Union-Find (Disjoint Set Union) Efficient Maintenance of Disjoint Sets

Joseph Chuang-Chieh Lin (林莊傑)

Department of Computer Science & Engineering, National Taiwan Ocean University

Fall 2025

Reference

- Lecture Notes of CS6820 2022 (Cornell University)
- Robert Endre Tarjan: Efficiency of a Good But Not Linear Set Union Algorithm. Journal of the ACM. Vol. 22(2) (1975) 215–225. [DOI LINK]
- R. E. Tarjan on analyzing the "union-find" data structure [YouTube]

Outline

- Motivation & Abstract Data Type
- Two Key Heuristics
- Implementation
- 4 Why $\alpha(n)$? A Glimpse of the Analysis

Why Union-Find?

- Many graph algorithms need to maintain a partition of elements into disjoint sets.
- Example: Kruskal's algorithm and Borůvka/Sollin's algorithm for Minimum Spanning Tree (MST)
 - Cycle detection.
 - When scanning edges in nondecreasing weight:
 Add edge (u, v) iff u and v are currently in different connected components.
- Union-Find supports this pattern in (almost) constant amortized time.

Disjoint-Set (Union-Find) ADT

Operations

- find(v): return a canonical representative of the set containing v.
- union(u,v): merge the two sets containing u and v.

Disjoint-Set (Union-Find) ADT

Operations

- find(v): return a canonical representative of the set containing v.
- union(u,v): merge the two sets containing u and v.
- Same-set query:

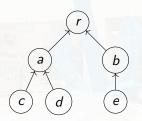
u and v are in the same set \iff find(u) =find(v).

• Initially: *n* singleton sets.

Fall 2025

Representing Each Set as a Rooted Tree

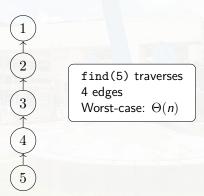
- Each element x stores a pointer parent[x].
- The root is the canonical representative (for the set).



find(x) = follow parent pointers to the root.

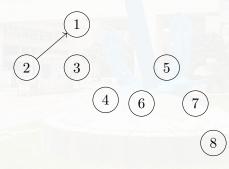
Naïve Implementation: Worst-Case Can Be Bad

• If we always attach one root under the other arbitrarily, the tree can become a chain.

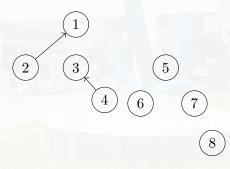


- Start with singletons $\{1\}, \{2\}, \dots, \{8\}.$
- Perform unions: union(1,2), union(3,4), union(5,6),
 union(7,8), union(1,3), union(5,7), union(1,5).

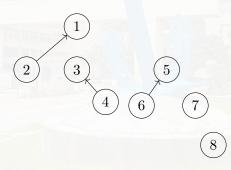
- Start with singletons $\{1\}, \{2\}, \dots, \{8\}.$
- Perform unions: union(1,2), union(3,4), union(5,6),
 union(7,8), union(1,3), union(5,7), union(1,5).



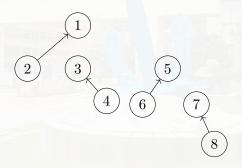
- Start with singletons $\{1\}, \{2\}, \dots, \{8\}.$
- Perform unions: union(1,2), union(3,4), union(5,6),
 union(7,8), union(1,3), union(5,7), union(1,5).



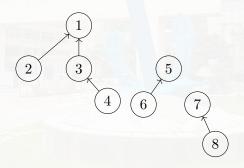
- Start with singletons $\{1\}, \{2\}, \ldots, \{8\}.$
- Perform unions: union(1,2), union(3,4), union(5,6), union(7,8), union(1,3), union(5,7), union(1,5).



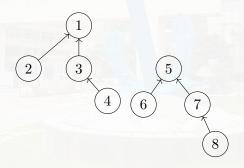
- Start with singletons $\{1\}, \{2\}, \dots, \{8\}.$
- Perform unions: union(1,2), union(3,4), union(5,6), union(7,8), union(1,3), union(5,7), union(1,5).



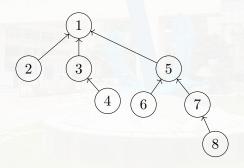
- Start with singletons $\{1\}, \{2\}, \dots, \{8\}.$
- Perform unions: union(1,2), union(3,4), union(5,6), union(7,8), union(1,3), union(5,7), union(1,5).



