
Auctions &
Mechanism Design Basics

Joseph Chuang-Chieh Lin

Dept. CSIE, Tamkang University, Taiwan

Joseph C.-C. Lin CSIE, TKU, TW 1 / 50



I We study about a kind of science of rule-making.

I To make it simple, we first consider single-item auctions.

I We will go over some basics about first-price auctions and second-price
auctions.

I Also, we will talk about
I incentive guarantees,
I strong performance guarantees, and
I computational efficiency

in an auction.

I We will end the discussion with Myerson’s Lemma.
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Single-Item Auctions

Strategic bidders in an auction

I Consider a seller with a single item.
I For example, an antiquated furniture.

I Assume that there are n bidders who are strategic.
I Bidders are interested in buying this furniture.

I We want to reason about bidder behavior in the auction.
I Let’s say each bidder i has a nonnegative valuation vi for this item being

sold.
I Her maximum willingness-to-pay for it.
I vi is private.

I Unknown to the seller and other bidders.
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Single-Item Auctions

What does a bidder want? What’s her utility?

I Each bidder wants to acquire the item as cheaply as possible.

I It would be great if the selling price is ≤ vi .

I What’s the utility of bidder i?
I If she loses ⇒ 0.
I If she wins ⇒ vi − p.
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Sealed-Bid Auctions

Sealed-Bid Auctions

Sealed-Bid Auction

(i) Each bidder i privately communicates a bid bi to the seller—in a sealed
envelope.

(ii) The seller decides who gets the item (if any).

(iii) The seller decides the selling price.

I Step (ii): The selection rule. We consider giving the item to the highest
bidder.
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Sealed-Bid Auctions First-Price Auctions

First-Price auction

First-Price

The winning bidder pays her bid.

I But it’s hard to reason about.

I Why?
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Sealed-Bid Auctions First-Price Auctions

Issues of the First-Price Auctions

I For a bidder:

Hard to figure how to bid.

I For the seller: Hard to predict what will happen.
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Sealed-Bid Auctions First-Price Auctions

An Example

I Suppose that you are participating in the first-price auction.

I Your valuation for the item: the number of your birth month + the day of
your birth.

I Your valuation is between 2 and 43.

I Suppose that there is another bidder who has the same valuation like you.
I Would it help to know your opponent’s birthday?
I Would your answer change if you knew there were two other bidders rather

than one?
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Sealed-Bid Auctions Second-Price Auctions

eBay/Yahoo auction

I If you bid $100 and win, do you pay $100?

I eBay increases your bid on your behalf until
I Your maximum bid is reached, or
I You are the highest bidder

whichever comes first.

I For example, if the highest other bid is $90.
You only pay $90 + ε for some small increment ε.

≈ highest other bid!
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Sealed-Bid Auctions Second-Price Auctions

Second-Price auction

Second-Price/Vickrey Auction

The highest bidder wins and pays a price equal to the second-highest bid.

I Is such a strategy a dominant strategy?

I The strategy is guaranteed to maximize a bidder’s utility no matter what
other bidders do.
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Sealed-Bid Auctions Second-Price Auctions

Truthfully Bidding Is Dominant Here

Proposition (Incentives in Second-Price Auctions)

In a second-price auction, every bidder i has a dominant strategy: set the bid
bi = vi , equal to her private valuation.
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Sealed-Bid Auctions Second-Price Auctions

Proof of the Proposition

I Fix a bidder i with valuation vi .

I b: the vector of all bids.

I b−i : the vector of b with bi removed.

∗ Goal: Show that bidder i ’s utility is maximized by setting bi = vi .
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Sealed-Bid Auctions Second-Price Auctions

Proof of the Proposition (contd.)

I Let B := maxj 6=i bj denote the highest bid by some other bidder.

I If bi < B, then i loses and receive utility 0.

I If bi ≥ B, then i wins at price B and receives utility vi − B.

I Then, we consider two cases:
I If vi < B, the maximum utility that bidder i can obtain is max{0, vi −B} = 0.

⇒ Bid truthfully (and then loses).

