Multi-Parameter Mechanism Design

Joseph Chuang-Chieh Lin
Dept. CSIE, Tamkang University, Taiwan

- In previous lectures, we only consider single-parameter mechanism design problems.
- The only private parameter of an agent is her valuation.
- In this lecture, we:
- Introduce multi-parameter environments, where each agent has multiple private parameters.
- Introduce the Vickrey-Clarke-Groves (VCG) mechanisms.
- It shows that DSIC welfare maximization is possible in principle in every multi-parameter environments.

Outline

General Mechanism Design Environments

The VCG Mechanism

Remarks

Practical Implementation of Combinatorial Auctions
Indirect Mechanisms

Outline

General Mechanism Design Environments

General Multi-Parameter Design Environment

- n strategic participants/agents.
- a finite set Ω of outcomes.
- each agent i has a private nonnegative valuation $v_{i}(\omega)$ for each outcome $\omega \in \Omega$.

Single-Item Auction Revisited

Consider the single-item auction.

- In a the standard single parameter model,
- $|\Omega|=n+1$.
- The $n+1$ elements corresponds the winner of the item (if any).

Single-Item Auction Revisited

Consider the single-item auction.

- In a the standard single parameter model,
- $|\Omega|=n+1$.
- The $n+1$ elements corresponds the winner of the item (if any).
- The valuation of a bidder is 0 in all of the n outcomes (in which she doesn't win), leaving only one unknown parameter per bidder.
- In the general multi-parameter framework, a bidder can have a different valuation for each possible outcome (i.e., winner; competitor).

Combinatorial Auctions

- Multiple indivisible items are for sale.
- We have n bidders and a set M of m items.
- Bidders can have preferences between different subsets (bundles) of items.
- The outcome space Ω corresponds to n-vectors $\left(S_{1}, \ldots, S_{n}\right)$, where $S_{i} \subseteq M$ is the bundle allocated to bidder i (no item is allocated twice).
\star How many different outcomes in Ω ?

Combinatorial Auctions

- Multiple indivisible items are for sale.
- We have n bidders and a set M of m items.
- Bidders can have preferences between different subsets (bundles) of items.
- The outcome space Ω corresponds to n-vectors $\left(S_{1}, \ldots, S_{n}\right)$, where $S_{i} \subseteq M$ is the bundle allocated to bidder i (no item is allocated twice).
\star How many different outcomes in Ω ?
- $(n+1)^{m}$.

Combinatorial Auctions

- Multiple indivisible items are for sale.
- We have n bidders and a set M of m items.
- Bidders can have preferences between different subsets (bundles) of items.
- The outcome space Ω corresponds to n-vectors $\left(S_{1}, \ldots, S_{n}\right)$, where $S_{i} \subseteq M$ is the bundle allocated to bidder i (no item is allocated twice).
\star How many different outcomes in Ω ?
- $(n+1)^{m}$.
- Each bidder has a private valuation $v_{i}(S)$ for each $S \subseteq M$.
\star So, how many private parameters does each bidder have?

Combinatorial Auctions

- Multiple indivisible items are for sale.
- We have n bidders and a set M of m items.
- Bidders can have preferences between different subsets (bundles) of items.
- The outcome space Ω corresponds to n-vectors $\left(S_{1}, \ldots, S_{n}\right)$, where $S_{i} \subseteq M$ is the bundle allocated to bidder i (no item is allocated twice).
\star How many different outcomes in Ω ?
- $(n+1)^{m}$.
- Each bidder has a private valuation $v_{i}(S)$ for each $S \subseteq M$.
* So, how many private parameters does each bidder have?
- 2^{m}.

Outline

General Mechanism Design Environments

The VCG Mechanism

Practical Implementation of Gombinatorial Auctions Indirect Mechanisms

The General Theorem

```
Theorem 7.3 (Multi-Parameter Welfare Maximization)
In every general mechanism design environment, there is a DSIC welfare-maximizing mechanism.
```

- Note that the computational efficiency is not asserted here.