- Start with singletons $\{1\}, \{2\}, \dots, \{8\}.$
- Perform unions: union(1,2), union(3,4), union(5,6), union(7,8), union(1,3), union(5,7), union(1,5).



- Start with singletons $\{1\}, \{2\}, \dots, \{8\}.$
- Perform unions: union(1,2), union(3,4), union(5,6), union(7,8), union(1,3), union(5,7), union(1,5).



Cost Model

- union(u,v):
 - Usually does two find operations, then one pointer update.
 - Time dominated by the two find calls.
- find(u):
 - Time proportional to the length of the path from u to the root.

Goal

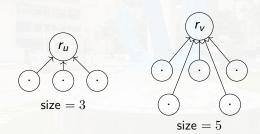
Support a sequence of m operations on n elements in near-linear total time.

Outline

- 1 Motivation & Abstract Data Type
- 2 Two Key Heuristics
- 3 Implementation
- 4 Why $\alpha(n)$? A Glimpse of the Analysis

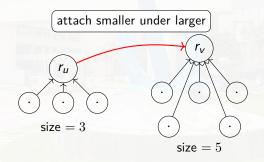
Heuristic #1: Union by Size (Smaller \rightarrow Larger)

- Maintain size[root] = number of nodes in that tree.
- On union(u,v):
 - Find roots r_u, r_v .
 - Make the root of the smaller tree point to the root of the larger tree.



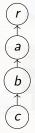
Heuristic #1: Union by Size (Smaller \rightarrow Larger)

- Maintain size[root] = number of nodes in that tree.
- On union(u,v):
 - Find roots r_u , r_v .
 - Make the root of the smaller tree point to the root of the larger tree.



Heuristic #2: Path Compression (During find)

- After finding the root r for a query node x:
 - ullet traverse the path again and set every visited node's parent directly to r.
- This makes future find operations faster.

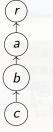


find(c) follows 3 edges

Before

Heuristic #2: Path Compression (During find)

- After finding the root r for a query node x:
 - ullet traverse the path again and set every visited node's parent directly to r.
- This makes future find operations faster.



find(c) follows 3 edges

Before

path compressed

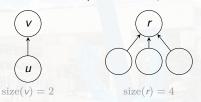
After

Key Observations (w/ vs. w/o Path Compression)

- Consider a fixed sequence σ of m operations on n elements.
- With or without path compression:
 - the partition into sets at each time is the same,
 - the roots (representatives) are the same.
- The difference: path compression can later make a node a non-descendant of a former ancestor.

Example

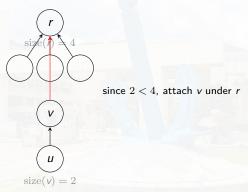
Time t: after union(u,v) (and r already has a larger set)



Now u is a descendant of v.

Example

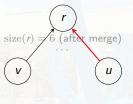
Later: after union(v,r) by size (no compression yet)



Path is $u \rightarrow v \rightarrow r$, so u is still a descendant of v.

Example

After find(u) with path compression



u now bypasses v

Now u is not a descendant of v (even though it was earlier).

Fall 2025

What We Get from These Two Heuristics

Performance Guarantee (informal)

A sequence of m union/find operations takes

$$O((m+n)\alpha(n))$$

time, where $\alpha(n)$ is the inverse Ackermann function.

What We Get from These Two Heuristics

Performance Guarantee (informal)

A sequence of m union/find operations takes

$$O((m+n)\alpha(n))$$

time, where $\alpha(n)$ is the inverse Ackermann function.

 \bullet $\alpha(n)$ grows extremely slowly that it can be effectively viewed as a constant for all realistic inputs.

What We Get from These Two Heuristics

Performance Guarantee (informal)

A sequence of m union/find operations takes

$$O((m+n)\alpha(n))$$

time, where $\alpha(n)$ is the inverse Ackermann function.

- \bullet $\alpha(n)$ grows extremely slowly that it can be effectively viewed as a constant for all realistic inputs.
- Why and how does this exotic function appear in the analysis?

Implementation: Two Arrays

- parent[x]: parent pointer; roots satisfy parent[r] = r.
- rank[x] (a kind of "weight" of x): maintained only for roots.

