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Single-Parameter Environments

Consider a more generalized and abstract setting:

Single-Parameter Environments

n agents (e.g., bidders).

A private valuation vi ≥ 0 for each agent i (per unit of stuff).

A feasible set X = {(x1, x2, . . . , xn) | xi ∈ R} ⊆ Rn.

xi : amount of stuff given to agent i .
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Single-Parameter Environments (Examples)

Single-item auction:∑n
i=1 Xi ≤ 1, and xi ∈ {0, 1} for each i .

k-Unit auction:

k identical items,
∑n

i=1 Xi ≤ k, and xi ∈ {0, 1} for each i .

Sponsored Search Auction:

X : the set of n-vectors ⇔ assignments of bidders to slots.
Each slot (resp., bidder) is assigned to ≤ 1 bidder (resp., slot).
The component xi = αj : bidder i is assigned to slot j .

αj : the click-through rate of slot j .
Assume that the quality score βi = 1 for all i .
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Single-Parameter Environments

Allocation and Payment Rules

Choices to make in a sealed-bid auction

Collect bids b = (b1, . . . , bn).

Allocation Rule: Choose a feasible x(b) ∈ X ⊆ Rn.

Payment Rule: Choose payments p(b) ∈ Rn.

A direct-revelation mechanism.

Example of indirect mechanism: iterative ascending auction.
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Allocation and Payment Rules (contd.)

With allocation rule x and payment rule p,

agent i receives utility ui (b) = vi · xi (b)− pi (b).

pi (b) ∈ [0, bi · xi (b)].

pi (b) ≥ 0: prohibiting the seller from paying the agents.
pi (b) ≤ bi · xi (b): a truthful agent receives nonnegative utility.

Why?
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Single-Parameter Environments

The Myerson’s Lemma

Definition (Implementable Allocation Rule)

An allocation rule x for a single-parameter environment is implementable if there

is a payment rule p such that the direct-revelation mechanism (x ,p) is DSIC.

The rules that extend to DSIC mechanisms.

Definition (Monotone Allocation Rule)

An allocation rule x for a single-parameter environment is monotone if for every

agent i and bids b−i by other agents, the allocation xi (z ,b−i ) to i is

nondecreasing in her bid z .

Bidding higher can only get you more stuff!
So, how about awarding the item to the second-highest bidder?
You raise your bid, you might lose the chance of getting it!
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Theorem (Myerson’s Lemma)

Fix a single-parameter environment.

(i) An allocation rule x is implementable if and only if it is monotone.

(ii) If x is monotone, then there is a unique payment rule for which the
direct-revelation mechanism (x ,p) is DSIC and pi (b) = 0 whenever
bi = 0.

(iii) The payment rule in (ii) is given by an explicit formula.

“Monotone” is more operational.
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Allocation curves: allocation as a function of bids

Figures from Tim Roughgarden’s lecture notes.
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Constraints from DSIC

Consider 0 ≤ z < y .

Say agent i has a private valuation z and free to submit a false bid y or
agent i has a private valuation y and free to submit a false bid z

DSIC: Bidding truthfully brings maximum utility.

z · x(z)− p(z) ≥ z · x(y)− p(y)

y · x(y)− p(y) ≥ y · x(z)− p(z)

So
z · (x(y)− x(z)) ≤ p(y)− p(z) ≤ y · (x(y)− x(z)).

p(y)− p(z) can be bounded below and above.

⇒ every implementable allocation rule is monotone (why?)
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Case: x is a piecewise constant function

z · (x(y)− x(z)) ≤ p(y)− p(z) ≤ y · (x(y)− x(z)).

Try: fix z and let y tend to z .

Taking y → z
⇒ left-hand and right-hand sides → 0 if there is no jump in x at z .

pi (bi ,b−i ) =
∑̀
j=1

zj · [ jump in xi (·,b−i ) at zj ],

where z1, . . . , z` are breakpoints of xi (·,b−i ) in the range [0, bi ].
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Case: x is a monotone function

z · (x(y)− x(z)) ≤ p(y)− p(z) ≤ y · (x(y)− x(z)).

Suppose x is differentiable.

Dividing the inequalities by y − z :

p′(z) = z · x ′(z).

pi (bi ,b−i ) =

∫ bi

0
z · d

dz
xi (z ,b−i )dz .
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Apply to Sponsored Search Auction

The allocation rule is piecewise.

pi (b) =
∑k

j=i bj+1(αj − αj+1).
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Apply to Sponsored Search Auction

The allocation rule is piecewise.

pi (b) =
∑k

j=i bj+1
αj−αj+1

αi
(scaled per click).
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Application to the Sponsored Search Auction

Exercise 1 (5%)

Recall that in the model of sponsored search auctions:

There are k slots, the jth slot has a click-through rate (CTR) of αj

(nonincreasing in j).
The utility of bidder i in slot j is αj(vi − pj), where vi is the private
value-per-click of the bidder and pj is the price charged per-click in
slot j .

The Generalized Second Price (GSP) Auction is defined as follows:
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Exercise 1 (5%) (contd.)

The Generalized Second Price (GSP) Auction

1 Rank advertisers from highest to lowest bid; assume without loss of
generality that b1 ≥ b2 ≥ · · · ≥ bn.

2 For i = 1, 2, . . . , k , assign the ith bidder to the i slot.

3 For i = 1, 2, . . . , k , charge the ith bidder a price of bi+1 per click.

(a) Prove that for every k ≥ 2 and sequence α1 ≥ · · · ≥ αk > 0 of CTRs,
the GSP auction is NOT DSIC. (Hint: Find out an example.)

(b) A bid profile b with b1 ≥ · · · ≥ bn is envy-free if for every bidder i
and slot j 6= i ,

αi (vi − bi+1) ≥ αj(vi − bj+1).

Please verify that every envy-free bid profile is an equilibrium.
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