Threaded Binary Tree + Heaps

Threaded Binary Tree & Heaps

Joseph Chuang-Chieh Lin (#R 1)

Department of Computer Science & Engineering,
National Taiwan Ocean University

Fall 2024

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 1/30

Threaded Binary Tree + Heaps

Outline

@ Threaded Binary Trees (5] 4 =7L#Y)

© Heaps

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps

Fall 2024

Threaded Binary Tree + Heaps
Threaded Binary Trees (5] 4 =7T#t)

Outline

@ Threaded Binary Trees (5] 4 =7L#Y)

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps

Fall 2024

Threaded Binary Tree + Heaps
Threaded Binary Trees (5] 4 =7T#t)

Threaded Binary Trees

there are more null links than actual points.

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 4/30

Threaded Binary Tree + Heaps
Threaded Binary Trees (3] 4=7t4)

Threaded Binary Trees

there are more null links than actual points.

@ Number of nodes: n.
@ Number of null non-null links: n— 1.

@ Number of null links: n -+ 1.

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 4/30

Threaded Binary Tree + Heaps
Threaded Binary Trees (5] 4 =7T#t)

Threaded Binary Trees

there are more null links than actual points.

@ Number of nodes: n.
@ Number of null non-null links: n— 1.

@ Number of null links: n+ 1.
0 root

[[[o [o[elo] [o[Fo] [o[c]o]

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 5/30

Threaded Binary Tree + Heaps
Threaded Binary Trees (3] 4=7t4)

Solution

Replace the NULL Links by pointers, threads, pointing to other nodes. J

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 6/30

Threaded Binary Tree + Heaps
Threaded Binary Trees (3] 4=7t4)

Solution

Replace the NULL Links by pointers, threads, pointing to other nodes. J

Threading Rules

o if ptr—->leftChild is NULL, then ptr->leftChild = inorder
predecessor (F 7 Al 4T4") of ptr.

o if ptr->rightChild is NULL, then ptr->rightChild = inorder
successor (T 514 #) of ptr. '

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 6/30

Threaded Binary Tree + Heaps
Threaded Binary Trees (5] 4 =7T#t)

To distinguish between normal pointers and threads

@ Two additional fields of the node structure: left-thread, right-thread.

typedef struct threadedTree *threadedPointer;

typedef struct threadedTree {
short int leftThread;
threadedPointer leftChild;
char data;
threadedPointer rightChild;
short int rightThread;

};

l leftThread leftChild [data [rightChild | rightThread ‘

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 7/30

Threaded Binary Tree + Heaps
Threaded Binary Trees (5] 4 =7T#t)

Rules of the Threading Fields

o If ptr->leftThread == TRUE, ptr->leftChild contains a thread;
Otherwise, the node contains a pointer to the left child.

o If ptr->rightThread == TRUE, ptr->righChild contains a
thread; Otherwise, the node contains a pointer to the right child.

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 8/30

Threaded Binary Tree + Heaps
Threaded Binary Trees (5] 4 =7T#t)

Rules of the Threading Fields

o If ptr->leftThread == TRUE, ptr->leftChild contains a thread;
Otherwise, the node contains a pointer to the left child.

o If ptr->rightThread == TRUE, ptr->righChild contains a
thread; Otherwise, the node contains a pointer to the right child.

@ Two dangling threads at node H and G.
= Use a header node to collect them!

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 8/30

Threaded Binary Tree + Heaps
Threaded Binary Trees (3] 4=7t4)

@ The original tree becomes the left subtree of the head node.

a header node

root

JJHOAEAD

N

Inorder sequence: HDIBEAFCG

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 9/30

Threaded Binary Tree + Heaps
Threaded Binary Trees (5] 4 =7T#t)

Representing an Empty Binary Tree

leftThread leftChild data rightChild rightThread

true . — . false

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 10/30

Threaded Binary Tree + Heaps
Threaded Binary Trees (5] 4 =7T#t)

Finding the Inorder Successor of Node

threadedPointer insucc(threadedPointer tree) {
/* find the inorder sucessor of tree in a threaded
binary tree */
threadedPointer temp;
temp = tree->rightChild;
if (!tree->rightThread) // 7ightChild ezists!
while (!temp->leftThread)
temp = temp->leftChild;
return temp;

To perform an inorder traversal, we can simply make
repeated calls to insucc!

