Midterm 1 of Discrete Mathematics

Chuang-Chieh Lin

16:10-19:00, April 10, 2007

Note: Please list complete process of the calculation or the proof for each problem.

1. Given an integer n, prove that $\frac{(2 n)!}{2^{n}}$ is an integer. (10%)
2. (a) How many arrangements are there of all the letters in SOCIOLOGICAL? (5\%)
(b) In how many of the arrangements in part (a) are A and G adjacent? (10\%)
(c) In how many of the arrangements in part (a) are all the vowels adjacent? (10\%)
3. Evaluate $\sum_{i=0}^{5}\binom{10}{i} \cdot\binom{5}{5-i} \cdot(10 \%)$
4. Recall that the Binomial Theorem states that $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} \cdot x^{k} \cdot y^{n-k}$.
(a) Prove that $\binom{n}{0}+\binom{n}{1}+\ldots+\binom{n}{n}=2^{n}$. 5%)
(b) If n is an even integer, evaluate $2\binom{n}{0}+\binom{n}{1}+2\binom{n}{2}+\binom{n}{3}+\ldots+2\binom{n}{n-2}+\binom{n}{n-1}+2\binom{n}{n} \cdot(10 \%)$
5. Find the coefficient of $w^{2} x^{2} y^{2} z^{2}$ in the expansion of $(v+w-2 x+y+5 z+3)^{10}$. (10%)
6. Determine the number of integer solutions of $x_{1}+x_{2}+x_{3}+x_{4}=25$, where $x_{1}>0, x_{2}>2$, $x_{3}>1$ and $x_{4} \geq 3$. (10\%)
7. Please negate and simplify the statement $\forall x \forall y[(x>y) \rightarrow(x-y)>0]$. (10\%)
8. For the following statements the universe comprises all nonzero integers. Determine the truth value of each statement (You can just write down TRUE or FALSE in your answer sheet).
(a) $\exists x \exists y[x y=1] ;(5 \%)$
(b) $\exists x \exists y[(3 x-y=7) \wedge(2 x+4 y=3)]$. (5%)
9. Consider the primitive statements p, q, r, s, t and the argument

$$
\begin{gathered}
p \\
p \vee q \\
q \rightarrow(r \rightarrow s) \\
t \rightarrow r \\
\hline \therefore \neg s \rightarrow \neg t
\end{gathered}
$$

Show that this is an invalid argument. (10\%)
10. Which of the following statements are true? (5\%)
(a) $\emptyset \subseteq\{\emptyset\} ;$
(b) $\emptyset \in\{\emptyset\}$;
(c) $\emptyset \subseteq \emptyset$;
(d) $\emptyset \subset \emptyset$;
(e) $\emptyset \subset\{\emptyset\}$
(f) $\emptyset \in \emptyset$.

