Trees

Trees Trees, Binary Trees & Representations

Joseph Chuang-Chieh Lin (林莊傑)

Department of Computer Science & Engineering, National Taiwan Ocean University

Fall 2024

Joseph C. C. Lin (CSE, NTOU, TW) Trees Fall 2024 1/32

Introduction

• Intuitively, a tree structure organized data in a hierarchical manner.

Definitions

Tree

- A tree is a finite set of one or more nodes such that:
	- There is a specially designated node called root.
	- The remaining nodes are partitioned into *n ≥* 0 disjoint sets, T_1, \ldots, T_n , where each of these sets is a tree.
	- T_1, \ldots, T_n : subtrees of the root.

............

Definitions

Definitions

Definitions

Definitions

Leaf, children, parent A node that has degree 0 is called a leaf or terminal. V $\begin{array}{c} 4 \ \square \ \vdash \ \Diamond \bigcirc \overline{\mathcal{O}} \ \vdash \ \Diamond \ \overline{\mathcal{O}} \ \vdash \ \Diamond \ \overline{\mathcal{O}} \ \vdash \ \Diamond \ \overline{\mathcal{O}} \ \vdash \end{array}$ 重 Joseph C. C. Lin (CSE, NTOU, TW) Trees Fall 2024 10/32

Definitions

Leaf, children, parent

- A node that has degree 0 is called a leaf or terminal.
- The roots of the subtrees of a node *X* are the children of *X*. X is the parent of its children.

Definition

Siblings, degree, ancestors

- Children of the same parent are said to be siblings.
	- Example: *H*, *I* and *J* are siblings; *B*, *C* and *D* are siblings.
- The degree of a tree is the **maximum** of the degree of the nodes in the tree.
	- The tree in this example has degree 3.
- The ancestors of a node are all the nodes along the path from the root to that node.
	- The ancestors of *M* are *A*, *D*, and *H*.

Definition

Level, height or depth

- The level of a node:
	- \bullet the root: 1.
	- if a node is at level k , then its children are at level $k + 1$.
	- Example: $level(A) = 1$, $level(H) = 3$, $level(L) = 4$.
- The height or depth of a tree is defined to be the maximum level of any node in the tree.
	- The depth of the tree in this example is 4.

A Possible Node Structure of a Tree of Degree *k*

The degree of each tree node may be different.

A Possible Node Structure of a Tree of Degree *k*

- The degree of each tree node may be different.
	- we may be tempted to use memory nodes with a varying number of pointer fields.
- However, one only uses nodes of a fixed size to represent tree nodes in practice.

data child 1 child 2 \cdots child k

(ロ) (個) (ミ) (ミ)

A Possible Node Structure of a Tree of Degree *k*

- The degree of each tree node may be different.
	- we may be tempted to use memory nodes with a varying number of pointer fields.
- However, one only uses nodes of a fixed size to represent tree nodes in practice.

```
data child 1 child 2 \cdots child k
```
• Then, how to choose such a fixed size?

Waste of Space

Lemma 5.1

If T is a *k*-ary tree (i.e., a tree of degree *k*) with *n* nodes $(n \ge 1)$, each having a fixed size, then $n(k-1) + 1$ of the nk child fields are 0.

data child 1 child 2 \cdots child k

Proof

The number of edges of *T*: *n −* 1 Hence, the number of non-zero child fields in *T* is exactly *n −* 1.

 $\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$

Waste of Space

Lemma 5.1

If T is a *k*-ary tree (i.e., a tree of degree *k*) with *n* nodes $(n \ge 1)$, each having a fixed size, then $n(k-1) + 1$ of the *nk* child fields are 0.

data child 1 child 2 \cdots child k

(□) (图) (三) (三)

Proof

- The number of edges of *T*: *n −* 1
	- Hence, the number of non-zero child fields in *T* is exactly *n −* 1.
	- The total number of child fields in a *k*-ary tree with n nodes is *nk*.

Representation of Trees

Waste of Space

Lemma 5.1

If T is a *k*-ary tree (i.e., a tree of degree *k*) with *n* nodes $(n \ge 1)$, each having a fixed size, then $n(k-1) + 1$ of the *nk* child fields are 0.

data child 1 child 2 \cdots child k

 $\left(\begin{array}{c|c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0$

Proof

- The number of edges of *T*: *n −* 1
	- Hence, the number of non-zero child fields in *T* is exactly *n −* 1.
	- The total number of child fields in a *k*-ary tree with n nodes is *nk*.
	- Thus, the number of zero fields is *nk −* (*n −* 1) = *n*(*k −* 1) + 1.

Left Child-Right Sibling Representation

- Every node has *≤* 1 leftmost child and *≤* 1 closest right sibling.
- The **left child field** of each node points to its leftmost child (if any)
- The **right sibling field** points to its closest right sibling (if any).