Invariants

- Each set is represented by exactly one rooted tree.
- Roots are the canonical representatives.

C++ style Reference Implementation

```
struct DSU {
  vector<int> parent, rank;
  DSU(int n=0) { init(n); }
  void init(int n){
    parent.resize(n);
    rank.assign(n,1);
    for(int i=0; i<n; i++) parent[i]=i;</pre>
  int find(int x) {
    if(parent[x] == x) return x;
    return parent[x] = find(parent[x]); // path compression
  bool union(int a,int b){ // weighted union
    a = find(a); b = find(b);
    if(a == b) return false;
    if(rank[a] < rank[b]) swap(a,b); // union by size
    parent[b] = a;
    rank[a] += rank[b];
    return true:
};
```

Practical Notes

- Union-by-rank is a common variant:
 - maintain an upper bound on height instead of exact subtree size,
 - update only when ranks tie.
- Rule of thumb: always combine one of (union by size/rank) and path compression.

Outline

- 1 Motivation & Abstract Data Type
- 2 Two Key Heuristics
- 3 Implementation
- 4 Why $\alpha(n)$? A Glimpse of the Analysis

Ackermann-Type Growth

- The analysis uses a hierarchy of rapidly growing functions $\{A_k\}$.
- One convenient definition:

$$A_0(x) = x + 1,$$
 $A_{k+1}(x) = A_k^{(x)}(x),$

where
$$A_k^{(i)} := \underbrace{A_k \circ A_k \cdots \circ A_k}_{i \text{ times}}$$
 and $A_k^0 := \text{identity function}.$

Ackermann-Type Growth

- The analysis uses a hierarchy of rapidly growing functions $\{A_k\}$.
- One convenient definition:

$$A_0(x) = x + 1,$$
 $A_{k+1}(x) = A_k^{(x)}(x),$

where
$$A_k^{(i)} := \underbrace{A_k \circ A_k \cdots \circ A_k}_{i \text{ times}}$$
 and $A_k^0 := \text{identity function}$.

Intuition

As k increases, $A_k(x)$ grows astronomically fast (much faster than exponentials/towers).

Concrete Examples (Small k)

For $x \ge 2$, the first few levels behave like:

$$\begin{split} &A_0(x)=x+1,\\ &A_1(x)=2x,\\ &A_2(x)=x\cdot 2^x\quad \text{(roughly exponential)},\\ &A_3(x)=A_2^{\mathsf{x}}(x)\geq \underbrace{2^{2^2}}_{\mathsf{x}}\quad \text{(a tower of 2s of height x)}. \end{split}$$

- $A_4(2) \ge \underbrace{2^{2^2}}_{2048}$.
- This is why the inverse function grows extremely slowly.

Fall 2025

Ackermann Function and Its Inverse

Definitions [Ackermann and the Inverse Ackermann]

$$A(k) := A_k(2), \qquad \alpha(n) = \min\{k \mid A(k) \ge n\}.$$

For example, $\alpha(2048) = 3$ (: $A_3(2) = 2048$), $\alpha(2^{65536}) = 4$.

Ackermann Function and Its Inverse

Definitions [Ackermann and the Inverse Ackermann]

$$A(k) := A_k(2), \qquad \alpha(n) = \min\{k \mid A(k) \ge n\}.$$

For example,
$$\alpha(2048) = 3$$
 (: $A_3(2) = 2048$), $\alpha(2^{65536}) = 4$.

- $\alpha(n)$ is so small that in practice it behaves like a constant.
- The theoretical bound for Union-Find becomes near-linear.

Why $\alpha(n)$? A Glimpse of the Analysis

High-Level Statement of the Main Result

• Let σ be a sequence of m union and find operations.

Theorem (Tarjan [JACM 1975])

Starting from *n* singleton sets, any sequence of *m* union and find operations takes

$$O((m+n)\alpha(n))$$

time when using union-by-rank and path compression.

High-Level Statement of the Main Result

• Let σ be a sequence of m union and find operations.

Theorem (Tarjan [JACM 1975])

Starting from n singleton sets, any sequence of m union and find operations takes

$$O((m+n)\alpha(n))$$

time when using union-by-rank and path compression.

Next: the proof idea uses ranks and an amortized charging argument.

Rank of a Node

- Consider executing the same operation sequence without path compression.
- Let $T_m(u)$ be the subtree rooted at u in the final forest.
 - $T_t(u)$: the subtree rooted at u at time t in the execution of a sequence of m union and find instructions **without** path compressions.

