Equilibrium Concepts

Joseph Chuang-Chieh Lin

Department of Computer Science & Engineering, National Taiwan Ocean University

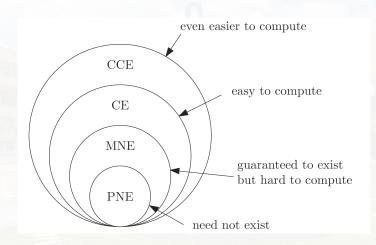
Fall 2024

Fall 2024

Outline

- Cost Minimization and Payoff Maximization
- Pure Nash Equilibria (PNE)
- Mixed Nash Equilibria (MNE)
- 4 Correlated Equilibria (CE)
- 5 Coarse Correlated Equilibria (CCE)
- 6 Appendix: Network Creation Games

A hierarchy of equilibrium concepts



Outline

- Cost Minimization and Payoff Maximization
- 2 Pure Nash Equilibria (PNE)
- 3 Mixed Nash Equilibria (MNE)
- 4 Correlated Equilibria (CE)
- 5 Coarse Correlated Equilibria (CCE)
- 6 Appendix: Network Creation Games

Cost-Minimization Games

A cost-minimization game has the following ingredients:

- a finite number of k agents;
- a finite set S_i of pure strategies for each agent i;
- a nonnegative cost function $C_i(\mathbf{s})$ for each agent i.
 - $\mathbf{s} \in S_1 \times S_2 \times \cdots \times S_k$: a strategy profile or outcome.

For example, the network creation game.

Payoff-Maximization Games

A payoff-maximization game has the following ingredients:

- a finite number of k agents;
- a finite set S_i of pure strategies for each agent i;
- a nonnegative payoff function $\pi_i(s)$ for each agent i.
 - $\mathbf{s} \in S_1 \times S_2 \times \cdots \times S_k$: a strategy profile or outcome.

For example, the Rock-Paper-Scissors game, two-party election game, etc.

Equilibrium Concepts
Pure Nash Equilibria (PNE)

Outline

- 1 Cost Minimization and Payoff Maximization
- Pure Nash Equilibria (PNE)
- Mixed Nash Equilibria (MNE)
- 4 Correlated Equilibria (CE)
- 5 Coarse Correlated Equilibria (CCE)
- 6 Appendix: Network Creation Games

Pure Nash Equilibrium (PNE)

Pure Nash Equilibrium (PNE)

A strategy profile **s** of a cost-minimization game is a pure Nash equilibrium (PNE) if for every agent $i \in \{1, 2, \dots, k\}$ and every unilateral deviation $s_i' \in S_i$,

$$C_i(\mathbf{s}) \leq C_i(s_i', \mathbf{s}_{-i}).$$

• \mathbf{s}_{-i} : the vector \mathbf{s} with the *i*th component removed.

Outline

- 1 Cost Minimization and Payoff Maximization
- 2 Pure Nash Equilibria (PNE)
- 3 Mixed Nash Equilibria (MNE)
- 4 Correlated Equilibria (CE)
- 5 Coarse Correlated Equilibria (CCE)
- 6 Appendix: Network Creation Games

Mixed Nash Equilibrium (MNE)

Mixed Nash Equilibrium (MNE)

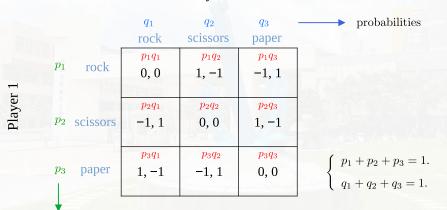
Distributions σ_1,\ldots,σ_k , over strategy sets S_1,\ldots,S_k respectively, of a cost-minimization game constitute a mixed Nash equilibrium (MNE) if for every agent $i\in\{1,2,\ldots,k\}$ and every unilateral deviation $s_i'\in S_i$,

$$\mathsf{E}_{\mathsf{s}\sim\sigma}[\mathit{C}_{\mathit{i}}(\mathsf{s})] \leq \mathsf{E}_{\mathsf{s}\sim\sigma}[\mathit{C}_{\mathit{i}}(\mathsf{s}'_{\mathit{i}},\mathsf{s}_{-\mathit{i}})].$$

• σ : the product distribution $\sigma_1 \times \cdots \times \sigma_k$.

