Mechanism Design Basics - Myerson's Lemma

Myerson's Lemma

Joseph Chuang-Chieh Lin

Department of Computer Science & Engineering, National Taiwan Ocean University

Fall 2024

Joseph C.-C. Lin (CSE, NTOU, TW) Mechanism Design Basics - Myerson's Lemm

Fall 2024 1 / 22

< □ > < /□ >

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Mechanism Design Basics - Myerson's Lemma

Outline

Myerson's Lemma

- Single-Parameter Environments
- The Lemma
- Application to the Sponsored Search Auction

Fall 2024 2 / 22

< □ > < A >

Outline

Myerson's Lemma

- Single-Parameter Environments
- The Lemma
- Application to the Sponsored Search Auction

Fall 2024 3 / 22

A D F A B F A B F A B

Outline

Myerson's Lemma

- Single-Parameter Environments
- The Lemma
- Application to the Sponsored Search Auction

• • • • • • • • • • • • •

Single-Parameter Environments

Consider a more generalized and abstract setting:

Single-Parameter Environments

- *n* agents (e.g., bidders).
- A private valuation $v_i \ge 0$ for each agent *i* (per unit of stuff).
- A feasible set $X = \{(x_1, x_2, \dots, x_n) \mid x_i \in \mathbb{R}\} \subseteq \mathbb{R}^n$.
 - x_i: amount of stuff given to agent *i*.

Single-Parameter Environments (Examples)

- Single-item auction:
 - $\sum_{i=1}^{n} X_i \leq 1$, and $x_i \in \{0,1\}$ for each *i*.

A D F A B F A B F A B

Single-Parameter Environments (Examples)

- Single-item auction:
 - $\sum_{i=1}^{n} X_i \leq 1$, and $x_i \in \{0, 1\}$ for each *i*.
- k-Unit auction:
 - k identical items, $\sum_{i=1}^{n} X_i \leq k$, and $x_i \in \{0,1\}$ for each i.

Single-Parameter Environments (Examples)

- Single-item auction:
 - $\sum_{i=1}^{n} X_i \leq 1$, and $x_i \in \{0,1\}$ for each *i*.
- *k*-Unit auction:
 - k identical items, $\sum_{i=1}^{n} X_i \leq k$, and $x_i \in \{0,1\}$ for each i.
- Sponsored Search Auction:
 - X: the set of *n*-vectors \Leftrightarrow assignments of bidders to slots.
 - Each slot (resp., bidder) is assigned to ≤ 1 bidder (resp., slot).
 - The component $x_i = \alpha_j$: bidder *i* is assigned to slot *j*.
 - α_j : the click-through rate of slot j.
 - Assume that the quality score $\beta_i = 1$ for all *i*.

Allocation and Payment Rules

Choices to make in a sealed-bid auction

- Collect bids $\boldsymbol{b} = (b_1, \ldots, b_n)$.
- Allocation Rule: Choose a feasible $\mathbf{x}(\mathbf{b}) \in X \subseteq \mathbb{R}^n$.
- Payment Rule: Choose payments $\boldsymbol{p}(\boldsymbol{b}) \in \mathbb{R}^n$.
- A direct-revelation mechanism.

→ ∃ →

Allocation and Payment Rules

Choices to make in a sealed-bid auction

- Collect bids $\boldsymbol{b} = (b_1, \ldots, b_n)$.
- Allocation Rule: Choose a feasible $\mathbf{x}(\mathbf{b}) \in X \subseteq \mathbb{R}^n$.
- Payment Rule: Choose payments $\boldsymbol{p}(\boldsymbol{b}) \in \mathbb{R}^n$.
- A direct-revelation mechanism.
- Example of *indirect mechanism*: iterative ascending auction.

7 / 22

Fall 2024

Allocation and Payment Rules (contd.)

With allocation rule \boldsymbol{x} and payment rule \boldsymbol{p} ,

- agent *i* receives utility $u_i(\mathbf{b}) = v_i \cdot x_i(\mathbf{b}) p_i(\mathbf{b})$.
- $p_i(\boldsymbol{b}) \in [0, b_i \cdot x_i(\boldsymbol{b})].$
 - $p_i(\mathbf{b}) \ge 0$: prohibiting the seller from paying the agents.
 - $p_i(\mathbf{b}) \leq b_i \cdot x_i(\mathbf{b})$: a truthful agent receives nonnegative utility.

Allocation and Payment Rules (contd.)