Definition (Rank): a quantity that survives path compression

$$rank(u) = 2 + height(T_m(u)).$$

 $\operatorname{height}(T)$: the length of the longest path from leaves to the root.

Rank of a Node

- Consider executing the same operation sequence without path compression.
- Let $T_m(u)$ be the subtree rooted at u in the final forest.
 - $T_t(u)$: the subtree rooted at u at time t in the execution of a sequence of m union and find instructions **without** path compressions.

Definition (Rank): a quantity that survives path compression

$$rank(u) = 2 + height(T_m(u)).$$

 $\operatorname{height}(T)$: the length of the longest path from leaves to the root.

 With union-by-rank, ranks are bounded and monotone along parent pointers.

Lemma (Size vs. Height)

If we always merge the smaller tree into the larger, then for any time t and root u,

$$|T_t(u)| \geq 2^{\operatorname{height}(T_t(u))}.$$

Lemma (Size vs. Height)

If we always merge the smaller tree into the larger, then for any time t and root u,

$$|T_t(u)| \ge 2^{\operatorname{height}(T_t(u))}.$$

• Prove by induction on t.

Lemma (Size vs. Height)

If we always merge the smaller tree into the larger, then for any time t and root u.

$$|T_t(u)| \ge 2^{\operatorname{height}(T_t(u))}.$$

- Prove by induction on t.
- Intuition: each time the height increases by 1, the subtree size at least doubles.

Lemma (Size vs. Height)

If we always merge the smaller tree into the larger, then for any time t and root u.

$$|\mathcal{T}_t(\textbf{\textit{u}})| \geq 2^{\operatorname{height}(\mathcal{T}_t(\textbf{\textit{u}}))}.$$

- Prove by induction on t.
- Intuition: each time the height increases by 1, the subtree size at least doubles.

Union-Find

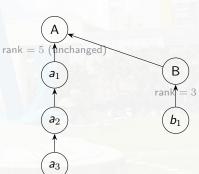
• Consequence: the maximum rank is $|\lg n| + 2 = O(\log n)$.

Note: Effect on the rank after union operation (1/2)

Example 1: unequal heights (no rank increase)

Before union a_1 a_2

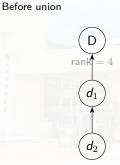
After union



Note: Effect on the rank after union operation (2/2)

Example 2: equal heights (rank increases)

C rank = 4



After union new rank = 5subtree fank = 4 c_2 d_1

- Path compression changes parents, so we need to track how fast parent ranks can grow.
- Define levels using the Ackermann hierarchy:

$$\ell(u) = \max \{ k \mid \operatorname{rank}(\operatorname{parent}(u)) \ge A_k(\operatorname{rank}(u)) \}.$$

• During path compression, $\ell(u)$ can only increase.

- Path compression changes parents, so we need to track how fast parent ranks can grow.
- Define levels using the Ackermann hierarchy:

$$\ell(u) = \max \{ k \mid \operatorname{rank}(\operatorname{parent}(u)) \ge A_k(\operatorname{rank}(u)) \}.$$

- During path compression, $\ell(u)$ can only increase.
 - Path compression changes parent(u) to a higher ancestor (larger rank), so $\ell(u)$ is monotone.

- Path compression changes parents, so we need to track how fast parent ranks can grow.
- Define levels using the Ackermann hierarchy:

$$\ell(u) = \max \{ k \mid \operatorname{rank}(\operatorname{parent}(u)) \ge A_k(\operatorname{rank}(u)) \}.$$

- During path compression, $\ell(u)$ can only increase.
 - Path compression changes parent(u) to a higher ancestor (larger rank), so $\ell(u)$ is monotone.

- Path compression changes parents, so we need to track how fast parent ranks can grow.
- Define levels using the Ackermann hierarchy:

$$\ell(u) = \max \{ k \mid \operatorname{rank}(\operatorname{parent}(u)) \ge A_k(\operatorname{rank}(u)) \}.$$

- During path compression, $\ell(u)$ can only increase.
 - Path compression changes parent(u) to a higher ancestor (larger rank), so $\ell(u)$ is monotone.

$$\ell(u) = \max \Big\{ k \ \Big| \ \operatorname{rank} \big(\operatorname{parent}(u) \big) \geq A_k \big(\operatorname{rank}(u) \big) \Big\}.$$

Charging idea (just bookkeeping for the analysis, not in the code)

When a find traverses a node u, we charge its O(1) cost as follows:

• Node-charge (same-level step): if the traversal is "same-level" for u (e.g., $\ell(\operatorname{parent}(u)) = \ell(u)$), then we charge it to the node u.