Product of Mixed Strategies

Player 2



Fall 2024

probabilities

Equilibrium Concepts
Correlated Equilibria (CE)

Outline

- Cost Minimization and Payoff Maximization
- 2 Pure Nash Equilibria (PNE)
- 3 Mixed Nash Equilibria (MNE)
- Correlated Equilibria (CE)
- 5 Coarse Correlated Equilibria (CCE)
- 6 Appendix: Network Creation Games

Correlated Equilibrium (CE)

Correlated Equilibrium (CE)

A distribution σ on the set $S_1 \times \cdots \times S_k$ of outcomes of a cost-minimization game is a correlated equilibrium (CE) if for every agent $i \in \{1, 2, \dots, k\}$ and every unilateral deviation $s_i' \in S_i$,

$$\mathbf{E}_{\mathbf{s} \sim \sigma}[C_i(\mathbf{s}) \mid \mathbf{s}_i] \leq \mathbf{E}_{\mathbf{s} \sim \sigma}[C_i(\mathbf{s}_i', \mathbf{s}_{-i}) \mid \mathbf{s}_i].$$

Matrix of costs

ETERO POR CONTENT	Stop	Go
Stop	1, 1	1, 0
Go	0, 1	5, 5

Two PNEs.

Matrix of costs

The same of the sa	Stop	Go
Stop	1, 1	1, 0
Go	0, 1	5, 5

Two PNEs.

Matrix of costs

	Stop	Go
Stop	prob. = 0 1, 1	prob. = 1/2 1, 0
Go	prob. = 1/2 0, 1	prob. = 0 5, 5

- A CE for example.
- Cannot correspond to a MNE.

Matrix of costs

	Stop	Go
Stop	prob. = 0 1, 1	prob. = 1/2 1, 0
Go	prob. = 1/2 0, 1	prob. = 0 5, 5

- A CE for example.
- Cannot correspond to a MNE.

- A.k.a. Hawk-Dove Game.
 - A model of conflict for two players.

	Dare	Chicken
Dare	0, 0	7, 2
Chicken	2, 7	6, 6

- Two PNE & One MNE.
- The expected utility of each player in the MNE

- A.k.a. Hawk-Dove Game.
 - A model of conflict for two players.

	Dare	Chicken
Dare	0, 0	7, 2
Chicken	2, 7	6, 6

- Two PNE & One MNE.
- The expected utility of each player in the MNE:

- A.k.a. Hawk-Dove Game.
 - A model of conflict for two players.

	Dare	Chicken
Dare	0, 0	7, 2
Chicken	2, 7	6, 6

- Two PNE & One MNE.
- The expected utility of each player in the MNE:

- A.k.a. Hawk-Dove Game.
 - A model of conflict for two players.

	Dare	Chicken
Dare	0, 0	7, 2
Chicken	2, 7	6, 6

- Two PNE & One MNE.
- The expected utility of each player in the MNE: $\frac{1}{3} \cdot \frac{2}{3} \cdot 7 + \frac{2}{3} \cdot \frac{1}{3} \cdot 2 + \frac{2}{3} \cdot \frac{2}{3} \cdot 6 = \frac{14}{3}$.

- A correlated equilibrium.
 - Check that it is an equilibrium if a player is assigned "Dare".
 - Check that it is an equilibrium if a player is assigned "Chicken Out".

	Dare	Chicken
Dare	prob. = 0 0, 0	prob. = 1/3 7, 2
Chicken	prob. = 1/3 2, 7	prob. = 1/3 6, 6

• The expected utility for each player:

Fall 2024

- A correlated equilibrium.
 - Check that it is an equilibrium if a player is assigned "Dare".
 - Check that it is an equilibrium if a player is assigned "Chicken Out".

	Dare	Chicken
Dare	prob. = 0 0, 0	prob. = 1/3 7, 2
Chicken	prob. = 1/3 2, 7	prob. = 1/3 6, 6

• The expected utility for each player:

$$7 \cdot (1/3) + 2 \cdot (1/3) + 6 \cdot (1/3) = 5.$$

- A correlated equilibrium.
 - Check that it is an equilibrium if a player is assigned "Dare".
 - Check that it is an equilibrium if a player is assigned "Chicken Out".