I If vi ≥ B, the maximum utility that bidder i can obtain is
max{0, vi − B} = vi − B.

⇒ Bid truthfully (and then wins).
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Sealed-Bid Auctions Second-Price Auctions

Nonnegative Utility Here

Proposition 2 (Nonnegative Utility)

In a second-price auction, every truthfully bidder is guaranteed nonnegative utility.

I Losers receive utility 0.
I How about the winners?

I The utility is vi − p, where p is the 2nd highest bid.
I ∵ bidder i wins and bids her true valuation vi , so p ≤ vi ⇒ vi − p ≥ 0.
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I ∵ bidder i wins and bids her true valuation vi , so p ≤ vi ⇒ vi − p ≥ 0.
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Sealed-Bid Auctions Second-Price Auctions

Second-Price Single-Item Auctions are “ideal”

Definition (Dominant-Strategy Incentive Compatible)

An auction is dominant-strategy incentive compatible (DSIC) if

I truthful bidding is a dominant strategy for every bidder, and

I truthful bidders always obtain nonnegative utility.

Social Welfare

The social welfare of an outcome of a single-item auction is

n∑
i=1

vixi .

where
∑n

i=1 xi ≤ 1; xi = 1 if bidder i wins and 0 if she loses.
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Sealed-Bid Auctions Second-Price Auctions

Second-Price Single-Item Auctions are “ideal” (contd.)

Social Welfare

The social welfare of an outcome of a single-item auction is

n∑
i=1

vixi .

where
∑n

i=1 xi ≤ 1; xi = 1 if bidder i wins and 0 if she loses.

I So such an auction is welfare maximizing if bids are truthful.
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Sealed-Bid Auctions Second-Price Auctions

Second-Price Single-Item Auctions are “ideal” (contd.)

Theorem

A second-price single-item auction satisfies:

(1) DSIC.

(strong incentive guarantees)

(2) Welfare maximizing.

(strong performance guarantees)

(3) It can be implemented in polynomial time.

(computational efficiency)

In fact, (3) is linear.
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Sealed-Bid Auctions Case Study: Sponsored Search Auctions
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Sealed-Bid Auctions Case Study: Sponsored Search Auctions

Background

The Social Dilemma (2020) - Trailer

I Web search results:
I relevant to your query (by an algorithm, e.g., PageRank).
I pops out a list of sponsored links.

I They are paid by advertisers.

I Every time you give a search query into a search engine, an auction is run in
real time to decide
I which advertiser’s links are shown,
I how these links are arranged visually,
I what the advertisers are charged.

Joseph C.-C. Lin CSIE, TKU, TW 24 / 50

https://www.youtube.com/watch?v=MKtzpt1ogqg


Sealed-Bid Auctions Case Study: Sponsored Search Auctions

Multiple Items for Sponsored Search Auctions

I Let’s say the items for sale are k “slots” on a search results page.
I Bidders: the advertisers who have a bid on the keyword that was searched

on.
I On the keyword, “university”, NTU, NYCU, NCKU, TKU, etc., might be the

bidders.

I On the keyword, “camera”, Nikon, Canon, Sony, etc., might be the bidders.
I On the keyword, “SUV”, Toyota, Ford, Honda, Porsche, etc., might be the

bidders.

I Let’s say the items are not identical.
I Higher slots are more valuable. What do you think?
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Sealed-Bid Auctions Case Study: Sponsored Search Auctions

Multiple Items for Sponsored Search Auctions

I Consider the click-through-rates (CTRs) αj of slot j .
I The probability that the user clicks on this slot.
I Assumption: α1 ≥ α2 ≥ . . . αk .

I Each advertiser i has a quality score βi .
I The CTR of advertiser i in slot j : βiαj .

I The expected value derived by advertiser i from slot j : viαj

I The social welfare is
∑n

i=1 vixi .
I xi : the CTR of the slot to which bidder i is assigned.

I xi = 0: bidder i is not assigned to a slot.

I Each slot can only be assigned to one bidder;
each bidder gets only one slot.

Joseph C.-C. Lin CSIE, TKU, TW 26 / 50
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Sealed-Bid Auctions Case Study: Sponsored Search Auctions

Our Design Approach

I Who wins what?