• Find-charge (level-increasing step): if the traversal is "level-increasing" (e.g., $\ell(\operatorname{parent}(u)) > \ell(u)$), then we charge it to the find itself.

$$\ell(u) = \max \Big\{ k \ \Big| \ \operatorname{rank} \big(\operatorname{parent}(u) \big) \ge A_k \big(\operatorname{rank}(u) \big) \Big\}.$$

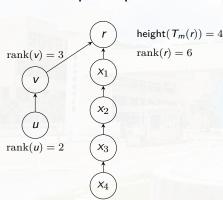
Charging idea (just bookkeeping for the analysis, not in the code)

When a find traverses a node u, we charge its O(1) cost as follows:

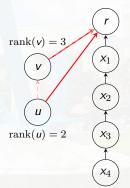
- Node-charge (same-level step): if the traversal is "same-level" for u (e.g., $\ell(\operatorname{parent}(u)) = \ell(u)$), then we charge it to the node u.
 - After compression, $\operatorname{rank}(\operatorname{parent}(u))$ strictly increases, so u makes progress (either $\ell(u)$ increases, or it advances within the same level via the auxiliary index).
- Find-charge (level-increasing step): if the traversal is "level-increasing" (e.g., $\ell(\operatorname{parent}(u)) > \ell(u)$), then we charge it to the find itself.

Example

Before path compression



After find(u) with compression



 $height(T_m(r)) = 4$ rank(r) = 6

rank(parent(u)) = rank(r) = 6

Key distinction: what we maintain vs. what we analyze

What we maintain (in the data structure):

- We store a rank value that is updated only by union (and never recomputed during find).
- Hence ranks evolve as if path compression did not exist. They remain valid monotone labels that reflect the union-history.

• What we analyze (running time):

- We analyze the actual execution with path compression.
- Ignoring compression gives a valid but loose upper bound:

$$find = O(\log n), \quad total = O(m \log n).$$

- The sharper bound $O((m+n)\alpha(n))$ requires using the effect of compression:
 - Parent pointers → higher-rank ancestors;
 - and the ranks serve as a progress measure in the amortized analysis

Remark (connections to the Ackermann)

• If u has a parent, then

$$\operatorname{rank}(\operatorname{parent}(u)) \ge \operatorname{rank}(u) + 1 = A_0(\operatorname{rank}(u)).$$

• For $n \ge 5$, the maximum value $\ell(u)$ can take on is $\alpha(n) - 1$, since for $\ell(u) = k$,

$$n > \lfloor \lg n \rfloor + 2$$

 $\geq \operatorname{rank}(\operatorname{parent}(u))$
 $\geq A_k(\operatorname{rank}(u))$
 $\geq A_k(2),$

therefore, $\alpha(n) > k = \ell(u)$.

Remark: levels ↔ ranks

 Because path compression changes parents, we track how large the parent's rank is compared to the node's rank on an Ackermann scale.

Level
$$\ell(u) = \max \Big\{ k \ \Big| \ \mathrm{rank}(\mathrm{parent}(u)) \ \geq \ A_k(\mathrm{rank}(u)) \Big\}.$$

• Intuition: $\ell(u)$ is the number of "Ackermann jumps" by which the parent rank dominates the child rank.

• During a find, path compression sets parent(u) to an ancestor (often the root), whose rank is at least the old parent's rank.

34 / 45

- During a find, path compression sets parent(u) to an ancestor (often the root), whose rank is at least the old parent's rank.
- Therefore rank(parent(u)) is nondecreasing over time.

- During a find, path compression sets parent(u) to an ancestor (often the root), whose rank is at least the old parent's rank.
- Therefore rank(parent(u)) is nondecreasing over time.
- Since $\ell(u)$ depends on whether $\operatorname{rank}(\operatorname{parent}(u))$ crosses thresholds $A_k(\operatorname{rank}(u))$, we get:

Level monotonicity

 $\ell(u)$ never decreases as operations proceed.

