Economics and Computation

Review of Basic Game Theory Concepts

Dept. CSIE, Tamkang University

John Forbes Nash Jr. (1928-2015)

- American mathematician.
- Fundamental contributions to game theory.
- Nobel Memorial Prize in Economic Sciences with game theorists Reinhard Selten and John Harsanyi.
- Abel Prize with Louis Nirenberg for his work on nonlinear partial differential equations.

Nash in 2006.

A classic scene of "A Beautiful Mind"

- https://www.youtube.com/watch?v=2d_dtTZQyUM

Starring: Russel Crowe

Before introducing Nash Equilibria...

- Let’s play around several "games" first.

Number Guessing

- Let's say I have chosen a secret number \mathbf{A} in my mind, which is among 1 and 100.
- Please guess it by a number B.
- If $B<A$, I will tell you "Larger, please".

- If $B>A$, I will tell you "Smaller, please".

- How many times do you think you can find out this secret number?

Number Guessing

- Let's say I have chosen a secret number \mathbf{A} in my mind, which is among 1 and 100.
- Please guess it by a number B.
- If $B<A$, I will tell you "Larger, please".

- If $B>A$, I will tell you "Smaller, please".

- How many times do you think you can find out this secret number? Let's play to feel the strategic behaviors.

Adversarial Number Guessing

- The demo code.

Envy-Free Cake-Cutting

- Children wants everything to be FAIR.
- Actually, in their world, nothing is FAIR...... lol

Envy-Free Cake-Cutting

- Children wants everything to be FAIR.
- Actually, in their world, nothing is FAIR...... lol
- Let’s say we want two kids to share a cake.

Envy-Free Cake-Cutting

- Children wants everything to be FAIR.
- Actually, in their world, nothing is FAIR...... lol
- Let’s say we want two kids to share a cake.
- Can you propose a way of cutting a cake so that two kids share a cake so that no one envies the other?

Prisoners' Dilemma

- It was originally framed by Merrill Flood and Melvin Dresher in 1950.
- Let's say there are two guys, \boldsymbol{A} and \boldsymbol{B}, who broke into a luxury store and stole a treasure.

Prisoners' Dilemma

- It was originally framed by Merrill Flood and Melvin Dresher in 1950.
- Let's say there are two guys, \boldsymbol{A} and \boldsymbol{B}, who broke into a luxury store and stole a treasure.
- They had hided the treasure before the police caught them.

Prisoners' Dilemma

- It was originally framed by Merrill Flood and Melvin Dresher in 1950.
- Let's say there are two guys, \boldsymbol{A} and \boldsymbol{B}, who broke into a luxury store and stole a treasure.
- They had hided the treasure before the police caught them.
- They were kept in two separated rooms.
- That means, they cannot communicate with each other...
- Each of them was offered two choices: Denial or confession.

Prisoners' Dilemma

- They were told that:

Prisoners' Dilemma

- They were told that:
- If both of them deny the fact of stealing the treasure, they will BOTH be sentenced in prison for one month.
- If one of them confesses while the other one denies, the former will be set FREE while the latter will be sentenced in prison for $\mathbf{9}$ months.
- If both confess, then they will both get $\mathbf{6}$ months in prison.
- Because the police officers have got their images from the monitor...

Prisoners' Dilemma

- They were told that:
- If both of them deny the fact of stealing the treasure, they will BOTH be sentenced in prison for one month.
- If one of them confesses while the other one denies, the former will be set FREE while the latter will be sentenced in prison for $\mathbf{9}$ months.
- If both confess, then they will both get $\mathbf{6}$ months in prison.
- Because the police officers have got their images from the monitor...
- In your opinion, what should they do?
- They cannot communicate, and they must make their decisions simultaneously.

Prisoners' Dilemma

- We can use a "matrix" to formulate this game.

Criminal B

- Two players, two actions for each.
- If you are criminal A, what will you do?
- What's the solution (outcome)?

Prisoners' Dilemma

- Dominant strategy?

Criminal B

- Socially inefficient.
- Why is it inefficient?
- Price of Anarchy (PoA).

Bach or Stravinsky (BoS)

- A historical two-player game.
- The battle of sexes (in Games and Decisions by Luce and Raiffa, 1957).
- Say Amy and Bob want to pick a concert to go to.

Bach or Stravinsky (BoS)

- A historical two-player game.
- The battle of sexes (in Games and Decisions by Luce and Raiffa, 1957).
- Say Amy and Bob want to pick a concert to go to.
- Both prefer to go together than to go home.
- However, Amy prefers Bach while Bob prefers Stravinsky.

Bach or Stravinsky (BoS)

- What are the SOLUTIONS of the game?
- Is there any dominant strategy for either Amy or Bob?

Battle of Sexes (BoS)

- What are the SOLUTIONS of the game?
- Is there any dominant strategy for either Amy or Bob?

Matching Pennies

- Two players, playing a game by throwing a penny.
- Both 'heads' or both 'tails': player 1 keeps both pennies.
- Otherwise, player 2 keeps both pennies.