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 11/30

Threaded Binary Tree + Heaps
Threaded Binary Trees (5] 4 =7T#t)

Inorder Traversal of a Threaded Binary Tree

void traverselnorder (threadedPointer tree) {

/* traverse the threaded binary tree inorder */

threadedPointer temp = tree;
while (1) {
temp = insucc(temp) ;
if (temp == tree)
break;
printf("%3c", temp->data);

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps

Fall 2024

Threaded Binary Tree + Heaps
Threaded Binary Trees (5] % =7L#t)

Inserting r as the rightChild of a node s

o Case |: s—=>rightThread == False

I

before

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 13 /30

Threaded Binary Tree + Heaps
Threaded Binary Trees (3] 4=7t4)

Inserting r as the rightChild of a node s

@ Case Il: s->rightThread != False

before gtey

-———

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 14 /30

Threaded Binary Tree + Heaps
Threaded Binary Trees (3] 4=7t4)

The Code for the Insertion

void insertRight (threadedPointer s,
threadedPointer r) {
/* insert r as the right child of s */
threadedPointer temp; !
r->rightChild = s->rightChild; i
r->rightThread = s->rightThread; I
r->leftChild = s; L
r->leftThread = TRUE;
s—>rightChild = r;
s—>rightThread = FALSE;
if (!r->rightThread){ // step 4 pefore
temp = insucc(r);
temp->leftChild = r;

0 e

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 15 /30

Threaded Binary Tree + Heaps
Heaps

Outline

© Heaps

Joseph C. C. Lin (CSE, NTOU, TW)

Threaded Binary Tree + Heaps

Fall 2024

Threaded Binary Tree + Heaps
Heaps

Heaps

A max tree is a tree in which

@ the key value in each node > the key values in its children.

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 17 /30

Threaded Binary Tree + Heaps
Heaps

Heaps

A max tree is a tree in which

@ the key value in each node > the key values in its children.

A min tree is a tree in which

@ the key value in each node < the key values in its children.

A

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 17 /30

Threaded Binary Tree + Heaps
Heaps

Heaps

A max tree is a tree in which

@ the key value in each node > the key values in its children.

A min tree is a tree in which

@ the key value in each node < the key values in its children.

A

A complete binary tree that is also a max tree.

Min Heap

A complete binary tree that is also a min tree.

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 17 /30

Threaded Binary Tree + Heaps
Heaps

Examples: Max & Min Trees

Max Trees
Min Trees

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 18 /30

Threaded Binary Tree + Heaps
Heaps

Examples: Max & Min Heaps

Max Heaps
(2) (19 (1)
(. O ® & @
® e
Min Heaps ;

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 19/30

Threaded Binary Tree + Heaps
Heaps

The Key Application: Priority Queues

@ Heaps are frequently used to implement priority queues.

@ In this kind of queue,
o the element to be deleted is the one with highest (or lowest) priority.
e at any time, an element with arbitrary priority can be inserted into
the queue.

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 20/30

Threaded Binary Tree + Heaps
Heaps

Insertion into a Max Heap

@ The bubbling process.
o It begins at the new node of the tree and moves toward the root.

insert 1
Er=OR AR s 0

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 21/30

Threaded Binary Tree + Heaps
Heaps

Insertion into a Max Heap

@ The bubbling process.
o It begins at the new node of the tree and moves toward the root.

G @
@ e insert 5 @ 0
=
19 W 1 ©@E

% not max heap !