With allocation rule \boldsymbol{x} and payment rule \boldsymbol{p} ,

- agent *i* receives utility $u_i(\mathbf{b}) = v_i \cdot x_i(\mathbf{b}) p_i(\mathbf{b})$.
- $p_i(b) \in [0, b_i \cdot x_i(b)].$
 - $p_i(\mathbf{b}) \ge 0$: prohibiting the seller from paying the agents.
 - $p_i(\mathbf{b}) \leq b_i \cdot x_i(\mathbf{b})$: a truthful agent receives nonnegative utility. Why?

The Myerson's Lemma

Definition (Implementable Allocation Rule)

An allocation rule x for a single-parameter environment is implementable if there is a payment rule p such that the direct-revelation mechanism (x, p) is DSIC.

< □ > < A >

→ Ξ →

The Myerson's Lemma

Definition (Implementable Allocation Rule)

An allocation rule x for a single-parameter environment is implementable if there is a payment rule p such that the direct-revelation mechanism (x, p) is DSIC.

The rules that extend to DSIC mechanisms.

< ∃ ►

The Myerson's Lemma

Definition (Implementable Allocation Rule)

An allocation rule x for a single-parameter environment is implementable if there is a payment rule p such that the direct-revelation mechanism (x, p) is DSIC.

The rules that extend to DSIC mechanisms.

Definition (Monotone Allocation Rule)

An allocation rule x for a single-parameter environment is monotone if for every agent i and bids \mathbf{b}_{-i} by other agents, the allocation $x_i(z, \mathbf{b}_{-i})$ to i is nondecreasing in her bid z.

The Myerson's Lemma

Definition (Implementable Allocation Rule)

An allocation rule x for a single-parameter environment is implementable if there is a payment rule p such that the direct-revelation mechanism (x, p) is DSIC.

The rules that extend to DSIC mechanisms.

Definition (Monotone Allocation Rule)

An allocation rule x for a single-parameter environment is monotone if for every agent i and bids \mathbf{b}_{-i} by other agents, the allocation $x_i(z, \mathbf{b}_{-i})$ to i is nondecreasing in her bid z.

Bidding higher can only get you more stuff!

The Myerson's Lemma

Definition (Implementable Allocation Rule)

An allocation rule x for a single-parameter environment is implementable if there is a payment rule p such that the direct-revelation mechanism (x, p) is DSIC.

The rules that extend to DSIC mechanisms.

Definition (Monotone Allocation Rule)

An allocation rule x for a single-parameter environment is monotone if for every agent i and bids \mathbf{b}_{-i} by other agents, the allocation $x_i(z, \mathbf{b}_{-i})$ to i is nondecreasing in her bid z.

Bidding higher can only get you more stuff! So, how about awarding the item to the second-highest bidder?

The Myerson's Lemma

Definition (Implementable Allocation Rule)

An allocation rule x for a single-parameter environment is implementable if there is a payment rule p such that the direct-revelation mechanism (x, p) is DSIC.

The rules that extend to DSIC mechanisms.

Definition (Monotone Allocation Rule)

An allocation rule x for a single-parameter environment is monotone if for every agent i and bids \mathbf{b}_{-i} by other agents, the allocation $x_i(z, \mathbf{b}_{-i})$ to i is nondecreasing in her bid z.

Bidding higher can only get you more stuff! So, how about awarding the item to the second-highest bidder? You raise your bid, you might lose the chance of getting it!

< □ > < A >

Outline

Myerson's Lemma

- Single-Parameter Environments
- The Lemma
- Application to the Sponsored Search Auction

< 3

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

The Myerson's Lemma

Theorem (Myerson's Lemma)

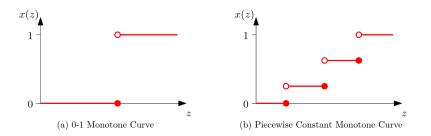
Fix a single-parameter environment.

- (i) An allocation rule x is implementable if and only if it is monotone.
- (ii) If \boldsymbol{x} is monotone, then there is a unique payment rule for which the direct-revelation mechanism $(\boldsymbol{x}, \boldsymbol{p})$ is DSIC and $p_i(\boldsymbol{b}) = 0$ whenever $b_i = 0$.
- (iii) The payment rule in (ii) is given by an explicit formula.

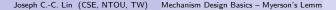
"Monotone" is more operational.

- < ∃ ►

Allocation curves: allocation as a function of bids



Figures from Tim Roughgarden's lecture notes.



Fall 2024 12 / 22

Constraints from DSIC

Consider $0 \le z < y$.