Matching Pennies

- Two players, playing a game by throwing a penny.
- Both 'heads' or both 'tails': player 1 keeps both pennies.
- Otherwise, player 2 keeps both pennies.

Player 2

Matching Pennies

- Zero-sum?
- Do dominant strategies exist?
- What are the solutions?

Rock-Scissors-Paper Game

Rock-Scissors-Paper Game

Player 2

- Zero-sum?
- Dominant strategies?
- Any solutions?

Mixed Strategies

- What we have discussed about are all pure strategies.
- A deterministic action.

Mixed Strategies

- What we have discussed about are all pure strategies.
- A deterministic action.
- What is a mixed strategy?

Mixed Strategies

- Like this?
- Nine-headed Dragon Strike.
- Or like this?
- Man of many pitches.
- For a portfolio manager in a hedge fund:
- Portfolio weighting.

Back to the Game of Matching Pennies

- Setting the weights?

Back to the Game of Matching Pennies

- Setting the weights? $0<\epsilon, \rho<1$

Player 2

headtail	head	tail	
	1, -1	-1, 1	ρ
	$-1,1$	1, -1	$1-\rho$

Back to the Game of Matching Pennies

- Setting the weights? $0<\epsilon, \rho<1$
- The expected utility of player 1 playing 'head':

$$
f=1 \cdot \epsilon+(-1) \cdot(1-\epsilon)
$$

- The expected utility of player 1 playing 'tail':

$$
g=-1 \cdot \epsilon+1 \cdot(1-\epsilon)
$$

Player 2
head tail

An intuitive definition of a Nash equilibrium

- A state such that no player can increase her expected payoff (profit, gain, advantage, money, etc.) by a unilateral deviation.

- Nash's Theorem:

Every finite game (a finite number of players, each has a finite number of pure strategies) has at least one Nash equilibrium.

Back to the Game of Matching Pennies

- Setting the weights? $0<\epsilon, \rho<1$
- The expected utility of player 1 playing 'head':

$$
f=1 \cdot \epsilon+(-1) \cdot(1-\epsilon)
$$

- The expected utility of player 1 playing 'tail':

$$
g=1 \cdot \epsilon+(-1) \cdot(1-\epsilon)
$$

- What if $f \neq g$?

Player 2
head tail

Back to the Game of Matching Pennies

- Setting the weights? $0<\epsilon, \rho<1$
- The expected utility of player 1 playing 'head':

$$
f=1 \cdot \epsilon+(-1) \cdot(1-\epsilon)
$$

- The expected utility of player 1 playing 'tail':

$$
g=-1 \cdot \epsilon+1 \cdot(1-\epsilon)
$$

- What if $f \neq g$?

$\begin{gathered} \stackrel{\rightharpoonup}{0} \\ \stackrel{\rightharpoonup}{0} \\ \stackrel{1}{2} \end{gathered}$	head	tail	
	1, -1	$-1,1$	ρ
tail	-1, 1	1, -1	$1-\rho$

Consider Player 1's expected utility: $\rho \cdot f+(1-\rho) \cdot g$

Back to the Game of Matching Pennies

- Setting the weights? $0<\epsilon, \rho<1$
- The expected utility of player 1 playing 'head':

$$
f=1 \cdot \epsilon+(-1) \cdot(1-\epsilon)
$$

- The expected utility of player 1 playing 'tail':

$$
g=-1 \cdot \epsilon+1 \cdot(1-\epsilon)
$$

- Solving $f=g \Rightarrow \epsilon=0.5$.

Now it's your turn to solve ρ.

Back to the Game of Matching Pennies

- Take your time.

Player 2

- So we just proved that the game has a kind of solution:
"Mixed-Strategy Nash Equilibrium".

head	head	tail	
	1, -1	-1, 1	ρ
	$-1,1$	1, -1	$1-\rho$

Saddle point illustration

Economics and Computation, CSIE, TKU, Taiwan

An intuitive definition of a Nash equilibrium

- A state such that no player can increase her expected payoff (profit, gain, advantage, money, etc.) by a unilateral deviation.
- Nash's Theorem:

Every finite game (a finite number of players, each has a finite number of pure strategies) has at least one Nash equilibrium.

- The concept of best responses \& mixed strategies.

Back to the classic scene of "A Beautiful Mind"

- https://www.youtube.com/watch?v=2d_dtTZQyUM
- Do you observe anything strange or anything wrong?
- https://www.youtube.com/watch?v=DTcmmD_MWas

An Easy Exercise

- Please find out a mixed-strategy Nash equilibrium of the rock-scissors-paper game.

Player 2

The Monty Hall Problem

- From an American TV show Let's Make a Deal hosted by Monty Hall.

Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat. He then says to you, "Do you want to pick door No. 2?" Is it to your advantage to switch your choice?

A Variation of Matching Pennies

- Two players A, and B.
- Strategy set for both of A and B : real numbers in [-1, 1].
- Let x, y be the strategies of A and B respectively.
- Utility for A : the distance between x and y.
- Utility for B : the minus distance between x and y.
- Question:

Does there exist any pure Nash equilibrium in this game?

An Online Lecture for Bayesian-Nash Equilibrium

- A lecture from MIT.

