Joseph Chuang-Chieh Lin (林莊傑)

Department of Computer Science & Engineering, National Taiwan Ocean University

Fall 2024

Joseph C. C. Lin (CSE, NTOU, TW)

Shortest Paths

Fall 2024

< □ > < □ > < □ > < = > <

Joseph C. C. Lin (CSE, NTOU, TW)

・ロッ ・雪 ・ ・ 言 ・ ・

Shortest Paths Introduction

Shortest path(s) from NTOU to Jiufen Old Street.

< ロ > < 国 > < 国 > <

Shortest Paths Introduction

Shortest Paths

- Model the problem via a graph.
- vertices \mapsto locations (e.g., stations, restaurants, gas stations, etc.)
 - Including the source and the destination.
- edges \mapsto highways, railways, roads, etc.
 - edge weight: tolls, the distance, passing-through time, etc.

< □ > < 同 > < 三 > <

Shortest Paths Introduction

Shortest Paths

- Model the problem via a graph.
- vertices \mapsto locations (e.g., stations, restaurants, gas stations, etc.)
 - Including the source and the destination.
- edges → highways, railways, roads, etc.
 - edge weight: tolls, the distance, passing-through time, etc.

Questions

- Is there a path from NTOU to Jiufen?
- If it exists, which one is the shortest?

< □ > < 同 > < 三 > <

Shortest Paths Introduction

Single Source/All Destinations (Nonnegative Edge Costs)

-	path	length (cost)
1	0, 3	10
2	0, 3, 4	25
3	0, 3, 4, 1	45
4	0, 2	45

Notations:

• A directed graph G = (V, E); a weight function w(e), w(e) > 0 for any edge $e \in E$.

< □ > < □ > < □ > < 三 > <

v₀: source vertex.

• If
$$(v_i, v_j) \notin E$$
, $w(v_i, v_j) = \infty$.

Joseph C. C. Lin (CSE, NTOU, TW)

Shortest Paths

Fall 2024

Outline

Dijkstra's Algorithm

Joseph C. C. Lin (CSE, NTOU, TW)

Shortest Paths

Fall 2024

< ロ > < 国 > < 国 > <

Greedy Method

• The greedy method can help here!

Joseph C. C. Lin (CSE, NTOU, TW)

Shortest Paths

Fall 2024

<ロ> < 国> < 国> < 国> <

Greedy Method

- The greedy method can help here!
- Let *S* denote the set of vertices, including *v*₀, whose shortest paths have been found.

Joseph C. C. Lin (CSE, NTOU, TW)

Shortest Paths

Fall 2024

< □ > < □ > < □ > < 三 > <

Greedy Method

- The greedy method can help here!
- Let *S* denote the set of vertices, including *v*₀, whose shortest paths have been found.
- For $v \notin S$, let dist[v] be the length of the shortest path starting from v_0 , going through vertices ONLY in S, and ending in v.

< □ > < □ > < 三 > <

Dijkstra's Algorithm

At the first stage, we add v₀ to S, set dist[v₀] = 0 and determine dist[v] for each v ∉ S.

< □ > < 同 > < 三 > <

Dijkstra's Algorithm

- At the first stage, we add v₀ to S, set dist[v₀] = 0 and determine dist[v] for each v ∉ S.
- Next, at each stage, vertex w is chosen so that it has the minimum distance, dist[w], among all the vertices not in S.

< □ > < 同 > < 三 > <

Dijkstra's Algorithm

- At the first stage, we add v₀ to S, set dist[v₀] = 0 and determine dist[v] for each v ∉ S.
- Next, at each stage, vertex w is chosen so that it has the minimum distance, dist[w], among all the vertices not in S.
- Adding w to S, and updating dist[v] for v, where $v \notin S$ currently.