Say agent i has a private valuation z and free to submit a false bid y or agent i has a private valuation y and free to submit a false bid z

DSIC: Bidding truthfully brings maximum utility.

$$z \cdot x(z) - p(z) \ge z \cdot x(y) - p(y)$$

 $y \cdot x(y) - p(y) \ge y \cdot x(z) - p(z)$

13/22

Fall 2024

Constraints from DSIC

Consider $0 \le z < y$.

Say agent i has a private valuation z and free to submit a false bid y or agent i has a private valuation y and free to submit a false bid z

DSIC: Bidding truthfully brings maximum utility.

$$z \cdot x(z) - p(z) \ge z \cdot x(y) - p(y)$$

 $y \cdot x(y) - p(y) \ge y \cdot x(z) - p(z)$

So

$$z \cdot (x(y) - x(z)) \leq p(y) - p(z) \leq y \cdot (x(y) - x(z)).$$

Constraints from DSIC

Consider $0 \le z < y$.

Say agent i has a private valuation z and free to submit a false bid y or agent i has a private valuation y and free to submit a false bid z

DSIC: Bidding truthfully brings maximum utility.

$$z \cdot x(z) - p(z) \ge z \cdot x(y) - p(y)$$

 $y \cdot x(y) - p(y) \ge y \cdot x(z) - p(z)$

So

$$z \cdot (x(y) - x(z)) \leq p(y) - p(z) \leq y \cdot (x(y) - x(z)).$$

p(y) - p(z) can be bounded below and above.

13/22

Fall 2024

Constraints from DSIC

Consider $0 \le z < y$.

Say agent i has a private valuation z and free to submit a false bid y or agent i has a private valuation y and free to submit a false bid z

DSIC: Bidding truthfully brings maximum utility.

$$z \cdot x(z) - p(z) \ge z \cdot x(y) - p(y)$$

 $y \cdot x(y) - p(y) \ge y \cdot x(z) - p(z)$

So

$$z \cdot (x(y) - x(z)) \leq p(y) - p(z) \leq y \cdot (x(y) - x(z)).$$

p(y) - p(z) can be bounded below and above.

 \Rightarrow every implementable allocation rule is monotone (why?)

Fall 2024 13 / 22

Case: x is a piecewise constant function

$$z \cdot (x(y) - x(z)) \leq p(y) - p(z) \leq y \cdot (x(y) - x(z)).$$

• Try: fix z and let y tend to z.

< 3 >

Case: x is a piecewise constant function

$$z \cdot (x(y) - x(z)) \leq p(y) - p(z) \leq y \cdot (x(y) - x(z)).$$

- Try: fix z and let y tend to z.
- Taking $y \to z$

 \Rightarrow left-hand and right-hand sides $\rightarrow 0$ if there is no jump in x at z.

< 3 >

Case: x is a piecewise constant function

$$z \cdot (x(y) - x(z)) \leq p(y) - p(z) \leq y \cdot (x(y) - x(z)).$$

Taking y → z
⇒ left-hand and right-hand sides → 0 if there is no jump in x at z.

$$p_i(b_i, \boldsymbol{b}_{-i}) = \sum_{j=1}^{\ell} z_j \cdot [\text{ jump in } x_i(\cdot, \boldsymbol{b}_{-i}) \text{ at } z_j],$$

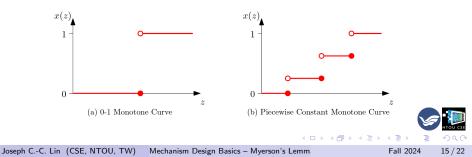
where z_1, \ldots, z_ℓ are breakpoints of $x_i(\cdot, \boldsymbol{b}_{-i})$ in the range $[0, b_i]$.

< ∃ ►

Case: x is a piecewise constant function

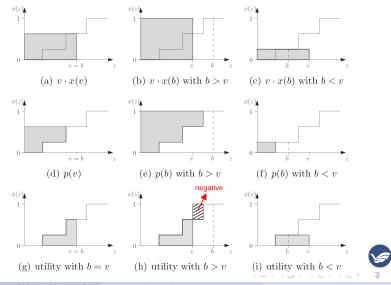
$$egin{aligned} &z\cdot(x(y)-x(z))\leq p(y)-p(z)\leq y\cdot(x(y)-x(z)),\ &p_i(b_i,oldsymbol{b}_{-i})=\sum_{j=1}^\ell z_j\cdot [ext{ jump in }x_i(\cdot,oldsymbol{b}_{-i}) ext{ at }z_j], \end{aligned}$$

 z_1, \ldots, z_ℓ : breakpoints of $x_i(\cdot, \boldsymbol{b}_{-i})$ in $[0, b_i]$.



