
Threaded Binary Tree + Heaps

Threaded Binary Tree & Heaps

Joseph Chuang-Chieh Lin (林莊傑)

Department of Computer Science & Engineering,
National Taiwan Ocean University

Fall 2024

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 1 / 30



Threaded Binary Tree + Heaps

Outline

1 Threaded Binary Trees (引線二元樹)

2 Heaps

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 2 / 30



Threaded Binary Tree + Heaps
Threaded Binary Trees (引線二元樹)

Outline

1 Threaded Binary Trees (引線二元樹)

2 Heaps

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 3 / 30



Threaded Binary Tree + Heaps
Threaded Binary Trees (引線二元樹)

Threaded Binary Trees

Issue
there are more null links than actual points.

Number of nodes: n.
Number of null non-null links: n − 1.
Number of null links: n + 1.

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 4 / 30



Threaded Binary Tree + Heaps
Threaded Binary Trees (引線二元樹)

Threaded Binary Trees

Issue
there are more null links than actual points.

Number of nodes: n.
Number of null non-null links: n − 1.
Number of null links: n + 1.

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 4 / 30



Threaded Binary Tree + Heaps
Threaded Binary Trees (引線二元樹)

Threaded Binary Trees

Issue
there are more null links than actual points.

Number of nodes: n.
Number of null non-null links: n − 1.
Number of null links: n + 1.

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 5 / 30



Threaded Binary Tree + Heaps
Threaded Binary Trees (引線二元樹)

Solution

Replace the NULL Links by pointers, threads, pointing to other nodes.

Threading Rules
if ptr->leftChild is NULL, then ptr->leftChild = inorder
predecessor (中序前行者) of ptr.
if ptr->rightChild is NULL, then ptr->rightChild = inorder
successor (中序後續者) of ptr.

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 6 / 30



Threaded Binary Tree + Heaps
Threaded Binary Trees (引線二元樹)

Solution

Replace the NULL Links by pointers, threads, pointing to other nodes.

Threading Rules
if ptr->leftChild is NULL, then ptr->leftChild = inorder
predecessor (中序前行者) of ptr.
if ptr->rightChild is NULL, then ptr->rightChild = inorder
successor (中序後續者) of ptr.

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 6 / 30



Threaded Binary Tree + Heaps
Threaded Binary Trees (引線二元樹)

To distinguish between normal pointers and threads

Two additional fields of the node structure: left-thread, right-thread.

typedef struct threadedTree *threadedPointer;

typedef struct threadedTree {
short int leftThread;
threadedPointer leftChild;
char data;
threadedPointer rightChild;
short int rightThread;

};

leftThread leftChild data rightChild rightThread

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 7 / 30



Threaded Binary Tree + Heaps
Threaded Binary Trees (引線二元樹)

Rules of the Threading Fields

If ptr->leftThread == TRUE, ptr->leftChild contains a thread;
Otherwise, the node contains a pointer to the left child.
If ptr->rightThread == TRUE, ptr->righChild contains a
thread; Otherwise, the node contains a pointer to the right child.

Two dangling threads at node H and G.
⇒ Use a header node to collect them!

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 8 / 30



Threaded Binary Tree + Heaps
Threaded Binary Trees (引線二元樹)

Rules of the Threading Fields

If ptr->leftThread == TRUE, ptr->leftChild contains a thread;
Otherwise, the node contains a pointer to the left child.
If ptr->rightThread == TRUE, ptr->righChild contains a
thread; Otherwise, the node contains a pointer to the right child.

Two dangling threads at node H and G.
⇒ Use a header node to collect them!

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 8 / 30



Threaded Binary Tree + Heaps
Threaded Binary Trees (引線二元樹)

The original tree becomes the left subtree of the head node.

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 9 / 30



Threaded Binary Tree + Heaps
Threaded Binary Trees (引線二元樹)

Representing an Empty Binary Tree

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 10 / 30



Threaded Binary Tree + Heaps
Threaded Binary Trees (引線二元樹)

Finding the Inorder Successor of Node

threadedPointer insucc(threadedPointer tree) {
/* find the inorder sucessor of tree in a threaded

binary tree */
threadedPointer temp;
temp = tree->rightChild;
if (!tree->rightThread) // rightChild exists!

while (!temp->leftThread)
temp = temp->leftChild;

return temp;
}

To perform an inorder traversal, we can simply make
repeated calls to insucc!

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 11 / 30



Threaded Binary Tree + Heaps
Threaded Binary Trees (引線二元樹)

Inorder Traversal of a Threaded Binary Tree

void traverseInorder(threadedPointer tree) {
/* traverse the threaded binary tree inorder */

threadedPointer temp = tree;
while (1) {

temp = insucc(temp);
if (temp == tree)

break;
printf("%3c", temp->data);

}
}

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 12 / 30



Threaded Binary Tree + Heaps
Threaded Binary Trees (引線二元樹)

Inserting r as the rightChild of a node s

Case I: s->rightThread == False

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 13 / 30



Threaded Binary Tree + Heaps
Threaded Binary Trees (引線二元樹)

Inserting r as the rightChild of a node s

Case II: s->rightThread != False

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 14 / 30



Threaded Binary Tree + Heaps
Threaded Binary Trees (引線二元樹)

The Code for the Insertion

void insertRight (threadedPointer s,
threadedPointer r) {

/* insert r as the right child of s */
threadedPointer temp;
r->rightChild = s->rightChild;
r->rightThread = s->rightThread;
r->leftChild = s;
r->leftThread = TRUE;
s->rightChild = r;
s->rightThread = FALSE;
if (!r->rightThread){ // step 4

temp = insucc(r);
temp->leftChild = r;

}
}

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 15 / 30



Threaded Binary Tree + Heaps
Heaps

Outline

1 Threaded Binary Trees (引線二元樹)

2 Heaps

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 16 / 30



Threaded Binary Tree + Heaps
Heaps

Heaps

Max Tree
A max tree is a tree in which

the key value in each node ≥ the key values in its children.