< □ > < □ > < 三 > <

Dijkstra's Algorithm

- At the first stage, we add v₀ to S, set dist[v₀] = 0 and determine dist[v] for each v ∉ S.
- Next, at each stage, vertex w is chosen so that it has the minimum distance, dist[w], among all the vertices not in S.
- Adding w to S, and updating dist[v] for v, where $v \notin S$ currently.
- Repeat the vertex addition process until S = V(G)

< □ > < □ > < □ > < □ > <</p>

Dijkstra's Algorithm

- At the first stage, we add v₀ to S, set dist[v₀] = 0 and determine dist[v] for each v ∉ S.
- Next, at each stage, vertex w is chosen so that it has the minimum distance, dist[w], among all the vertices not in S.
- Adding w to S, and updating dist[v] for v, where $v \notin S$ currently.
- Repeat the vertex addition process until S = V(G)

Time complexity: $O(n^2)$.

< □ > < □ > < □ > < 三 > <

Illustration of Dijkstra's Algorithm

Joseph C. C. Lin (CSE, NTOU, TW)

The Pseudo-code of Dijkstra's Algorithm

```
S = { v0 };
dist[v0] = 0;
for each v in V - {v0} do
    dist[v] = e(v0,v); // initialization
while (S != V) do
    choose a vertex w in V - S such that dist[w] is a minimum;
    add w to S;
    for each v in V - S do
        dist[v] = min(dist[v], dist[w]+e(w, v));
    endfor
endwhile
```


Joseph C. C. Lin (CSE, NTOU, TW)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dijkstra's Algorithm (Functions (1/2))

```
void shortestPath (int v, int cost[][MAX_VERTICES],
                    int distance [], int n, short int found []) {
/* distance[i]: the shortest path from vertex v to i
   found[i]: 0 if the shortest path from vertex i has not
   been found and a 1 otherwise
   cost: the adjacency matrix */
    int i, u, w;
    for (i=0; i<n; i++) {</pre>
        found [i] =FALSE; distance[i] = cost[v][i];
    }
    found[v] = TRUE: //initialization
    distance[v] = 0: //initialization
    for (i=0; i<n-1; i++) {</pre>
        u = choose(distance, n, found);
        found[u] = TRUE;
        for (w=0; w<n; w++)
        if (!found[w])
            if (distance[u] + cost[u][w] < distance[w])</pre>
                distance[w] = distance[u]+cost[u][w];
    }
```

Dijkstra's Algorithm (Functions (2/2))

```
int choose (int distance[], int n, short int found[]) {
    /* find the smallest distance not yet checked */
    int i, min, min_pos;
    min = INT_MAX;
    min_pos = -1;
    for (i=0; i<n; i++)
        if (distance[i] < min && !found[i]) {
            min = distance[i];
            min_pos = i;
        }
      return min_pos;
}</pre>
```


Joseph C. C. Lin (CSE, NTOU, TW)

< □ > < □ > < □ > < □ > <</p>

	Station	Distance								
Iteration	Vertex Select.	LA	SF	DEN	CHI	BOS	NY	MIA	NO	
	λ.	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	
initial	-	∞	∞	∞	1500	0	250	∞	∞	
1	5	∞	∞	∞	1250	0	250	1150	1650	
						59		and a second		
			-							

Joseph C. C. Lin (CSE, NTOU, TW)

	Province of the local division of the local	Distance								
Iteration	Vertex Select.	LA	SF	DEN	CHI	BOS	NY	MIA	NO	
	λ.	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	
initial	_	∞	∞	∞	1500	0	250	∞	∞	
1	5	∞	∞	∞	1250	0	250	1150	1650	
2	6	∞	∞	∞	1250	0	250	1150	1650	
							2			

Joseph C. C. Lin (CSE, NTOU, TW)

	Province of the local division of the local	Distance								
Iteration	Vertex Select.	LA	SF	DEN	CHI	BOS	NY	MIA	NO	
	A. Internet	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	
initial	-	∞	∞	∞	1500	0	250	∞	∞	
1	5	∞	∞	∞	1250	0	250	1150	1650	
2	6	∞	∞	∞	1250	0	250	1150	1650	
3	3	∞	∞	2450	1250	0	250	1150	1650	
				14 A B A B						
							1			