@ e bubbling up
1 @G

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 22/30

Threaded Binary Tree + Heaps
Heaps

Insertion into a Max Heap

@ The bubbling process.
o It begins at the new node of the tree and moves toward the root.

@ i 2.1 @
@ e insert @ a
>
(9. () OROIS

f not max heap !

@ @ bubbling up
@ @0

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 23 /30

Threaded Binary Tree + Heaps
Heaps

The Code for Insertion into a Max Heap

@ Consider the following declarations:

#define MAX_ELEMENTS 200 /* mazimum heap size+l */
#define HEAP_FULL (n) (n == MAX_ELEMENTS -1)
#define HEAP_EMPTY (n) (!n)
typedef struct {
int key;
/* other fields */
} element;
element heap[MAX_ELEMENTS] ;
int n = 0;

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 24 /30

Threaded Binary Tree + Heaps
Heaps

The Code for Insertion into a Max Heap

void push (element item, int #*n) {
/* insert item into a max heap of current size *n */
int i;
if (HEAP_FULL(*n)) {
printf ("The heap is full.\n");
exit (EXIT_FAILURE) ;
Y // 0(1) time
i = ++(*n);
while ((i != 1) && (item.key > heap[i/2] .key)) {
heap[i] = heap[i/2];
i/=2;
Y // 0(ig n) time
heap[i] = item; // 0(1) time

@ The time complexity of the insertion: O(lgn).

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 25/30

Threaded Binary Tree + Heaps
Heaps

Deletion from a Max Heap

@ When an element is to be deleted from a max heap, it is ALWAYS
taken from the root of the heap.

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 26 /30

Threaded Binary Tree + Heaps
Heaps

Deletion from a Max Heap

@ When an element is to be deleted from a max heap, it is ALWAYS
taken from the root of the heap.

@ The steps of deletion from a Max heap:
o delete the root node.
e insert the last node into the root.
o use the to ensure that the resulting heap remains a
max heap.

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 26 /30

Threaded Binary Tree + Heaps
Heaps

lllustration of Deletion from a Max Heap

@ 0
@ @ ® ®Q

ﬂ insert 2 to
the root
@ bubbling up Q
(S

19 W 19 W

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 27/30

Threaded Binary Tree + Heaps
Heaps

lllustration of Deletion from a Max Heap

@ delete 20 .
O O @ Q)
19

insert 10 to
the root

@ bubbling up
1) (@ < @ @)
(9

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 27/30

Threaded Binary Tree + Heaps
Heaps

The Code for Deletion from a Max Heap

element pop(int *n) {
/* delete element with the highest key from the heap */
int parent, child;
element item, temp;
if (HEAP_EMPTY(*n)) {
fprintf (stderr, "The heap is empty\n");
exit (EXIT_FAILURE) ;
¥
/* save value of the element with the highest key */
item = heap[1];
/* use last element in heap to adjust heap */
temp = heap[(*n)--1;
parent = 1;
child = 2;
while (child <= *n) { // 0(lg n) time
/* find the larger child of the current parent */
if ((child < *n) && (heap[child].key < heap[child+1].key))
child++;
if (temp.key >= heap[child].key) break;
/* move to the next lower level */
heap[parent] = heap[child];
parent = child;
child *= 2;
}
heap [parent] = temp;
return item;

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 28/30

Threaded Binary Tree + Heaps
Heaps

Time Complexity of the Deletion from a Max Heap

@ Delete the root node: O(1).
@ Insert the last node to the root: O(1).
@ Since the height of the heap is [lg(n+ 1))], the while loop is iterated

for O(lg n) times.

@ Thus, the overall time complexity: the time complexity of the
deletion: O(log n).

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 29 /30

Threaded Binary Tree + Heaps

Discussions

Joseph C. C. Lin (CSE, NTOU, TW) Threaded Binary Tree + Heaps Fall 2024 30/30

	Threaded Binary Trees (引線二元樹)
	Heaps
	