	Dare	Chicken
Dare	prob. = 0 0, 0	prob. = 1/3 7, 2
Chicken	prob. = 1/3 2, 7	prob. = 1/3 6, 6

• The expected utility for each player:

$$7 \cdot (1/3) + 2 \cdot (1/3) + 6 \cdot (1/3) = 5.$$

Outline

- Cost Minimization and Payoff Maximization
- 2 Pure Nash Equilibria (PNE)
- 3 Mixed Nash Equilibria (MNE)
- 4 Correlated Equilibria (CE)
- 5 Coarse Correlated Equilibria (CCE)
- 6 Appendix: Network Creation Games

Coarse Correlated Equilibrium (CCE)

Coarse Correlated Equilibrium (CCE)

A distribution σ on the set $S_1 \times \ldots \times S_k$ of outcomes of a cost-minimization game is a correlated equilibrium (CE) if for every agent $i \in \{1, 2, \ldots, k\}$ and every unilateral deviation $s_i' \in S_i$,

$$\mathbf{E}_{\mathbf{s}\sim\sigma}[C_i(\mathbf{s})] \leq \mathbf{E}_{\mathbf{s}\sim\sigma}[C_i(s_i',\mathbf{s}_{-i})].$$

CE ⊂ CCE?

$$\mathbf{E}_{\mathbf{s} \sim \sigma}[C_i(\mathbf{s})] = \sum_{a \in S_i} \mathbf{E}_{\mathbf{s} \sim \sigma}[C_i(\mathbf{s}) \mid s_i = a] \Pr[s_i = a]$$

$$\leq \sum_{a \in S_i} \mathbf{E}_{\mathbf{s} \sim \sigma}[C_i(s_i', \mathbf{s}) \mid s_i = a] \Pr[s_i = a]$$

Coarse Correlated Equilibrium (CCE)

Coarse Correlated Equilibrium (CCE)

A distribution σ on the set $S_1 \times \ldots \times S_k$ of outcomes of a cost-minimization game is a correlated equilibrium (CE) if for every agent $i \in \{1, 2, \ldots, k\}$ and every unilateral deviation $s_i' \in S_i$,

$$\mathbf{E}_{\mathbf{s}\sim\sigma}[C_i(\mathbf{s})] \leq \mathbf{E}_{\mathbf{s}\sim\sigma}[C_i(s_i',\mathbf{s}_{-i})].$$

 $CE \subset CCE$?

$$\mathbf{E}_{\mathbf{s} \sim \sigma}[C_i(\mathbf{s})] = \sum_{a \in S_i} \mathbf{E}_{\mathbf{s} \sim \sigma}[C_i(\mathbf{s}) \mid s_i = a] \Pr[s_i = a]$$

$$\leq \sum_{a \in S_i} \mathbf{E}_{\mathbf{s} \sim \sigma}[C_i(s_i', \mathbf{s}) \mid s_i = a] \Pr[s_i = a]$$

$$= \mathbf{E}_{\mathbf{s} \sim \sigma}[C_i(s_i', \mathbf{s}_{-i})]$$

	Α	В	С
A	prob. = 1/3 1, 1	-1, -1	0, 0
В	-1, -1	prob. = 1/3 1, 1	0, 0
C	0, 0	0, 0	$\begin{array}{c} {\rm prob.} = 1/3 \\ -1.1, -1.1 \end{array}$

- The payoff for each player (playing according to this distribution): $\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1 \frac{1}{2} \cdot 1.1 = 0.3$.
- A player playing fixed A or B while the opponent randomized according to this distribution: $\frac{1}{2} \cdot 1 \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 0 = 0$.

Fall 2024

	A	В	С
A	prob. = 1/3 1, 1	-1, -1	0, 0
В	-1, -1	prob. = 1/3 1, 1	0, 0
С	0, 0	0, 0	$\begin{array}{c} \text{prob.} = 1/3 \\ -1.1, -1.1 \end{array}$

- The payoff for each player (playing according to this distribution): $\frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 1 \frac{1}{3} \cdot 1.1 = 0.3$.
- A player playing fixed A or B while the opponent randomized according to this distribution: $\frac{1}{3} \cdot 1 \frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 0 = 0$.
- A player playing fixed C while the opponent randomized according to distribution: $\frac{1}{3} \cdot 0 + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot (-1.1) < 0$.