Joseph C. C. Lin (CSE, NTOU, TW)

	Property and	Distance								
Iteration	Vertex Select.	LA	SF	DEN	CHI	BOS	NY	MIA	NO	
	λ.	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	
initial	-	∞	∞	∞	1500	0	250	∞	∞	
1	5	∞	∞	∞	1250	0	250	1150	1650	
2	6	∞	∞	∞	1250	0	250	1150	1650	
3	3	∞	∞	2450	1250	0	250	1150	1650	
4	7	3350	∞	2450	1250	0	250	1150	1650	
							2			
				-						
									_	

	Contract of the local division of the local	Distance								
Iteration	Vertex Select.	LA	SF	DEN	CHI	BOS	NY	MIA	NO	
	2	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	
initial		∞	∞	∞	1500	0	250	∞	∞	
1	5	∞	∞	∞	1250	0	250	1150	1650	
2	6	∞	∞	∞	1250	0	250	1150	1650	
3	3	∞	∞	2450	1250	0	250	1150	1650	
4	7	3350	∞	2450	1250	0	250	1150	1650	
5	2	3350	3250	2450	1250	0	250	1150	1650	

Joseph C. C. Lin (CSE, NTOU, TW)

	Para		Distance								
Iteration	Vertex Select.	LA	SF	DEN	CHI	BOS	NY	MIA	NO		
	2	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]		
initial		∞	∞	∞	1500	0	250	∞	∞		
1	5	∞	∞	∞	1250	0	250	1150	1650		
2	6	∞	∞	∞	1250	0	250	1150	1650		
3	3	∞	∞	2450	1250	0	250	1150	1650		
4	7	3350	∞	2450	1250	0	250	1150	1650		
5	2	3350	3250	2450	1250	0	250	1150	1650		
6	1	3350	3250	2450	1250	0	250	1150	1650		

Joseph C. C. Lin (CSE, NTOU, TW)

	Para		Distance									
Iteration	Vertex Select.	LA	SF	DEN	CHI	BOS	NY	MIA	NO			
	λ.	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]			
initial	-	∞	∞	∞	1500	0	250	∞	∞			
1	5	∞	∞	∞	1250	0	250	1150	1650			
2	6	∞	∞	∞	1250	0	250	1150	1650			
3	3	∞	∞	2450	1250	0	250	1150	1650			
4	7	3350	∞	2450	1250	0	250	1150	1650			
5	2	3350	3250	2450	1250	0	250	1150	1650			
6	1	3350	3250	2450	1250	0	250	1150	1650			
7	0	3350	3250	2450	1250	0	250	1150	1650			

Joseph C. C. Lin (CSE, NTOU, TW)

Outline

2 Dijkstra's Algorithm

General Weights

Joseph C. C. Lin (CSE, NTOU, TW)

Shortest Paths

Fall 2024

< ロ > < 回 > < 回 > < 回 > < 回

Single Source/All Destinations: General Weights

• **Focus:** Some edges of the directed graph *G* have negative length (cost).

< □ > < 同 > < 三 > <

Single Source/All Destinations: General Weights

- **Focus:** Some edges of the directed graph *G* have negative length (cost).
- The function shortestPath may NOT work!

Joseph C. C. Lin (CSE, NTOU, TW)

< □ > < 同 > < 三 > <

Shortest Paths General Weights

Single Source/All Destinations: General Weights

- Focus: Some edges of the directed graph *G* have negative length (cost).
- The function shortestPath may NOT work!
- For example,

dist
$$[1] = 7$$
, dist $[2] = 5$.

Shortest Paths General Weights

Single Source/All Destinations: General Weights

- Focus: Some edges of the directed graph *G* have negative length (cost).
- The function shortestPath may NOT work!
- For example,

- dist[1] = 7, dist[2] = 5.
- The shortest path from 0 to 2 is: $0 \rightarrow 1 \rightarrow 2$ (length = 2).

