Final Exam of Discrete Mathematics

Chuang-Chieh Lin

16:10-17:50, June 26, 2007

Note: Please list complete process of the calculation or the proof for each problem.

1. (a) For $A=\{1,2,3\}$, how many antisymmetric relations are there on A ? (5%)
(b) Let A be a set with $|A|=n$. How many symmetric relations are there on A ? (5\%)
2. For $n \in \mathbb{Z}^{+}, n \geq 2$, let $\phi(n)$ be the number of positive integers m where $1 \leq m<n$ and $\operatorname{gcd}(m, n)=1$. This function is known as Euler's phi function.
(a) Please calculate $\phi(100)$. (5\%)
(b) If $m, n \in \mathbb{Z}^{+}$, prove that $\phi\left(n^{m}\right)=n^{m-1} \phi(n) .(10 \%)$.
3. (a) How many derangements are there for the integers $1,2,3,4,5$? (5%)
(b) How many derangements are there for $1,2, \ldots, n$? (Express your answer by a closed-form of ' \sum ')
(c) Given $e^{x}=1+x+x^{2} / 2!+x^{3} / 3!+\ldots=\sum_{n=0}^{\infty} x^{n} / n$!. Please explain why the number of derangements for $1,2, \ldots, 10000$ is approximately $10000!\cdot e^{-1}$. $\quad(5 \%)$
4. (a) What is the generating function for the sequence $1,1,1, \ldots$? (5\%)
(b) What is the generating function for the sequence $0,1,2,3, \ldots$? (5%)
(c) What is the generating function for the sequence $0,0,1^{2}, 2^{2}, 3^{2}, 4^{2}, \ldots$? (10%)
5. (a) Please find out the coefficient of x^{3} in $(1-2 x)^{-7}$. (10%)
(b) Use generating functions to determine how many three-element subsets of $S=\{1,2,3, \ldots, 10\}$ contain no consecutive integers. (10\%)
6. Please solve the recurrence relation $a_{n}-3 a_{n-1}=5 \cdot 3^{n}$, where $n \geq 1$ and $a_{0}=2$. (10%)
7. Please solve the recurrence relation $a_{n+2}-4 a_{n+1}+4 a_{n}=2^{n}, n \geq 0, a_{0}=1$ and $a_{1}=2$.
8. (a) Find a recurrence relation for the number of binary strings of length n that do not contain consecutive 0's. (5\%)
(b) Solve the recurrence in (a). (10\%)
9. A Triple Tower of Hanoi contains n disks (having different diameters) with holes in their centers. These disks can be stacked on any peg. The objective is to transfer the disks one at a time so that we end up with the original stack on peg 3 . Each of pegs 1 , 2 , and 3 may be used as a temporary location for any disk(s), but at no time are we allowed to have a larger disk on top of a smaller one on any peg.
(a) Let a_{n} be the minimum number of moves needed to do this for n disks, please give a recurrence relation for a_{n}. $\quad(5 \%)$
(b) Please solve the recurrence relation in (a). (10\%)