The General Theorem

> Theorem 7.3 (Multi-Parameter Welfare Maximization) In every general mechanism design environment, there is a DSIC welfare-maximizing mechanism.

- Note that the computational efficiency is not asserted here.
- Let's discuss the main ideas behind the theorem before proving it.

Consider the Two-Step Approach as Usual

- First, assume that the agents truthfully report their private information (i.e., $b=\boldsymbol{v}$).
- Then, figure out which outcome (i.e., allocation) to pick.

Consider the Two-Step Approach as Usual

- First, assume that the agents truthfully report their private information (i.e., $\boldsymbol{b}=\boldsymbol{v}$).
- Then, figure out which outcome (i.e., allocation) to pick.
- Pick a welfare-maximizing outcome using bids as proxies for the unknown valuations.
- We define the allocation rule

$$
\omega^{*}:=\boldsymbol{x}(\boldsymbol{b})=\underset{\omega \in \Omega}{\arg \max } \sum_{i=1}^{n} b_{i}(\omega) .
$$

The Second Step

- Define the payment rule to incentivize the agents!
- Hopefully we will have a DSIC mechanism.

The Second Step

- Define the payment rule to incentivize the agents!
- Hopefully we will have a DSIC mechanism.
- However, unlike the single-parameter environments, here:
- The report is multi-dimensional.
- Myerson's lemma seems not to hold beyond single-parameter environments.
- It's unclear how to define "monotonicity", "critical bid", etc.

A Key Idea to the Payment Rule

- Charge the agent the "externality" caused by agent i.
- The welfare loss inflicted on the other $n-1$ agents by agent i 's presence.
- This remains well defined in general mechanism design environments!
- The corresponding payment rule:

$$
p_{i}(\boldsymbol{b})=\left(\max _{\omega \in \Omega} \sum_{j \neq i} b_{j}(\omega)\right)-\sum_{j \neq i} b_{j}\left(\omega^{*}\right),
$$

A Key Idea to the Payment Rule

- Charge the agent the "externality" caused by agent i.
- The welfare loss inflicted on the other $n-1$ agents by agent i 's presence.
- This remains well defined in general mechanism design environments!
- The corresponding payment rule:

$$
p_{i}(\boldsymbol{b})=\left(\max _{\omega \in \Omega} \sum_{j \neq i} b_{j}(\omega)\right)-\sum_{j \neq i} b_{j}\left(\omega^{*}\right),
$$

- You may check that the payment $p_{i}(\boldsymbol{b}) \geq 0$.

The VCG Mechanism

Definition: VCG Mechanism

A mechanism $(\boldsymbol{x}, \boldsymbol{p})$ with allocation and payment rule as

$$
\omega^{*}:=\boldsymbol{x}(\boldsymbol{b})=\underset{\omega \in \Omega}{\arg \max } \sum_{i=1}^{n} b_{i}(\omega)
$$

and

$$
p_{i}(\boldsymbol{b})=\left(\max _{\omega \in \Omega} \sum_{j \neq i} b_{j}(\omega)\right)-\sum_{j \neq i} b_{j}\left(\omega^{*}\right),
$$

respectively, is a Vickrey-Clarke-Groves or mechanism.

Another Form of the Payment

$$
p_{i}(\boldsymbol{b})=\underbrace{b_{i}\left(\omega^{*}\right)}_{\text {bid }}-\underbrace{\left[\sum_{j=1}^{n} b_{j}\left(\omega^{*}\right)-\max _{\omega \in \Omega} \sum_{j \neq i} b_{j}(\omega)\right]}_{\text {rebate }}
$$

- Imagine the "rebate" as the increase in welfare attributable to agent i 's presence.

