Midterm 1 of Discrete Mathematics

Chuang-Chieh Lin

16:10–19:00, April 10, 2007

Note: Please list complete process of the calculation or the proof for each problem.

- 1. Given an integer n, prove that $\frac{(2n)!}{2^n}$ is an integer. (10%)
- 2. (a) How many arrangements are there of all the letters in SOCIOLOGICAL? (5%)
 - (b) In how many of the arrangements in part (a) are A and G adjacent? (10%)
 - (c) In how many of the arrangements in part (a) are all the vowels adjacent? (10%)
- 3. Evaluate $\sum_{i=0}^{5} {\binom{10}{i}} \cdot {\binom{5}{5-i}}$. (10%)

4. Recall that the *Binomial Theorem* states that $(x + y)^n = \sum_{k=0}^n \binom{n}{k} \cdot x^k \cdot y^{n-k}$. (a) Prove that $\binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{n} = 2^n$. (5%) (b) If *n* is an even integer, evaluate $2\binom{n}{0} + \binom{n}{1} + 2\binom{n}{2} + \binom{n}{3} + \ldots + 2\binom{n}{n-2} + \binom{n}{n-1} + 2\binom{n}{n}$. (10%)

- 5. Find the coefficient of $w^2 x^2 y^2 z^2$ in the expansion of $(v + w 2x + y + 5z + 3)^{10}$. (10%)
- 6. Determine the number of integer solutions of $x_1 + x_2 + x_3 + x_4 = 25$, where $x_1 > 0$, $x_2 > 2$, $x_3 > 1$ and $x_4 \ge 3$. (10%)
- 7. Please negate and simplify the statement $\forall x \ \forall y \ [(x > y) \rightarrow (x y) > 0]$. (10%)
- 8. For the following statements the universe comprises all nonzero integers. Determine the truth value of each statement (You can just write down TRUE or FALSE in your answer sheet).
 (a) ∃x ∃y [xy = 1]; (5%)
 - (b) $\exists x \exists y [(3x y = 7) \land (2x + 4y = 3)].$ (5%)
- 9. Consider the primitive statements p, q, r, s, t and the argument

$$p \qquad p \lor q q \to (r \to s) \\ t \to r \\ \vdots \neg s \to \neg t$$

Show that this is an invalid argument. (10%)

10. Which of the following statements are true? (5%) (a) $\emptyset \subseteq \{\emptyset\}$; (b) $\emptyset \in \{\emptyset\}$; (c) $\emptyset \subseteq \emptyset$; (d) $\emptyset \subset \emptyset$; (e) $\emptyset \subset \{\emptyset\}$ (f) $\emptyset \in \emptyset$.