- During a find, path compression sets parent(u) to an ancestor (often the root), whose rank is at least the old parent's rank.
- Therefore rank(parent(u)) is nondecreasing over time.
- Since $\ell(u)$ depends on whether $\operatorname{rank}(\operatorname{parent}(u))$ crosses thresholds $A_k(\operatorname{rank}(u))$, we get:

Level monotonicity

- $\ell(u)$ never decreases as operations proceed.
- ullet Consequence: each node's level can increase at most $lpha({\it n})$ times.

Union-Find

Charging scheme for the cost of find

Consider one find(x) that traverses nodes on the path $x = u_0, u_1, \dots, u_t = \text{root}$.

Total time
$$\leq O(\underbrace{\# \text{node-charges}}_{\leq n\alpha(n)} + \underbrace{\# \text{operation-charges}}_{\leq m\alpha(n)}).$$

Bounding operation-charges: $\leq m\alpha(n)$

- An operation-charge happens only when $\ell(\operatorname{parent}(u)) > \ell(u)$.
- But $\ell(u)$ is monotone and bounded:

$$0 \le \ell(\mathbf{u}) \le \alpha(\mathbf{n}).$$

• Hence each find can be charged at most $\alpha(n)$ times.

Conclusion

#operation-charges $\leq m \alpha(n)$.

Bounding node-charges

Node-charges are assigned to "same-level" traversal steps (e.g., $\ell(\operatorname{parent}(u)) = \ell(u)$ at the time the edge is traversed).

- Fix a node u that is visited by find.
- After compression, rank(parent(u)) strictly increases, so u makes progress.
- Important: $\ell(u)$ may stay the same;
 - We will keep track a refined state of the progress of u.
- This state can advance at most $O(\alpha(n))$ times per node.

Claim

#node-charges in all finds = $O(n\alpha(n))$.

On the number of charges to the node

To formalize the previous slide, analyses often add an index within a level.

Index within level $k = \ell(u)$

Let $A_k^{(j)}$ be the *j*-fold iterate of A_k . Define

$$i(u) := \max \{ j \mid \operatorname{rank}(\operatorname{parent}(u)) \ge A_k^{(j)}(\operatorname{rank}(u)) \}.$$

- **Note:** larger i(u) means the parent's rank is not just above A_k but above many repeated applications of A_k .
- If $\ell(u)$ does not increase, path compression still tends to increase $\operatorname{rank}(\operatorname{parent}(u))$, so i(u) increases.

Wait! Why do we iterate A_k ?

• By definition of ℓ , at time t we have the level-k threshold:

$$\operatorname{rank}(\operatorname{parent}(x)) \geq A_k(\operatorname{rank}(x)).$$

Wait! Why do we iterate A_k ?

• By definition of ℓ , at time t we have the level-k threshold:

$$\operatorname{rank}(\operatorname{parent}(x)) \geq A_k(\operatorname{rank}(x)).$$

• Path compression changes parent pointers (e.g., $x \rightarrow v$, v = parent(x)), so

$$\operatorname{rank}(\operatorname{parent}(x))$$

may increase over time even if $\ell(x)$ (the level) stays the same.

Wait! Why do we iterate A_k ?

• By definition of ℓ , at time t we have the level-k threshold:

$$\operatorname{rank}(\operatorname{parent}(x)) \geq A_k(\operatorname{rank}(x)).$$

• Path compression changes parent pointers (e.g., $x \rightarrow v$, v = parent(x)), so

$$\operatorname{rank}(\operatorname{parent}(x))$$

may *increase over time* even if $\ell(x)$ (the level) stays the same.

Union-Find

• Therefore, we need a finer progress measure within level k.

Index within a fixed level: Using iterates A_k^i

- Consider an *iterate index* $i \ge 1$: $\operatorname{rank}(\operatorname{parent}(x)) \ge A_k^i(\operatorname{rank}(x))$, where A_k^i denotes the *i*-fold iterate of A_k .
- It is an analytic ruler that counts how far rank(parent(x)) has advanced within the same level k.
- If a charge to x occurs at time t, then after compression (time t+1) the new parent becomes a later vertex v on the find path, and

$$\operatorname{rank}(v) \ge A_k \left(\operatorname{rank}(\operatorname{parent}(x))\right) \ge A_k \left(A_k^i(\operatorname{rank}(x))\right) = A_k^{i+1}(\operatorname{rank}(x)).$$