Another Form of the Payment

$$
p_{i}(\boldsymbol{b})=\underbrace{b_{i}\left(\omega^{*}\right)}_{\text {bid }}-\underbrace{\left[\sum_{j=1}^{n} b_{j}\left(\omega^{*}\right)-\max _{\omega \in \Omega} \sum_{j \neq i} b_{j}(\omega)\right]}_{\text {rebate }}
$$

- Imagine the "rebate" as the increase in welfare attributable to agent i 's presence.
- For example, in the second-price auction, say we have two agents with bids $b_{1}>b_{2}$.

Another Form of the Payment

$$
p_{i}(\boldsymbol{b})=\underbrace{b_{i}\left(\omega^{*}\right)}_{\text {bid }}-\underbrace{\left[\sum_{j=1}^{n} b_{j}\left(\omega^{*}\right)-\max _{\omega \in \Omega} \sum_{j \neq i} b_{j}(\omega)\right]}_{\text {rebate }}
$$

- Imagine the "rebate" as the increase in welfare attributable to agent i 's presence.
- For example, in the second-price auction, say we have two agents with bids $b_{1}>b_{2}$.
- The highest bidder pays $b_{1}-\left(b_{1}-b_{2}\right)=b_{2}$!

Another Form of the Payment

$$
p_{i}(\boldsymbol{b})=\underbrace{b_{i}\left(\omega^{*}\right)}_{\text {bid }}-\underbrace{\left[\sum_{j=1}^{n} b_{j}\left(\omega^{*}\right)-\max _{\omega \in \Omega} \sum_{j \neq i} b_{j}(\omega)\right]}_{\text {rebate }} \leq b_{i}\left(\omega^{*}\right) .
$$

- Imagine the "rebate" as the increase in welfare attributable to agent i 's presence.
- For example, in the second-price auction, say we have two agents with bids $b_{1}>b_{2}$.
- The highest bidder pays $b_{1}-\left(b_{1}-b_{2}\right)=b_{2}$!
- Truthful reporting always guarantees nonnegative utility!

Proof of Theorem 7.3 (1/2)

- Fix an arbitrary general mechanism design environment.
- Let ($\boldsymbol{x}, \boldsymbol{p}$) denote the corresponding CVG mechanism.
- The mechanism maximizes the social welfare whenever the reports are truthful or not (by definition).
- Next, we have to verify the DSIC condition.
- We need to show that for every agent i and every set \boldsymbol{b}_{-i}, agent i maximizes her utility $v_{i}(\boldsymbol{x}(\boldsymbol{b}))-p_{i}(\boldsymbol{b})$ by setting $\boldsymbol{b}_{i}=\boldsymbol{v}_{i}$.

Proof of Theorem 7.3 (2/2)

- Fix i and \boldsymbol{b}_{-i}. When the chosen outcome $\boldsymbol{x}(\boldsymbol{b})$ is ω^{*}, we have

$$
v_{i}\left(\omega^{*}\right)-p_{i}(\boldsymbol{b})=\underbrace{\left[v_{i}\left(\omega^{*}\right)+\sum_{j \neq i} b_{j}\left(\omega^{*}\right)\right]}_{(\mathbf{A})}-\underbrace{\left[\max _{\omega \in \Omega} \sum_{j \neq i} b_{j}(\omega)\right]}_{\text {(B) }} .
$$

Proof of Theorem 7.3 (2/2)

- Fix i and \boldsymbol{b}_{-i}. When the chosen outcome $\boldsymbol{x}(\boldsymbol{b})$ is ω^{*}, we have

$$
v_{i}\left(\omega^{*}\right)-p_{i}(\boldsymbol{b})=\underbrace{\left[v_{i}\left(\omega^{*}\right)+\sum_{j \neq i} b_{j}\left(\omega^{*}\right)\right]}_{\text {(A) }}-\underbrace{\left[\max _{\omega \in \Omega} \sum_{j \neq i} b_{j}(\omega)\right]}_{\text {(B) }} .
$$

- (B) can be viewed as a constant. So we focus on maximizing (A).