	Α	В	С
A	prob. = 1/3 1, 1	-1, -1	0, 0
В	-1, -1	prob. = 1/3 1, 1	0, 0
С	0, 0	0, 0	$\begin{array}{c} \text{prob.} = 1/3 \\ -1.1, -1.1 \end{array}$

- The payoff for each player (playing according to this distribution): $\frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 1 \frac{1}{3} \cdot 1.1 = 0.3$.
- A player playing fixed A or B while the opponent randomized according to this distribution: $\frac{1}{3} \cdot 1 \frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 0 = 0$.
- A player playing fixed C while the opponent randomized according to the distribution: $\frac{1}{3} \cdot 0 + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot (-1.1) < 0$.

	A	В	С
A	prob. = 1/3 1, 1	-1, -1	0, 0
В	-1, -1	$ \begin{array}{c} \text{prob.} = 1/3 \\ 1, 1 \end{array} $	0, 0
C	0, 0	0, 0	$\begin{array}{c} {\rm prob.} = 1/3 \\ -1.1, -1.1 \end{array}$

- The payoff for each player (playing according to this distribution): $\frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 1 \frac{1}{3} \cdot 1.1 = 0.3$.
- A player playing fixed A or B while the opponent randomized according to this distribution: $\frac{1}{3} \cdot 1 \frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 0 = 0$.
- A player playing fixed *C* while the opponent randomized according to this distribution: $\frac{1}{3} \cdot 0 + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot (-1.1) < 0$.

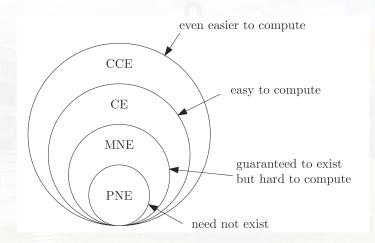
	A	В	С
Α	prob. = 1/3 1, 1	-1, -1	0, 0
В	-1, -1	prob. = 1/3 1, 1	0, 0
C	0, 0	0, 0	$\begin{array}{c} {\rm prob.} = 1/3 \\ -1.1, -1.1 \end{array}$

- A player playing fixed C and the strategy profile follows this distribution:
 ⇒ deviation is possible.
 - Not a CE

	A	В	С
A	prob. = 1/3 1, 1	-1, -1	0, 0
В	-1, -1	prob. = 1/3 1, 1	0, 0
С	0, 0	0, 0	$\begin{array}{c} {\rm prob.} = 1/3 \\ -1.1, -1.1 \end{array}$

- A player playing fixed C and the strategy profile follows this distribution:
 ⇒ deviation is possible.
 - Not a CE.

A hierarchy of equilibrium concepts



Outline

- 1 Cost Minimization and Payoff Maximization
- 2 Pure Nash Equilibria (PNE)
- 3 Mixed Nash Equilibria (MNE)
- 4 Correlated Equilibria (CE)
- 5 Coarse Correlated Equilibria (CCE)
- 6 Appendix: Network Creation Games

Appendix: Network Creation Games

Network creation games

First introduced in PODC 2003.

Alex Fabrikant

Ankur Luthra

Elitza Maneva

Christos H. Papadimitriou

Scott Shenker

Network creation games [Fabrikant et al. @PODC 2003]

- *n* players: 1, 2, ..., n.
- s_i : specified by a subset of $\{1, 2, ..., n\} \setminus \{i\} = [n] \setminus \{i\}$ as the strategy of player i.
 - The set of neighbors where player i forms a link (edge).
- G_s : the undirected graph with vertex set [n] and edges corresponding to $s = \langle s_1, s_2, \dots, s_n \rangle$.
- G_s has an edge $\{i,j\}$ if either $i \in s_j$ or $j \in s_i$.
- $d_s(i,j)$: the distance between i and j in G_s .
- G_s: an equilibrium graph (when the context is clear).

Network creation games (Two models)

The sum model

$$c_i(s) = \alpha |s_i| + \sum_{i=1}^n d_s(i,j).$$

The max model

$$c_i(s) = \alpha |s_i| + \max_{i=1}^n d_s(i,j).$$

• The total cost is $c(s) = \sum_{i=1}^{n} c_i(s)$.

Network creation games (Two models)

The sum model

$$c_i(s) = \alpha |s_i| + \sum_{j=1}^n d_s(i,j).$$

The max model

$$c_i(s) = \alpha |s_i| + \max_{i=1}^n d_s(i,j).$$

• The total cost is $c(s) = \sum_{i=1}^{n} c_i(s)$.

Network creation games (contd.)

Theorem [Fabrikant et al.@PODC 2003]

The PoA for the sum network creation game is $O(\sqrt{\alpha})$ for all α .

