Trees Trees, Binary Trees & Representations

Joseph Chuang-Chieh Lin (林莊傑)

Department of Computer Science & Engineering, National Taiwan Ocean University

Fall 2024

< □ > < □ > < □ > < 三 > <

Outline

Introduction

• Representation of Trees

Binary Trees

• Binary Tree Representations

< ロ > < 回 > < 回 > <

Trees Introduction

Outline

Introduction

Representation of Trees

Joseph C. C. Lin (CSE, NTOU, TW)

< ロ > < 回 > < 回 > < 回 > < 回

Introduction

• Intuitively, a tree structure organized data in a hierarchical manner.

< ロ > < 国 > < 国 > <

Trees Introduction

Example: Pedigree Chart

Joseph C. C. Lin (CSE, NTOU, TW)

< ロ > < 国 > < 国 > <

Trees Introduction

Example: Mathematical Genealogy Project

Figure reference: https://www.mathgenealogy.org/

Joseph C. C. Lin (CSE, NTOU, TW)

Trees Introduction

Tree

- A tree is a finite set of one or more nodes such that:
 - There is a specially designated node called root.
 - The remaining nodes are partitioned into $n \ge 0$ disjoint sets, T_1, \ldots, T_n , where each of these sets is a tree.
 - T_1, \ldots, T_n : subtrees of the root.

7/32

< □ > < 同 > < 三 > <

Trees Introduction

Node

• A node stands for the item of information plus the branches to other nodes.

Degree

• The number of subtrees of a node is called its degree.

Joseph C. C. Lin (CSE, NTOU, TW)

< ロ > < 回 > < 回 > <

Trees Introduction

Definitions

Degree

- The number of subtrees of a node is called its degree.
 - $\deg(A) = 3$, $\deg(C) = 1$, $\deg(F) = 0$.

Leaf, children, parent

• A node that has degree 0 is called a leaf or terminal.

Joseph C. C. Lin (CSE, NTOU, TW)

< ロ > < 回 > < 回 > <

Leaf, children, parent

- A node that has degree 0 is called a leaf or terminal.
- The roots of the subtrees of a node X are the children of X. X is the parent of its children.

Trees Introduction

Siblings, degree, ancestors

- Children of the same parent are said to be siblings.
 - Example: *H*, *I* and *J* are siblings; *B*, *C* and *D* are siblings.
- The degree of a tree is the **maximum** of the degree of the nodes in the tree.
 - The tree in this example has degree 3.
- The ancestors of a node are all the nodes along the path from the root to that node.
 - The ancestors of *M* are *A*, *D*, and *H*.

Trees Introduction

Level, height or depth

- The level of a node:
 - the root: 1.
 - if a node is at level k, then its children are at level k + 1.
 - Example: evel(A) = 1, evel(H) = 3, evel(L) = 4.
- The height or depth of a tree is defined to be the maximum level of any node in the tree.
 - The depth of the tree in this example is 4.

Representation of Trees

• The tree in the example can be written as

(A(B(E(K, L), F), C(G), D(H(M), I, J))).

• **Rule:** root node \rightarrow list of its subtrees.

A Possible Node Structure of a Tree of Degree k

• The degree of each tree node may be different.

< □ > < 同 > < 三 > <

A Possible Node Structure of a Tree of Degree k

- The degree of each tree node may be different.
 - we may be tempted to use memory nodes with a varying number of pointer fields.
- However, one only uses nodes of a fixed size to represent tree nodes in practice.

data	child 1	child 2	· · · · · · · · · · · · · · · · · · ·	child k
------	---------	---------	---------------------------------------	---------

A Possible Node Structure of a Tree of Degree k

- The degree of each tree node may be different.
 - we may be tempted to use memory nodes with a varying number of pointer fields.
- However, one only uses nodes of a fixed size to represent tree nodes in practice.

data	child 1	child 2	· · · · ·	child k
------	---------	---------	-----------	---------

• Then, how to choose such a fixed size?

Waste of Space

Lemma 5.1

If T is a k-ary tree (i.e., a tree of degree k) with n nodes $(n \ge 1)$, each having a fixed size, then n(k-1) + 1 of the nk child fields are 0.

data child 1 child 2
$$\cdots$$
 child k

Proof

- The number of edges of T: n-1
 - Hence, the number of non-zero child fields in T is exactly n-1.

< □ > < □ > < □ > < □ >

Waste of Space

Lemma 5.1

If T is a k-ary tree (i.e., a tree of degree k) with n nodes $(n \ge 1)$, each having a fixed size, then n(k-1) + 1 of the nk child fields are 0.

data child 1 child 2
$$\cdots$$
 child k

Proof

- The number of edges of T: n-1
 - Hence, the number of non-zero child fields in T is exactly n-1.
 - The total number of child fields in a k-ary tree with n nodes is nk.

< □ > < □ > < 三 > <

Waste of Space

Lemma 5.1

If T is a k-ary tree (i.e., a tree of degree k) with n nodes $(n \ge 1)$, each having a fixed size, then n(k-1) + 1 of the nk child fields are 0.

data child 1 child 2
$$\cdots$$
 child k

Proof

- The number of edges of T: n-1
 - Hence, the number of non-zero child fields in T is exactly n-1.
 - The total number of child fields in a k-ary tree with n nodes is nk.
 - Thus, the number of zero fields is nk (n-1) = n(k-1) + 1.

