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Shortest path(s) from NTOU to Jiufen Old Street.
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Shortest Paths
Introduction

Shortest Paths

@ Model the problem via a graph.

@ vertices — locations (e.g., stations, restaurants, gas stations, etc.)
e Including the source and the destination.

@ edges — highways, railways, roads, etc.
e edge weight: tolls, the distance, passing-through time, etc.
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Shortest Paths
Introduction

Shortest Paths

@ Model the problem via a graph.

@ vertices — locations (e.g., stations, restaurants, gas stations, etc.)
e Including the source and the destination.

@ edges — highways, railways, roads, etc.
e edge weight: tolls, the distance, passing-through time, etc.

Questions
o Is there a path from NTOU to Jiufen?

o If it exists, which one is the shortest?
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Introduction

Single Source/All Destinations (Nonnegative Edge
Costs)

| path | length (cost)
1 0,3 10
2 0,3 4 25
SHF (08, 4h, 45
4 02 45
Notations:

@ A directed graph G = (V, E); a weight
function w(e), w(e) > 0 for any edge e € E.

@ V. source vertex.

@ If (vi,v)) ¢ E, w(vi, ) =
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Greedy Method

@ The greedy method can help here!
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Greedy Method

@ The greedy method can help here!

@ Let S denote the set of vertices, including vy, whose shortest paths
have been found.
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Dijkstra's Algorithm

Greedy Method

@ The greedy method can help here!

@ Let S denote the set of vertices, including vy, whose shortest paths
have been found.

@ For v¢ S, let dist[v] be the length of the shortest path starting from
vp, going through vertices ONLY in S, and ending in v.
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Dijkstra's Algorithm

o At the first stage, we add v, to S, set dist[vy] = 0 and determine
dist[v] for each v ¢ S.
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Dijkstra's Algorithm

o At the first stage, we add v, to S, set dist[vy] = 0 and determine
dist[v] for each v ¢ S.

@ Next, at each stage, vertex w is chosen so that it has the minimum
distance, dist[w]|, among all the vertices not in S.
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Dijkstra's Algorithm

o At the first stage, we add v, to S, set dist[vy] = 0 and determine
dist[v] for each v ¢ S.

@ Next, at each stage, vertex w is chosen so that it has the minimum
distance, dist[w]|, among all the vertices not in S.

e Adding wto S, and updating dist[v] for v, where v & S currently.
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Dijkstra's Algorithm

o At the first stage, we add v, to S, set dist[vy] = 0 and determine
dist[v] for each v ¢ S.

@ Next, at each stage, vertex w is chosen so that it has the minimum
distance, dist[w]|, among all the vertices not in S.

e Adding wto S, and updating dist[v] for v, where v & S currently.

@ Repeat the vertex addition process until S = V(G)
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Dijkstra's Algorithm

o At the first stage, we add v, to S, set dist[vy] = 0 and determine
dist[v] for each v ¢ S.

@ Next, at each stage, vertex w is chosen so that it has the minimum
distance, dist[w]|, among all the vertices not in S.

e Adding wto S, and updating dist[v] for v, where v & S currently.

@ Repeat the vertex addition process until S = V(G)

Time complexity: O(n?). )
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lllustration of Dijkstra’s Algorithm

During each iteration:
1. Update the distance of the rest vertices
2. Pick the vertex with the smallest distance value l
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The Pseudo-code of Dijkstra’s Algorithm

S =4v0 };
dist[v0] = 0;
for each v in V - {v0} do
dist[v] = e(v0,v); // initialization
while (S !'= V) do
choose a vertex w in V - S such that dist[w] is a minimum;
add w to S;
for each v in V - S do
dist[v] = min(dist[v], dist[w]l+e(w, v));
endfor
endwhile y
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Dijkstra's Algorithm (Functions (1/2))

void shortestPath (int v, int cost[] [MAX_VERTICES],
int distance [], int n, short int found []) {
/% distance[i]: the shortest path from vertexr v to <
found[i]: O if the shortest path from vertexz i has not
been found and a 1 otherwise
cost: the adjacency matriz */
int i, u, w;
for (i=0; i<n; i++) {
found [i] =FALSE; distancel[i] = cost[v][i];
¥
found[v] = TRUE; //initialization
distancelv] = 0; //initialization
for (i=0; i<n-1; i++) {
u = choose(distance, n, found);
found[u] = TRUE;
for (w=0; w<n; w++)
if (!found[w])
if (distance[u] + cost([u] [w] < distance[w])
distance[w] = distance[u]+cost[u] [w];