Min Tree
A min tree is a tree in which

the key value in each node ≤ the key values in its children.

Max Heap
A complete binary tree that is also a max tree.

Min Heap
A complete binary tree that is also a min tree.

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 17 / 30



Threaded Binary Tree + Heaps
Heaps

Heaps

Max Tree
A max tree is a tree in which

the key value in each node ≥ the key values in its children.

Min Tree
A min tree is a tree in which

the key value in each node ≤ the key values in its children.

Max Heap
A complete binary tree that is also a max tree.

Min Heap
A complete binary tree that is also a min tree.

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 17 / 30



Threaded Binary Tree + Heaps
Heaps

Heaps

Max Tree
A max tree is a tree in which

the key value in each node ≥ the key values in its children.

Min Tree
A min tree is a tree in which

the key value in each node ≤ the key values in its children.

Max Heap
A complete binary tree that is also a max tree.

Min Heap
A complete binary tree that is also a min tree.

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 17 / 30



Threaded Binary Tree + Heaps
Heaps

Examples: Max & Min Trees

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 18 / 30



Threaded Binary Tree + Heaps
Heaps

Examples: Max & Min Heaps

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 19 / 30



Threaded Binary Tree + Heaps
Heaps

The Key Application: Priority Queues

Heaps are frequently used to implement priority queues.

In this kind of queue,
the element to be deleted is the one with highest (or lowest) priority.
at any time, an element with arbitrary priority can be inserted into
the queue.

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 20 / 30



Threaded Binary Tree + Heaps
Heaps

Insertion into a Max Heap

The bubbling process.
It begins at the new node of the tree and moves toward the root.

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 21 / 30



Threaded Binary Tree + Heaps
Heaps

Insertion into a Max Heap

The bubbling process.
It begins at the new node of the tree and moves toward the root.

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 22 / 30



Threaded Binary Tree + Heaps
Heaps

Insertion into a Max Heap

The bubbling process.
It begins at the new node of the tree and moves toward the root.

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 23 / 30



Threaded Binary Tree + Heaps
Heaps

The Code for Insertion into a Max Heap

Consider the following declarations:

#define MAX_ELEMENTS 200 /* maximum heap size+1 */
#define HEAP_FULL (n) (n == MAX_ELEMENTS −1)
#define HEAP_EMPTY (n) (!n)
typedef struct {

int key;
/* other fields */

} element;
element heap[MAX_ELEMENTS];
int n = 0;

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 24 / 30



Threaded Binary Tree + Heaps
Heaps

The Code for Insertion into a Max Heap

void push (element item, int *n) {
/* insert item into a max heap of current size *n */

int i;
if (HEAP_FULL(*n)) {

printf("The heap is full.\n");
exit(EXIT_FAILURE);

} // O(1) time
i = ++(*n);
while ((i != 1) && (item.key > heap[i/2].key)) {

heap[i] = heap[i/2];
i /= 2;

} // O(lg n) time
heap[i] = item; // O(1) time

}

The time complexity of the insertion: O(lgn).

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 25 / 30



Threaded Binary Tree + Heaps
Heaps

Deletion from a Max Heap

When an element is to be deleted from a max heap, it is ALWAYS
taken from the root of the heap.

The steps of deletion from a Max heap:
delete the root node.
insert the last node into the root.
use the bubbling up process to ensure that the resulting heap remains a
max heap.

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 26 / 30



Threaded Binary Tree + Heaps
Heaps

Deletion from a Max Heap

When an element is to be deleted from a max heap, it is ALWAYS
taken from the root of the heap.
The steps of deletion from a Max heap:

delete the root node.
insert the last node into the root.
use the bubbling up process to ensure that the resulting heap remains a
max heap.

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 26 / 30



Threaded Binary Tree + Heaps
Heaps

Illustration of Deletion from a Max Heap

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 27 / 30



Threaded Binary Tree + Heaps
Heaps

Illustration of Deletion from a Max Heap

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 27 / 30



Threaded Binary Tree + Heaps
Heaps

The Code for Deletion from a Max Heap
element pop(int *n) {
/* delete element with the highest key from the heap */

int parent, child;
element item, temp;
if (HEAP_EMPTY(*n)) {

fprintf(stderr, "The heap is empty\n");
exit(EXIT_FAILURE);

}
/* save value of the element with the highest key */
item = heap[1];
/* use last element in heap to adjust heap */
temp = heap[(*n)--];
parent = 1;
child = 2;
while (child <= *n) { // O(lg n) time
/* find the larger child of the current parent */

if ((child < *n) && (heap[child].key < heap[child+1].key))
child++;

if (temp.key >= heap[child].key) break;
/* move to the next lower level */
heap[parent] = heap[child];
parent = child;
child *= 2;

}
heap[parent] = temp;
return item;

}

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 28 / 30



Threaded Binary Tree + Heaps
Heaps

Time Complexity of the Deletion from a Max Heap

Delete the root node: O(1).

Insert the last node to the root: O(1).

Since the height of the heap is ⌈lg(n + 1))⌉, the while loop is iterated
for O(lg n) times.

Thus, the overall time complexity: the time complexity of the
deletion: O(log n).

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 29 / 30



Threaded Binary Tree + Heaps

Discussions

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 30 / 30


	Threaded Binary Trees (引線二元樹)
	Heaps
	