I Who pays what?
I The payment.

I If the payments are not just right, then the strategic bidders will game the
system.
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Sealed-Bid Auctions Case Study: Sponsored Search Auctions

Our Design Approach

Design Steps

(a): Assume that the bidders bid truthfully. Then, how should we assign bidders
to slots so that property (2) and (3) holds?

(b): Given the answer of above, how should we set selling prices so that property
(1) holds?
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Sealed-Bid Auctions Case Study: Sponsored Search Auctions

Step (a)

I Given truthful bids. For i = 1, 2, . . . , k, assign the ith highest bid to the ith
best slot.

I You can prove that this assignment achieves the maximum social welfare as
an exercise.
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Sealed-Bid Auctions Case Study: Sponsored Search Auctions

Step (b)

I There is an analog of the second-price rule.
I DSIC.
? Myerson’s lemma.

I A powerful and general tool for implementing this second step.
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Myerson’s Lemma
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Myerson’s Lemma Single-Parameter Environments

Single-Parameter Environments

Consider a more generalized and abstract setting:

Single-Parameter Environments

I n agents (e.g., bidders).

I A private valuation vi ≥ 0 for each agent i (per unit of stuff).
I A feasible set X = {(x1, x2, . . . , xn) | xi ∈ R} ⊆ Rn.

I xi : amount of stuff given to agent i .
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Myerson’s Lemma Single-Parameter Environments

Single-Parameter Environments (Examples)

I Single-item auction:
I

∑n
i=1 Xi ≤ 1, and xi ∈ {0, 1} for each i .

I k-Unit auction:
I k identical items,

∑n
i=1 Xi ≤ k, and xi ∈ {0, 1} for each i .

I Sponsored Search Auction:
I X : the set of n-vectors ⇔ assignments of bidders to slots.
I Each slot (resp., bidder) is assigned to ≤ 1 bidder (resp., slot).
I The component xi = αj : bidder i is assigned to slot j .

I αj : the click-through rate of slot j .
I Assume that the quality score βi = 1 for all i .
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Myerson’s Lemma Single-Parameter Environments

Allocation and Payment Rules

Choices to make in a sealed-bid auction
I Collect bids b = (b1, . . . , bn).

I Allocation Rule: Choose a feasible x(b) ∈ X ⊆ Rn.

I Payment Rule: Choose payments p(b) ∈ Rn.

I A direct-revelation mechanism.

I Example of indirect mechanism: iterative ascending auction.
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Myerson’s Lemma Single-Parameter Environments

Allocation and Payment Rules (contd.)

With allocation rule x and payment rule p,

I agent i receives utility ui (b) = vi · xi (b)− pi (b).
I pi (b) ∈ [0, bi · xi (b)].

I pi (b) ≥ 0: prohibiting the seller from paying the agents.
I pi (b) ≤ bi · xi (b): a truthful agent receives nonnegative utility.

Why?
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Myerson’s Lemma Single-Parameter Environments

The Myerson’s Lemma

Definition (Implementable Allocation Rule)

An allocation rule x for a single-parameter environment is implementable if there is a

payment rule p such that the direct-revelation mechanism (x ,p) is DSIC.

The rules that extend to DSIC mechanisms.

Definition (Monotone Allocation Rule)

An allocation rule x for a single-parameter environment is monotone if for every agent i

and bids b−i by other agents, the allocation xi (z ,b−i ) to i is nondecreasing in her bid z .

Bidding higher can only get you more stuff!
So, how about awarding the item to the second-highest bidder?
You raise your bid, you might lose the chance of getting it!
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Myerson’s Lemma The Lemma

The Myerson’s Lemma

Theorem (Myerson’s Lemma)

Fix a single-parameter environment.

(i) An allocation rule x is implementable if and only if it is monotone.

(ii) If x is monotone, then there is a unique payment rule for which the
direct-revelation mechanism (x ,p) is DSIC and pi (b) = 0 whenever bi = 0.

(iii) The payment rule in (ii) is given by an explicit formula.