Preliminaries

Let's have a look at Fabrikant's results for $\alpha < 2$.

- α < 1:
 - the social optimum: the complete graph.
 - \star It's also a NE (... PoA = 1).

- 1 < α < 2:
 - The social optimum: still the complete graph (i.e., K_n).
 - Any NE must be connected and has diameter ≤ 2 .

- $1 < \alpha < 2$:
 - The social optimum: still the complete graph (i.e., K_n).
 - Any NE must be connected and has diameter ≤ 2 .
 - \star K_n is NOT a NE.
 - * The worst NE: a star.

- $1 < \alpha < 2$:
 - The social optimum: still the complete graph (i.e., K_n).
 - Any NE must be connected and has diameter ≤ 2 .
 - \star K_n is NOT a NE.
 - * The worst NE: a star.

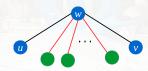
•
$$\alpha \cdot |E| + |E| \cdot 2 \cdot 1 + {\binom{n}{2} - |E| \choose 2} \cdot 2 \cdot 2 = (\alpha - 2) \cdot |E| + 2n(n - 1).$$

- $1 \le \alpha < 2$:
 - The social optimum: still the complete graph (i.e., K_n).
 - Any NE must be connected and has diameter ≤ 2 .
 - \star K_n is NOT a NE.
 - * The worst NE: a star.

•
$$\alpha \cdot |E| + |E| \cdot 2 \cdot 1 + (\binom{n}{2} - |E|) \cdot 2 \cdot 2 = (\alpha - 2) \cdot |E| + 2n(n-1).$$

- 1 < α < 2:
 - The social optimum: still the complete graph (i.e., K_n).
 - Any NE must be connected and has diameter ≤ 2 .
 - $\star K_n$ is NOT a NE.
 - * The worst NE: a star.

•
$$\alpha \cdot |E| + |E| \cdot 2 \cdot 1 + {n \choose 2} - |E| \cdot 2 \cdot 2 = (\alpha - 2) \cdot |E| + 2n(n-1)$$
.



- $1 \le \alpha < 2$:
 - The social optimum: still the complete graph (i.e., K_n).
 - ullet Any NE must be connected and has diameter ≤ 2 .
 - $\star K_n$ is NOT a NE.
 - * The worst NE: a star.

•
$$\alpha \cdot |E| + |E| \cdot 2 \cdot 1 + {n \choose 2} - |E| \cdot 2 \cdot 2 = (\alpha - 2) \cdot |E| + 2n(n-1)$$
.

PoA =
$$\frac{C(\operatorname{star})}{C(K_n)} = \frac{(\alpha - 2) \cdot (n - 1) + 2n(n - 1)}{\alpha \binom{n}{2} + 2 \cdot \binom{n}{2} \cdot 1}$$
=
$$\frac{4}{2 + \alpha} - \frac{4 - 2\alpha}{n(2 + \alpha)}$$
<
$$\frac{4}{3}$$
.

Lemma 1 [Albers et al. @SODA 2006]

For any Nash equilibrium s and any vertex v_0 in G_s ,

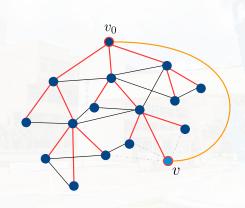
$$c(s) \leq 2\alpha(n-1) + n \cdot \mathsf{Dist}(v_0) + (n-1)^2.$$

• Dist $(v_0) = \sum_{v \in V(G_s)} d_s(v_0, v)$.

Sketch of proving Lemma 1

• A graph G_s corresponding to a NE s.

Sketch of proving Lemma 1



- $T(v_0)$: the shortest-path tree rooted at v_0 .
- η_{v} : the number of tree edges built by v in $T(v_0)$.