The Lemma

Case: x is a piecewise constant function



Joseph C.-C. Lin (CSE, NTOU, TW) Mechanism Design Basics - Myerson's Lemm

Fall 2024 16 / 22

Case: x is a monotone function

$$z \cdot (x(y) - x(z)) \leq p(y) - p(z) \leq y \cdot (x(y) - x(z)).$$

- Suppose x is differentiable.
- Dividing the inequalities by y z:

< 3 >

Case: x is a monotone function

$$z \cdot (x(y) - x(z)) \leq p(y) - p(z) \leq y \cdot (x(y) - x(z)).$$

- Suppose *x* is differentiable.
- Dividing the inequalities by y z:

$$p'(z) = z \cdot x'(z).$$

17 / 22

< 3 >

Fall 2024

Case: x is a monotone function

$$z \cdot (x(y) - x(z)) \leq p(y) - p(z) \leq y \cdot (x(y) - x(z)).$$

- Suppose x is differentiable.
- Dividing the inequalities by y z:

$$p'(z) = z \cdot x'(z).$$

$$p_i(b_i, \boldsymbol{b}_{-i}) = \int_0^{b_i} z \cdot \frac{d}{dz} x_i(z, \boldsymbol{b}_{-i}) dz.$$

< 3 >

Outline

Myerson's Lemma

- Single-Parameter Environments
- The Lemma
- Application to the Sponsored Search Auction

18 / 22

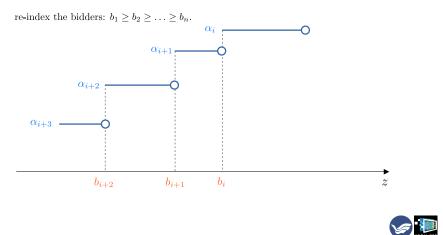
< □ > < /□ >

→ ∃ →

Fall 2024

Apply to Sponsored Search Auction

The allocation rule is piecewise.

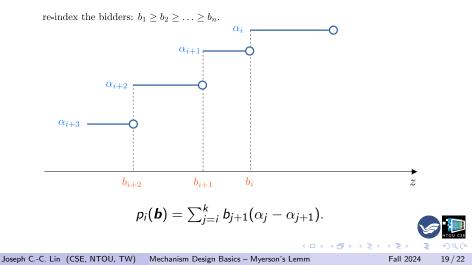


Fall 2024 19 / 22

A D F A B F A B F A B

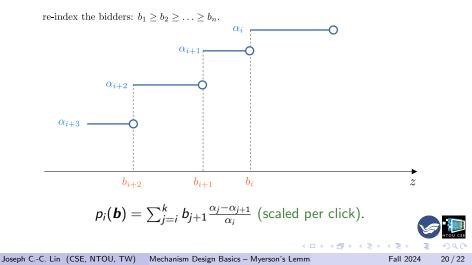
Apply to Sponsored Search Auction

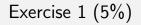
The allocation rule is piecewise.



Apply to Sponsored Search Auction

The allocation rule is piecewise.





• Recall that in the model of sponsored search auctions:

- There are k slots, the jth slot has a click-through rate (CTR) of α_j (nonincreasing in j).
- The utility of bidder i in slot j is α_j(v_i p_j), where v_i is the private value-per-click of the bidder and p_j is the price charged per-click in slot j.
- The Generalized Second Price (GSP) Auction is defined as follows:

The Generalized Second Price (GSP) Auction

- Rank advertisers from highest to lowest bid; assume without loss of generality that b₁ ≥ b₂ ≥ · · · ≥ b_n.
- For i = 1, 2, ..., k, assign the *i*th bidder to the *i* slot.
- For i = 1, 2, ..., k, charge the *i*th bidder a price of b_{i+1} per click.
- (a) Prove that for every $k \ge 2$ and sequence $\alpha_1 \ge \cdots \ge \alpha_k > 0$ of CTRs, the GSP auction is NOT DSIC. (*Hint: Find out an example.*)
- (b) A bid profile **b** with $b_1 \ge \cdots \ge b_n$ is envy-free if for every bidder *i* and slot $j \ne i$,

$$\alpha_i(\mathbf{v}_i - \mathbf{b}_{i+1}) \geq \alpha_j(\mathbf{v}_i - \mathbf{b}_{j+1}).$$

Please verify that every envy-free bid profile is an equilibrium.

(日)