“Monotone” is more operational.
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Myerson’s Lemma The Lemma

Allocation curves: allocation as a function of bids

Figures from Tim Roughgarden’s lecture notes.
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Myerson’s Lemma The Lemma

Constraints from DSIC

Consider 0 ≤ y < z .

Say agent i has a private valuation z and free to submit a false bid y or
agent i has a private valuation y and free to submit a false bid z

DSIC: Bidding truthfully brings maximum utility.

z · x(z)− p(z) ≥ z · x(y)− p(y)

y · x(y)− p(y) ≥ y · x(z)− p(z)

So
z · (x(y)− x(z)) ≤ p(y)− p(z) ≤ y · (x(y)− x(z)).

p(y)− p(z) can be bounded below and above.

⇒ every implementable allocation rule is monotone (why?)
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Myerson’s Lemma The Lemma

Case: x is a piecewise constant function

z · (x(y)− x(z)) ≤ p(y)− p(z) ≤ y · (x(y)− x(z)).

I Try: fix z and let y tend to z .

I Taking y → z
⇒ left-hand and right-hand sides → 0 if there is no jump in x at z .

pi (bi ,b−i ) =
∑̀
j=1

zj · [ jump in xi (·,b−i ) at zj ],

where z1, . . . , z` are breakpoints of xi (·,b−i ) in the range [0, bi ].
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∑̀
j=1

zj · [ jump in xi (·,b−i ) at zj ],

z1, . . . , z`: breakpoints of xi (·,b−i ) in [0, bi ].
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Myerson’s Lemma The Lemma

Case: x is a monotone function

z · (x(y)− x(z)) ≤ p(y)− p(z) ≤ y · (x(y)− x(z)).

I Suppose x is differentiable.

I Dividing the inequalities by y − z :

p′(z) = z · x ′(z).

pi (bi ,b−i ) =

∫ bi

0
z · d

dz
xi (z ,b−i )dz .
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Myerson’s Lemma Application to the Sponsored Search Auction
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Myerson’s Lemma Application to the Sponsored Search Auction

Apply to Sponsored Search Auction

The allocation rule is piecewise.

pi (b) =
∑k

j=i bj+1(αj − αj+1).

Joseph C.-C. Lin CSIE, TKU, TW 47 / 50



Myerson’s Lemma Application to the Sponsored Search Auction

Apply to Sponsored Search Auction

The allocation rule is piecewise.

pi (b) =
∑k

j=i bj+1(αj − αj+1).

Joseph C.-C. Lin CSIE, TKU, TW 47 / 50



Myerson’s Lemma Application to the Sponsored Search Auction

Apply to Sponsored Search Auction

The allocation rule is piecewise.

pi (b) =
∑k

j=i bj+1
αj−αj+1

αi
(scaled per click).
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Myerson’s Lemma Application to the Sponsored Search Auction

Exercise 1 (4%)

I Recall that in the model of sponsored search auctions:
I There are k slots, the jth slot has a click-through rate (CTR) of αj

(nonincreasing in j).
I The utility of bidder i in slot j is αj(vi − pj), where vi is the private

value-per-click of the bidder and pj is the price charged per-click in slot j .

I The Generalized Second Price (GSP) Auction is defined as follows:
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Myerson’s Lemma Application to the Sponsored Search Auction

Exercise 1 (5%) (contd.)

The Generalized Second Price (GSP) Auction

1. Rank advertisers from highest to lowest bid; assume without loss of generality
that b1 ≥ b2 ≥ · · · ≥ bn.

2. For i = 1, 2, . . . , k , assign the ith bidder to the i slot.

3. For i = 1, 2, . . . , k , charge the ith bidder a price of bi+1 per click.

(a) Prove that for every k ≥ 2 and sequence α1 ≥ · · · ≥ αk > 0 of CTRs, the
GSP auction is NOT DSIC. (Hint: Find out an example.)

(b) A bid profile b with b1 ≥ · · · ≥ bn is envy-free if for every bidder i and slot
j 6= i ,

αi (vi − bi+1) ≥ αj(vi − bj+1).

Please verify that every envy-free bid profile is an equilibrium.
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