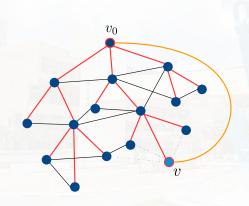
$$c_{\nu}(s) \leq \alpha(\eta_{\nu} + 1) + \mathsf{Dist}(\nu_{0}) + n - 1.$$

$$c_{\nu_{0}}(s) = \alpha \cdot \eta_{\nu_{0}} + \mathsf{Dist}(\nu_{0}).$$

$$c(s) = \sum_{v \in V(G_s) \setminus \{v_0\}} c_v(s) + c_{v_0}(s)$$

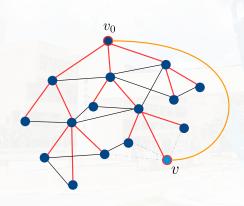
$$< 2\alpha(n-1) + n \cdot \text{Dist}(v_0) + (n-1)$$

Sketch of proving Lemma 1



- $T(v_0)$: the shortest-path tree rooted at v_0 .
- η_{ν} : the number of tree edges built by ν in $T(\nu_0)$.
- $\star c_{\nu}(s) \leq \alpha(\eta_{\nu} + 1) + \mathsf{Dist}(\nu_{0}) + n 1.$ $c_{\nu_{0}}(s) = \alpha \cdot \eta_{\nu_{0}} + \mathsf{Dist}(\nu_{0}).$
- $c(s) = \sum_{v \in V(G_s) \setminus \{v_0\}} c_v(s) + c_{v_0}(s)$ $\leq 2\alpha(n-1) + n \cdot \text{Dist}(v_0) + (n-1)$

Sketch of proving Lemma 1



- $T(v_0)$: the shortest-path tree rooted at v_0 .
- η_ν: the number of tree edges built by ν in T(ν₀).
- $\star c_{\nu}(s) \leq \alpha(\eta_{\nu} + 1) + \mathsf{Dist}(\nu_0) + n 1.$ $c_{\nu_0}(s) = \alpha \cdot \eta_{\nu_0} + \mathsf{Dist}(\nu_0).$
- $c(s) = \sum_{v \in V(G_s) \setminus \{v_0\}} c_v(s) + c_{v_0}(s)$ $\leq 2\alpha(n-1) + n \cdot \text{Dist}(v_0) + (n-1)^2$.

Lemma 2

If the shortest-path tree in an equilibrium graph G_s rooted at u has depth d, then $PoA \leq d+1$.

• For some $u \in V$,

$$\begin{array}{lll} \mathsf{PoA} & \leq & \frac{2\alpha(n-1) + n \cdot \mathsf{Dist}(u) + (n-1)^2}{\alpha(n-1) + n(n-1)} \\ & \leq & \frac{2\alpha(n-1) + n \cdot (n-1) d + (n-1)^2}{\alpha(n-1) + n(n-1)} \\ & < & \frac{2\alpha(n-1) + n(n-1)(d+1)}{\alpha(n-1) + n(n-1)} \\ & \leq & \max \left\{ \frac{2\alpha(n-1)}{\alpha(n-1)}, \frac{n(n-1)(d+1))}{n(n-1)} \right\} \\ & = & \max\{2, d+1\}. \end{array}$$

Lemma 2

If the shortest-path tree in an equilibrium graph G_s rooted at u has depth d, then $PoA \leq d+1$.

• For some $u \in V$,

$$\begin{array}{lll} \mathsf{PoA} & \leq & \frac{2\alpha(n-1) + n \cdot \mathsf{Dist}(u) + (n-1)^2}{\alpha(n-1) + n(n-1)} \\ & \leq & \frac{2\alpha(n-1) + n \cdot (n-1)d + (n-1)^2}{\alpha(n-1) + n(n-1)} \\ & < & \frac{2\alpha(n-1) + n(n-1)(d+1)}{\alpha(n-1) + n(n-1)} \\ & \leq & \max \left\{ \frac{2\alpha(n-1)}{\alpha(n-1)}, \frac{n(n-1)(d+1))}{n(n-1)} \right\} \\ & = & \max\{2, d+1\}. \end{array}$$

Lemma 2

If the shortest-path tree in an equilibrium graph G_s rooted at u has depth d, then $PoA \leq d+1$.

• For some $u \in V$,

$$\begin{array}{lll} \mathsf{PoA} & \leq & \frac{2\alpha(n-1) + n \cdot \mathsf{Dist}(u) + (n-1)^2}{\alpha(n-1) + n(n-1)} \\ & \leq & \frac{2\alpha(n-1) + n \cdot (n-1)d + (n-1)^2}{\alpha(n-1) + n(n-1)} \\ & < & \frac{2\alpha(n-1) + n(n-1)(d+1)}{\alpha(n-1) + n(n-1)} \\ & \leq & \max\left\{\frac{2\alpha(n-1)}{\alpha(n-1)}, \frac{n(n-1)(d+1))}{n(n-1)}\right\} \\ & = & \max\{2, d+1\}. \end{array}$$

