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Knapsack Auctions

Whenever there is a shared resource with limited capacity, you have a knapsack
problem.
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Knapsack Auctions

Definition

▶ We study about another example of single-parameter environments.

Knapsack Auctions

▶ Each bidder i has a publicly known size wi and a private valuation.

▶ The seller has a capacity W .

▶ The feasible set X is defined as the 0-1 vectors (x1, . . . , xn) such that∑n
i=1 wixi ≤ W .

▶ xi = 1: i is a winning bidder.
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Knapsack Auctions

Explanations

▶ Each bidder’s size could represent the duration of a company’s television ad,
the valuation its willingness-to-pay for tis ad being shown during the Super
Bowl or NBA Finals, and the seller capacity the length of a commercial break.

▶ The situation that bidders who want
▶ files stored on a shared server,
▶ data streams sent through a shared communication channel
▶ processes to be executed on a shared supercomputer.

▶
...
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Knapsack Auctions

Assumptions

▶ We receive truthful bids and decide on our allocation rule.

▶ Pay the bidder and devise a payment rule that extends the allocation rule to
a DSIC mechanism.
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Knapsack Auctions Welfare-Maximizing DSIC Knapsack Auctions

To maximize the welfare:

x(b) = argmax
X

n∑
i=1

bixi .

The goal is to compute the subset of items of maximum total value that has total
size bounded by W .

▶ It’s maximum by the assumption that bidders bid truthfully.

⋆ Check that the allocation rule x(·) is monotone.
▶ Bidding higher can only get her more stuff.
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Knapsack Auctions Critical Bids

The Guarantee from Myerson’s Lemma
▶ Myerson’s lemma guarantees the existence of a payment rule p such that the

mechanism (x,p) is DSIC.

▶ Since the allocation rule is monotone and assigns 0 or 1 to each bidder, the
allocation curve xi (·,b−i ) is 0 until some “breakpoint” z .
▶ At z , the allocation jumps to 1.
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Knapsack Auctions Critical Bids

The Guarantee from Myerson’s Lemma (contd.)

▶ If i bids less than z , she loses and pays 0.
▶ If i bids more than z , she pays ≥ z · (1− 0) = z .

▶ z is the infimum bid that she could make and continue to win (holding b−i

fixed).
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Knapsack Auctions Intractability of Welfare Maximization

(Recall) An ideal mechanism

Properties of an Ideal Mechanism

▶ DSIC

▶ welfare maximizing (assuming truthful bids).

▶ runs in polynomial time in the input size (e.g., bids, sizes, the capacity).
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Knapsack Auctions Intractability of Welfare Maximization

Is our mechanism for the knapsack auction ideal?

x(b) = argmax
X

n∑
i=1

bixi .

The answer: NO.

▶ The knapsack problem is a notorious NP-hard problem.
▶ No polynomial time implementation of the allocation rule unless NP = P.

▶ Hence, we would like to consider relaxing at least one of the three goals.
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Knapsack Auctions Intractability of Welfare Maximization

An ideal mechanism

Properties of an Ideal Mechanism

▶ DSIC

▶ welfare maximizing (assuming truthful bids).

▶ runs in polynomial time in the input size (e.g., bids, sizes, the capacity).

▶ Relax the second requirement as little as possible.

▶ Design a polynomial time and monotone allocation rule that comes as close
as possible to the maximum possible social welfare.
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Algorithmic Mechanism Design The Best-Case Scenario: DSIC for Free
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Algorithmic Mechanism Design The Best-Case Scenario: DSIC for Free

Approximation Algorithms come to rescue?

▶ The primary goal in approximation algorithms is to design polynomial-time
algorithms for NP-hard optimization problems that are as close to the
optimal solution as possible.

▶ Algorithmic mechanism design has exactly the same goal, except that the
algorithms must additionally obey a monotonicity constraint.

▶ The incentive constraints of the mechanism design goal are neatly compiled
into a relatively intuitive extra constraint on the allocation rule.
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Algorithmic Mechanism Design The Best-Case Scenario: DSIC for Free

Approximation Algorithms come to rescue? (contd.)

▶ The design space of polynomial-time DSIC mechanisms is only smaller than
that of polynomial-time approximation algorithms.

▶ (Imagine) The best-case scenario: DSIC constraint causes no additional
welfare loss (beyond the loss from the polynomial-time requirement).

▶ Exact welfare maximization automatically yields a monotone allocation rule.

▶ Is that true for approximate welfare maximization?
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Algorithmic Mechanism Design Knapsack Auctions Revisited

Greedy approach

▶ Say S be a set of winners with total size
∑

i∈S wi ≤ W .

▶ We choose such a set S via a simple greedy algorithm.

⋆ We can assume that wi ≤ W for all i (why?)
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Algorithmic Mechanism Design Knapsack Auctions Revisited

A Greedy Knapsack Heuristic

A Greedy Algorithm

1. Sort and re-index the bidders so that

b1
w1

≥ b2
w2

≥ · · · ≥ bn
wn

.

2. Pick winners in this order until one doesn’t fit, and then halt.

3. Return either the solution from Step 2○ or the highest bidder: argmaxi bi ,
whichever has larger social welfare.

Theorem (Knapsack Approximation Guarantee)

Assuming truthful bids, the social welfare achieved by the greedy allocation is at
least half of the maximum social welfare.
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Algorithmic Mechanism Design Knapsack Auctions Revisited

Sketch of proving the theorem

▶ To have an upper bound on the maximum social welfare, allow bidders to be
chosen fractionally, with the value prorated accordingly.
▶ E.g., if 70% of a bidder with value 10 is chosen, then it contributes 7 to the

welfare.

