
O(MAX_QUEUE_SIZE) (very time consuming!)

Joseph C. C. Lin (CSE, NTOU, TW) Queues Fall 2024 9 / 14



Queues
Sequential Queue & Circular Queue

Solution: Circular Queue

Initially, front = rear = 0;

front: one position counterclockwise from the first element in the
queue.
rear: current end of the queue.

Joseph C. C. Lin (CSE, NTOU, TW) Queues Fall 2024 10 / 14



Queues
Sequential Queue & Circular Queue

Solution: Circular Queue

Initially, front = rear = 0;

front: one position counterclockwise from the first element in the
queue.
rear: current end of the queue.

Joseph C. C. Lin (CSE, NTOU, TW) Queues Fall 2024 10 / 14



Queues
Sequential Queue & Circular Queue

Circular Queue (2/2)

Such a circular queue is permitted to hold at most

MAX_QUEUE_SIZE − 1

elements.

The addition of an element such that front == rear: the queue is
empty (?) or full (?).

Joseph C. C. Lin (CSE, NTOU, TW) Queues Fall 2024 11 / 14



Queues
Sequential Queue & Circular Queue

Circular Queue (2/2)

Such a circular queue is permitted to hold at most
MAX_QUEUE_SIZE − 1 elements.

The addition of an element such that front == rear: the queue is
empty (?) or full (?).

Joseph C. C. Lin (CSE, NTOU, TW) Queues Fall 2024 11 / 14



Queues
Sequential Queue & Circular Queue

Circular Queue (2/2)

Such a circular queue is permitted to hold at most
MAX_QUEUE_SIZE − 1 elements.
The addition of an element such that front == rear: the queue is
empty (?) or full (?).

Joseph C. C. Lin (CSE, NTOU, TW) Queues Fall 2024 11 / 14



Queues
Sequential Queue & Circular Queue

Adding an Element to a Circular Queue

void add(element item) {
rear = (rear+1) % MAX_QUEUE_SIZE;
if (front == rear) {

return queueFull(); // reset rear and print error!
}
queue[rear] = item;

}

Joseph C. C. Lin (CSE, NTOU, TW) Queues Fall 2024 12 / 14



Queues
Sequential Queue & Circular Queue

Deleting an Element from a Circular Queue

element delete() {
element item;
if (front == rear) {

return queueFull();
}
front = (front+1) % MAX_QUEUE_SIZE;
return queue[front];

}

Joseph C. C. Lin (CSE, NTOU, TW) Queues Fall 2024 13 / 14



Queues

Discussions

Joseph C. C. Lin (CSE, NTOU, TW) Queues Fall 2024 14 / 14


	Definition
	Implementation
	Sequential Queue & Circular Queue
	