Binary Trees

Binary Trees

A binary tree is a finite set of nodes that

- consists of a root
- two disjoint binary trees: the left subtree and the right subtree.

Trees vs. Binary Trees

Notice

In a binary tree we distinguish between the order of the children while in a tree we do not.

- The following two binary trees are different.
	- the first binary tree has an empty right subtree
	- the second has an empty left subtree.

 $(\Box \rightarrow + \Box \rightarrow + \Xi \rightarrow + \Xi \rightarrow$

Trees vs. Binary Trees

Notice

In a binary tree we distinguish between the order of the children while in a tree we do not.

 \bigcirc

 $\Box \rightarrow 4 \overline{\Box} \rightarrow 4 \overline{\Box} \rightarrow 4 \overline{\Box} \rightarrow$

- The following two binary trees are different.
	- the first binary tree has an empty right subtree
	- the second has an empty left subtree.

 \overline{B}

Properties of Binary Trees

Lemma 5.2 [Maximum Number of Nodes]

- The maximum number of nodes on level *i* of a binary tree is 2 *i−*1 , for $i \geq 1$.
- The maximum number of nodes in a binary tree of depth *k* is $2^k 1$, for $k \geq 1$.
- On level 2: 2 nodes; on level 3: 4 nodes.
- Totally $2^3 1 = 7$ nodes in the binary tree.

Proof of Lemma 5.2

- Induction Base:
	- The root is the only node on level 1. $2^{1-1} = 2^0 = 1$.
- Induction Hypothesis: Assume that the maximum number of nodes on level $i-1$ is 2^{i-2} .
- Induction Step:
	- The maximum number of nodes on level *i −* 1 is 2 *ⁱ−*² by the induction hypothesis.
	- Since each node in a binary tree has a maximum degree of 2, the maximum number of nodes on level *i* is $2^{i-2} \cdot 2 = 2^{i-1}$.

(ロトイタ) (ミ) (ミ)

Proof of Lemma 5.2

- Induction Base:
	- The root is the only node on level 1. $2^{1-1} = 2^0 = 1$.
- Induction Hypothesis: Assume that the maximum number of nodes on level $i-1$ is 2^{i-2} .
- Induction Step:
	- The maximum number of nodes on level *i −* 1 is 2 *ⁱ−*² by the induction hypothesis.
	- Since each node in a binary tree has a maximum degree of 2, the maximum number of nodes on level *i* is $2^{i-2} \cdot 2 = 2^{i-1}$.
- The maximum number of nodes in a binary tree of depth *k* is

$$
1 + 2 + 2^{2} + \dots + 2^{k-1} = \sum_{i=1}^{k-1} 2^{i-1} = 2^{k} - 1.
$$

 $\Box \rightarrow 4 \overline{\partial} \rightarrow 4 \overline{\Xi} \rightarrow 4 \overline{\Xi} \rightarrow$

Full Binary Tree

Full Binary Tree

A full binary tree of depth *k* is a binary tree of depth *k* having $2^k - 1$ nodes, for $k \geq 0$.

Remark

A binary tree with *n* nodes and depth *k* is complete iff its nodes correspond to the nodes numbered from 1 to *n* in the full binary tree of depth *k*.

From Lemma 5.2, we know that

the height of a complete binary tree with *n* nodes is $\lceil log_2(n+1) \rceil$.

Full Binary Tree

Full Binary Tree

A full binary tree of depth *k* is a binary tree of depth *k* having $2^k - 1$ nodes, for $k \geq 0$.

Remark

A binary tree with *n* nodes and depth *k* is complete iff its nodes correspond to the nodes numbered from 1 to *n* in the full binary tree of depth *k*.

From Lemma 5.2, we know that

the height of a complete binary tree with *n* nodes is $\lceil log_2(n+1) \rceil$.

⋆ **Note:** A complete binary tree is NOT necessarily a full binary tree!

 $\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$

E

Binary Tree Representations

Binary tree Array Representation

Lemma 5.4

If a complete binary tree with *n* nodes is represented sequentially, then for any node with index *i*, $1 \le i \le n$, we have

- parent(*i*) is at $|i/2|$ if $i \neq 1$. If $i = 1$, *i* is at root so it has no parent.
- leftChild(*i*) is at 2*i* if $2i \le n$. If $2i > n$, then *i* has no left child.
- rightChild(*i*) is at $2i + 1$ if $2i + 1 \le n$. If $2i + 1 > n$, then *i* has no right child.

Trees Binary Trees Binary Tree Representations

Trees Binary Trees Binary Tree Representations

Drawbacks of the Array Representation

- Waste memory space for most binary trees.
- In the worst case, a skewed tree of depth k requires $2^k 1$ spaces. Only *k* spaces is occupied.
- Insertion or deletion of nodes from the middle of a tree requires the movement of potentially many nodes.