< □ > < □ > < □ > < □ > < □ > < □ </p>

Left Child-Right Sibling Representation

- Every node has ≤ 1 leftmost child and ≤ 1 closest right sibling.
- The left child field of each node points to its leftmost child (if any)
- The right sibling field points to its closest right sibling (if any).

data					
left child	right sibling				

Trees

Introduction

Representation of Trees

А

В

- left child
- right sibling

17 / 32

В

< □ > < □ > < □ > < □ > < □ >

Trees Binary Trees

Outline

Introduction
 Representation of Trees

Binary Trees

• Binary Tree Representations

< ロ > < 回 > < 回 > < 回 > < 回

Trees Binary Trees

Binary Trees

Binary Trees

A binary tree is a finite set of nodes that

- consists of a root
- two disjoint binary trees: the left subtree and the right subtree.

19/32

< □ > < 同 > < 三 > <

Trees vs. Binary Trees

Notice

In a binary tree we distinguish between the order of the children while in a tree we do not.

- The following two binary trees are different.
 - the first binary tree has an empty right subtree
 - the second has an empty left subtree.

Trees vs. Binary Trees

Notice

In a binary tree we distinguish between the order of the children while in a tree we do not.

- The following two binary trees are different.
 - the first binary tree has an empty right subtree
 - the second has an empty left subtree.

B

В

Trees Binary Trees

Skew Binary Trees & Complete Binary Trees

- skew: only left (or right) subtrees for each node
- complete: all leaf nodes of these trees are on two adjacent levels.

Trees Binary Trees

Properties of Binary Trees

Lemma 5.2 [Maximum Number of Nodes]

- The maximum number of nodes on level *i* of a binary tree is 2^{i-1} , for $i \ge 1$.
- The maximum number of nodes in a binary tree of depth k is 2^k − 1, for k ≥ 1.
- On level 2: 2 nodes; on level 3: 4 nodes.
- Totally $2^3 1 = 7$ nodes in the binary tree.

В

Е

C

Trees Binary Trees

Proof of Lemma 5.2

- Induction Base:
 - The root is the only node on level 1. $2^{1-1} = 2^0 = 1$.
- Induction Hypothesis: Assume that the maximum number of nodes on level i - 1 is 2ⁱ⁻².
- Induction Step:
 - The maximum number of nodes on level i-1 is 2^{i-2} by the induction hypothesis.
 - Since each node in a binary tree has a maximum degree of 2, the maximum number of nodes on level i is 2ⁱ⁻² · 2 = 2ⁱ⁻¹.

23/32

< □ > < □ > < □ > < = > <

Trees Binary Trees

Proof of Lemma 5.2

- Induction Base:
 - The root is the only node on level 1. $2^{1-1} = 2^0 = 1$.
- Induction Hypothesis: Assume that the maximum number of nodes on level i - 1 is 2ⁱ⁻².
- Induction Step:
 - The maximum number of nodes on level i-1 is 2^{i-2} by the induction hypothesis.
 - Since each node in a binary tree has a maximum degree of 2, the maximum number of nodes on level i is 2ⁱ⁻² · 2 = 2ⁱ⁻¹.
- The maximum number of nodes in a binary tree of depth k is

$$1 + 2 + 2^{2} + \dots + 2^{k-1} = \sum_{i=1}^{k-1} 2^{i-1} = 2^{k} - 1$$

・ ロ ト ・ 同 ト ・ 三 ト ・

Trees Binary Trees

Full Binary Tree

Full Binary Tree

A full binary tree of depth k is a binary tree of depth k having $2^k - 1$ nodes, for $k \ge 0$.

Remark

A binary tree with n nodes and depth k is complete iff its nodes correspond to the nodes numbered from 1 to n in the full binary tree of depth k.

• From Lemma 5.2, we know that

the height of a complete binary tree with *n* nodes is $\lceil log_2(n+1) \rceil$.

< □ > < 同 > < 三 >

Trees Binary Trees

Full Binary Tree

Full Binary Tree

A full binary tree of depth k is a binary tree of depth k having $2^k - 1$ nodes, for $k \ge 0$.

Remark

A binary tree with n nodes and depth k is complete iff its nodes correspond to the nodes numbered from 1 to n in the full binary tree of depth k.

• From Lemma 5.2, we know that

the height of a complete binary tree with *n* nodes is $\lceil log_2(n+1) \rceil$.

* Note: A complete binary tree is NOT necessarily a full binary tree!

A = > A = > A = > A

Complete Binary Tree

Joseph C. C. Lin (CSE, NTOU, TW)

Fall 2024

< ロ > < 回 > < 回 > <

Binary tree Array Representation

Lemma 5.4

If a complete binary tree with *n* nodes is represented sequentially, then for any node with index *i*, $1 \le i \le n$, we have

- parent(i) is at $\lfloor i/2 \rfloor$ if $i \neq 1$. If i = 1, i is at root so it has no parent.
- leftChild(i) is at 2i if $2i \le n$. If 2i > n, then i has no left child.
- rightChild(i) is at 2i + 1 if $2i + 1 \le n$. If 2i + 1 > n, then i has no right child.

Binary Tree Representation: Examples

NTOU CSE

Joseph C. C. Lin (CSE, NTOU, TW)

Binary Tree Representation: Examples

∃ >

Drawbacks of the Array Representation

- Waste memory space for most binary trees.
- In the worst case, a skewed tree of depth k requires $2^{k} 1$ spaces.
 - Only k spaces is occupied.

• Insertion or deletion of nodes from the middle of a tree requires the movement of potentially many nodes.

< □ > < □ > < □ > < □ >

Try Linked List Representation

```
typedef struct node *treePointer;
typedef struct node {
    int data;
    treePointer leftChild, rightChild;
};
```


leftChild data rightChild

< □ > < □ > < □ > < □ > <</p>

Example

< ロ > < 回 > < 三 > < 三 > < 三 > <

Example

< □ > < □ > < □ > < □ > < □ >

Discussions

Joseph C. C. Lin (CSE, NTOU, TW)

Fall 2024

(日) (雪) (田) (田)