< □ > < □ > < □ > < □ > <</p>

Workaround Solution: NO negative cycle is permitted!

- When negative edge lengths are permitted, we require that the graph have no cycles of negative length.
- This is necessary so as the ensure that shortest paths consist of a finite number of edges.

Observations

• When there are NO cycles of negative length, there is a shortest path between any two vertices of an *n*-vertex graph that has $\leq n-1$ edges on it.

< □ > < 同 > < 三 > <

Observations

- When there are NO cycles of negative length, there is a shortest path between any two vertices of an *n*-vertex graph that has $\leq n-1$ edges on it.
 - Otherwise, the path must repeat at least one vertex and hence must contain a cycle.
- So, eliminating the cycles from the path results in another path with the same source and destination.
 - The length of the new path is no more than that of the original.

Dynamic Programming Approach

dist^k[u]: the length of a shortest path from the source v to u under the constraint that the shortest path contains $\leq k$ edges.

Joseph C. C. Lin (CSE, NTOU, TW)

Shortest Paths

< □ > < □ > < □ > < 三 > <

Dynamic Programming Approach

dist^k[u]: the length of a shortest path from the source v to u under the constraint that the shortest path contains $\leq k$ edges.

Joseph C. C. Lin (CSE, NTOU, TW)

Shortest Paths

< □ > < 同 > < 三 > <

Dynamic Programming Approach

dist^k[u]: the length of a shortest path from the source v to u under the constraint that the shortest path contains $\leq k$ edges.

- Hence, dist^k[u] = length[v][u], for $0 \le u < n$.
- The goal: Compute distⁿ⁻¹[u] for all u.

▷ Using Dynamic Programming.

Joseph C. C. Lin (CSE, NTOU, TW)

< □ > < □ > < □ > < 三 > <

Sketch of Bellman-Ford Algorithm

• If the shortest path from v to u with $\leq k$ and , k > 1, edges has no more than k-1 edges, then dist^k[u] = dist^{k-1}[u].

< □ > < □ > < □ > < 三 > <

Sketch of Bellman-Ford Algorithm

- If the shortest path from v to u with $\leq k$ and , k > 1, edges has no more than k-1 edges, then dist^k[u] = dist^{k-1}[u].
- If the shortest path from v to u with ≤ k, k > 1, edges has exactly k edges, there exists a vertex i such that dist^{k-1}[i] + length[i][u] is minimum.
- The recurrence relation:

< □ > < □ > < □ > < □ > <</p>

Sketch of Bellman-Ford Algorithm

- If the shortest path from v to u with $\leq k$ and , k > 1, edges has no more than k-1 edges, then dist^k[u] = dist^{k-1}[u].
- If the shortest path from v to u with ≤ k, k > 1, edges has exactly k edges, there exists a vertex i such that dist^{k-1}[i] + length[i][u] is minimum.
- The recurrence relation:

 $\mathsf{dist}^{k}[u] = \min\{\mathsf{dist}^{k-1}[u], \min_{i}\{\mathsf{dist}^{k-1}[i] + \mathsf{length}[i][u]\}.$

< □ > < □ > < □ > < □ > < □ > < □ </p>

Shortest Paths General Weights

Shortest paths with negative edge lengths (cost)

 $\mathsf{dist}^{k}[u] = \min\{\mathsf{dist}^{k-1}[u], \ \min\{\mathsf{dist}^{k-1}[i] + \mathsf{length}[i][u]\}.$

(a) A directed graph

Joseph C. C. Lin (CSE, NTOU, TW)

Shortest Paths

Fall 2024

< 日 > < 国 > < 三 > < 三 > < 日 > <

Discussions

Joseph C. C. Lin (CSE, NTOU, TW)

Shortest Paths

Fall 2024

< ロ > < 回 > < 回 > < 回 > < 回