}
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Dijkstra's Algorithm (Functions (2/2))

int choose (int distance[], int n, short int found[]) {
/* find the smallest distance not yet checked */
int i, min, min_pos;
min = INT_MAX;
min_pos = -1;
for (i=0; i<n; i++)
if (distance[i] < min && !found[i]) {
min = distancel[il;
min_pos = i;
}

return min_pos;
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Single Source/All Destinations: General Weights

o Focus: Some edges of the directed graph G have negative length
(cost).
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Single Source/All Destinations: General Weights

o Focus: Some edges of the directed graph G have negative length
(cost).

@ The function shortestPath may NOT work!
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Single Source/All Destinations: General Weights

o Focus: Some edges of the directed graph G have negative length
(cost).

@ The function shortestPath may NOT work!

@ For example,

o dist[1] = 7,dist[2] = 5.
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General Weights

Single Source/All Destinations: General Weights

o Focus: Some edges of the directed graph G have negative length
(cost).

@ The function shortestPath may NOT work!

@ For example,

o dist[1] = 7,dist[2] = 5.

o The shortest path from 0 to 2 is:
0 —1— 2 (length = 2).
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Workaround Solution: NO negative cycle is permitted!

@ When negative edge lengths are permitted, we require that the graph
have no cycles of negative length.

@ This is necessary so as the ensure that shortest paths consist of a
finite number of edges.
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Observations

@ When there are NO cycles of negative length, there is a shortest path
between any two vertices of an n-vertex graph that has < n— 1 edges
on it.
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Shortest Paths
General Weights

Observations

@ When there are NO cycles of negative length, there is a shortest path
between any two vertices of an n-vertex graph that has < n— 1 edges
on it.

o Otherwise, the path must repeat at least one vertex and hence must
contain a cycle.

@ So, eliminating the cycles from the path results in another path with
the same source and destination.

e The length of the new path is no more than that of the original.
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Dynamic Programming Approach

dist“[u]: the length of a shortest path from the source v to u under the
constraint that the shortest path contains < k edges.
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Dynamic Programming Approach

dist“[u]: the length of a shortest path from the source v to u under the
constraint that the shortest path contains < k edges.

o Hence, dist“[u] =

Joseph C. C. Lin (CSE, NTOU, TW) Shortest Paths Fall 2024 18/21



Shortest Paths
General Weights

Dynamic Programming Approach

dist“[u]: the length of a shortest path from the source v to u under the
constraint that the shortest path contains < k edges.

o Hence, dist*[u] = length[v][u], for 0 < u < n.

@ The goal: Compute dist" ![u] for all wv.

> Using Dynamic Programming.
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Sketch of Bellman-Ford Algorithm

@ If the shortest path from v to u with < k and , k > 1, edges has no
more than k — 1 edges, then dist¥[u] = dist*~[u].
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Sketch of Bellman-Ford Algorithm

@ If the shortest path from v to u with < k and , k > 1, edges has no
more than k — 1 edges, then dist¥[u] = dist*~[u].

o If the shortest path from v to u with < k, k> 1, edges has exactly k
edges, there exists a vertex i such that dist“"![i] + length[i][u] is
minimum.

@ The recurrence relation:
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Sketch of Bellman-Ford Algorithm

@ If the shortest path from v to u with < k and , k > 1, edges has no
more than k — 1 edges, then dist¥[u] = dist*~[u].

o If the shortest path from v to u with < k, k> 1, edges has exactly k
edges, there exists a vertex i such that dist“"![i] + length[i][u] is
minimum.

@ The recurrence relation:

dist*[u] = min{dist*"[u], m’_in{distk_l[i] + length[i][u] }.
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Shortest paths with negative edge lengths (cost)

dist*[u] = min{dist**[u], miin{distk_l[i] + lengthl[i][u]}.

5 dist[u]

0 1, 2 3 4 5 6
1 0 6 5 5 (0) || ) ] [l
2 0 3 . 5 3 254 Mco
3 0 1 3 5 2 4 7/
4 0 1 3 5 0 4 5
5 0 1 3 5 0 4 3
6 0 ik 3 5 0 4 3

(a) A directed graph (b) distk
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