• Since *v* is the new parent of *x*, this implies

$$\operatorname{rank}(\operatorname{parent}(x)) \ge A_k^{i+1}(\operatorname{rank}(x)).$$

Union-Find

• Thus, each such event increases the *index i* by at least 1.

i is bounded before the level must increase

- While $\ell(x) = k$ remains fixed, the index i can increase only finitely many times.
- After at most rank(x) such increments, the notes obtain

$$\operatorname{rank}(\operatorname{parent}(x)) \geq A_k^{\operatorname{rank}(x)}(\operatorname{rank}(x)) = A_{k+1}(\operatorname{rank}(x)).$$

i is bounded before the level must increase

- While $\ell(x) = k$ remains fixed, the index i can increase only finitely many times.
- After at most rank(x) such increments, the notes obtain

$$\operatorname{rank}(\operatorname{parent}(x)) \geq A_k^{\operatorname{rank}(x)}(\operatorname{rank}(x)) = A_{k+1}(\operatorname{rank}(x)).$$

Crossing the next threshold forces the level to increase:

$$\ell(x) \geq k+1$$
 (equivalently, $\ell(x)$ must increase).

i is bounded before the level must increase

- While $\ell(x) = k$ remains fixed, the index i can increase only finitely many times.
- After at most rank(x) such increments, the notes obtain

$$\operatorname{rank}(\operatorname{parent}(x)) \geq A_k^{\operatorname{rank}(x)}(\operatorname{rank}(x)) = A_{k+1}(\operatorname{rank}(x)).$$

Crossing the next threshold forces the level to increase:

$$\ell(x) \ge k+1$$
 (equivalently, $\ell(x)$ must increase).

• Therefore, at most $rank(x)\alpha(n)$ such charges against x.

On the number of nodes of the same rank

Lemma

For any integer r,

$$\left|\left\{u\mid \mathrm{rank}(u)=r\right\}\right| \leq \frac{n}{2^{r-2}}.$$

On the number of nodes of the same rank

Lemma

For any integer r,

$$\left|\left\{u\mid \operatorname{rank}(u)=r\right\}\right| \leq \frac{n}{2^{r-2}}.$$

Proof sketch

- If rank(u) = rank(v) = r, then the subtrees $T_m(u)$ and $T_m(v)$ are disjoint.
- Hence, we have the union of these subtrees has size $\left|\bigcup_{\operatorname{rank}(u)=r} T_m(u)\right| = \sum_{\operatorname{rank}(u)=r} |T_m(u)| \le n$.
- ullet Also, we have known that every node of rank r satisfies $|\mathcal{T}_m(u)| \geq 2^{r-2}$, so

$$\sum_{\mathrm{rank}(u)=r} |T_m(u)| \ge \sum_{\mathrm{rank}(u)=r} 2^{r-2} = |\{u : \mathrm{rank}(u)=r\}| \cdot 2^{r-2}.$$

• Rearranging yields $|\{u : rank(u) = r\}| \le \frac{n}{2r-2}$.

Sum up the charges against nodes

• At most $rank(x)\alpha(n)$ charges against a node x. So, there are at most

$$r\alpha(n)\frac{n}{2^{r-2}} = n\alpha(n)\frac{r}{2^{r-2}}$$

charges against nodes of rank r.

 Summing over all values of r we obtain the following bound on all charges to all vertices

$$\sum_{r=0}^{\infty} n\alpha(n) \frac{r}{2^{r-2}} = n\alpha(n) \cdot \sum_{r=0}^{\infty} \frac{r}{2^{r-2}} = 8n\alpha(n).$$

Putting it together: near-linear time

- Node-charges: at most $n\alpha(n)$ total.
- Operation-charges: at most $m\alpha(n)$ total.

Conclusion (Tarjan)

Starting from n singletons, any sequence of m union/find operations with union-by-rank (or size) plus path compression runs in

$$O((m+n)\alpha(n))$$
 time.

• Practically, $\alpha(n) \leq 4$ for any realistic n, so it behaves like "almost constant amortized time."

Conclusion of the Amortized Analysis

- Total charge to find operations: $O(m \alpha(n))$.
- Total charge to nodes over the entire computation: $O(n \alpha(n))$.

Therefore

Total time for m operations is $O((m+n)\alpha(n))$.

• This is why Union-Find is considered almost linear time.