▶ Sort the bidders according to the step above, and pick winners in this order
until the the capacity W is fully exhausted.
▶ You can verify that this maximizes the welfare over all feasible solutions.
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Algorithmic Mechanism Design Knapsack Auctions Revisited

Sketch of proving the theorem (contd.)

▶ In the optimal fractional solution, suppose that the first k bidders in the
sorted order win and that the (k + 1)th bidder fractionally wins.

⋆ The welfare achieved by steps 1○ and 2○ in the greedy allocation rule = the
total value of the first k bidders.

⋆ The welfare consisting only the highest bidder ≥ the fractional value of the
(k + 1)th bidder.

▶ The better of these two solutions ≥ 1
2× the welfare of the optimal fractional

solution.
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Algorithmic Mechanism Design Knapsack Auctions Revisited
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Algorithmic Mechanism Design Knapsack Auctions Revisited
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Algorithmic Mechanism Design Knapsack Auctions Revisited
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Algorithmic Mechanism Design Knapsack Auctions Revisited

Sum up

▶ The greedy allocation rule is monotone (check by yourself).

▶ Using Myerson’s lemma, we can extend it to a DSIC mechanism that runs in
polynomial time and, assuming truthful bids, achieves social welfare at least
50% of the maximum possible.
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The Revelation Principle

Reiteration

▶ There are good reasons to strive for a DSIC guarantee.
▶ Easy for a participant to figure out what to do in a DSIC mechanism.
▶ The designer can predict the mechanism’s outcome.
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The Revelation Principle Justifying Direct Revelation
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The Revelation Principle Justifying Direct Revelation

The DSIC Condition

The DSIC Condition

(a) For every valuation profile, the mechanism has a dominant-strategy
equilibrium.

⋆ An outcome that results from every participant playing a dominant strategy.

(b) In this dominant-strategy equilibrium, every participant truthfully reports her
private information to the mechanism.

▶ The revelation principle asserts that:

given (1), then (2) comes for free!
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The Revelation Principle Justifying Direct Revelation

The Revelation Principle

Theorem (Revelation Principle for DSIC Mechanisms)

For every mechanism M where every participant always has a dominant strategy,
there is an equivalent direct-revelation DSIC mechanism M ′.

▶ We use a simulation argument to construct M ′ as follows.
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The Revelation Principle Justifying Direct Revelation

Proof

▶ For every participant i and its private information vi , she has a dominant
strategy si (vi ) in mechanism M (by assumption).
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The Revelation Principle Justifying Direct Revelation

Proof

▶ Construct M ′, such that participants delegate the responsibility of playing the
appropriate dominant strategy to M ′.
▶ M ′ accepts bids b1, . . . , bn.
▶ Then M ′, which is of direct-revelation, submits the bids s1(b1), . . . , sn(bn) to

the mechanism M and choose the same outcome that M does.
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The Revelation Principle Justifying Direct Revelation

Proof

▶ Mechanism M ′ is DSIC:
▶ If a participant i has private information vi , then submitting a bid other than vi

can only result in M ′ playing a strategy other than si (vi ) in M, which can only
decrease i ’s utility.
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The Revelation Principle Justifying Direct Revelation

What we have learned from the theorem?

▶ Truthfulness per se is not important.

▶ The difficult part is the requirement to have a dominant-strategy equilibrium.

Joseph C.-C. Lin CSIE, TKU, TW 38 / 44



The Revelation Principle Beyond Dominant-Strategy Equilibria

Outline

Knapsack Auctions
Welfare-Maximizing DSIC Knapsack Auctions
Critical Bids
Intractability of Welfare Maximization

Algorithmic Mechanism Design
The Best-Case Scenario: DSIC for Free
Knapsack Auctions Revisited

The Revelation Principle
Justifying Direct Revelation
Beyond Dominant-Strategy Equilibria

Joseph C.-C. Lin CSIE, TKU, TW 39 / 44



The Revelation Principle Beyond Dominant-Strategy Equilibria

Heads up

▶ DSIC and non-DSIC mechanisms are incomparable.
▶ The former enjoys stronger incentive guarantees
▶ The latter may enjoy better performance guarantees.
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An Algorithmic Coding Project (10%)

▶ Solve the 0-1 knapsack problem using branch-and-bound.
▶ Reference:

▶ Example from geeksforgeeks.
▶ P. J. Kolesar’s journal paper.

▶ Input format: an integer N specifying the number of items, followed by 2N
real numbers where the first half are values of items in [0, 100] and the
second half are weights in (0, 100].

▶ Output: Optimal value of the 0-1 knapsack problem.

▶ Example code on OnlineGDB: link.
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https://www.geeksforgeeks.org/0-1-knapsack-using-branch-and-bound/
https://www0.gsb.columbia.edu/mygsb/faculty/research/pubfiles/4407/ kolesar_branch_bound.pdf
https://onlinegdb.com/cr6__Kg1T


An Algorithmic Coding Project (10%)

Grading Policy:

▶ Teamwork is allowed (≤ two people in a group).

▶ Giving wrong answers: 0% for each test data.
▶ The team with correct answers and fewest nodes: 100%.

▶ The team with correct answers and second fewest nodes: 90%.
▶ The team with correct answers and third fewest nodes: 80%.
▶ The rest teams with correct answers: 70%.
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Illustration
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