Proof of Theorem 7.3 (2/2)

- Fix i and \boldsymbol{b}_{-i}. When the chosen outcome $\boldsymbol{x}(\boldsymbol{b})$ is ω^{*}, we have

$$
v_{i}\left(\omega^{*}\right)-p_{i}(\boldsymbol{b})=\underbrace{\left[v_{i}\left(\omega^{*}\right)+\sum_{j \neq i} b_{j}\left(\omega^{*}\right)\right]}_{(\mathbf{A})}-\underbrace{\left[\max _{\omega \in \Omega} \sum_{j \neq i} b_{j}(\omega)\right]}_{(\mathbf{B})} .
$$

- (B) can be viewed as a constant. So we focus on maximizing (A).
- For agent i, assume that ω^{*} is chosen, setting $b_{i}=v_{i}$ makes (A) maximized.
- $v_{i}\left(\omega^{*}\right)+\sum_{j \neq i} b_{j}\left(\omega^{*}\right)=\sum_{j} b_{j}\left(\omega^{*}\right)$.
- Recall that $\omega^{*}=\arg \max _{\omega \in \Omega} \sum_{i=1}^{n} b_{i}(\omega)$.

Outline

General Mechanism Design Environments

The VCG Mechanism

Remarks

Practical Implementation of Gombinatorial Auctions Indirect Mechanisms

Practical Considerations (1/3)

- Preference elicitation is a challenge.
- Consider getting reports b_{1}, \ldots, b_{n} from n agents in a combinatorial auction with m items.

Practical Considerations (1/3)

- Preference elicitation is a challenge.
- Consider getting reports b_{1}, \ldots, b_{n} from n agents in a combinatorial auction with m items.
- Each bidder has 2^{m} private parameters!
- It's hard for her to figure out or write down so many numbers.
- No seller would want to read them.

Practical Considerations (2/3)

- As in single-parameter environments, welfare maximization could be a computationally intractable.
- Recall the knapsack auction.
- Sometimes even approximate welfare maximization is still computationally intractable.

Practical Considerations (3/3)

- VCG mechanisms can have bad revenue.

Exercise 4 (5\%)

1. Consider a combinatorial auction with two bidders and two items A and B. The first bidder only wants both items, so $v_{1}(\{A, B\})=1$ and is 0 otherwise. The second bidder only wants item A, so $v_{2}(\{A, B\})=v_{2}(\{A\})=1$ and is 0 otherwise. Please show that the revenue of the VCG mechanism is $\mathbf{1}$ in this example.
2. Now suppose that we add a third bidder who only wants item B, so $v_{3}(\{A, B\})=v_{3}(\{B\})=1$. Please show that the maximum welfare is $\mathbf{2}$ but the VCG revenue is 0 in this case.

Recall the issues

- Combinatorial auction: n bidders, m items, bidder i 's valuation $v_{i}(S)$ for each bundle S of items.
- The number of parameters that each bidder reports in the VCG mechanism (or any other direct-revelation mechanism) grows exponentially with m.

Indirect Mechanism

- Learn information about bidders' preferences only on a need-to-know basis.
- The canonical indirect auction: ascending English auction.
* An auctioneer asks for takers at successively higher prices.
* The auction ends when no one accepts the currently proposed price.
* The winner (if any): the bidder who accepted the previously proposed price
\checkmark This previous price is the final sale price.

Indirect Mechanism

- Learn information about bidders' preferences only on a need-to-know basis.
- The canonical indirect auction: ascending English auction.
* An auctioneer asks for takers at successively higher prices.
* The auction ends when no one accepts the currently proposed price.
* The winner (if any): the bidder who accepted the previously proposed price
\checkmark This previous price is the final sale price.
- Empirically, bidders are more likely to play their dominant strategies in this kind of auction than a sealed-bid second-price auction.
- Bidders: not likely to overbid;
- Seller: only learns a lower bound on the highest bid.

How about selling items separately?

- So what's a natural indirect auction format for combinatorial auctions?
- Eliciting valuations for bundles from each bidder is avoided.

How about selling items separately?

- So what's a natural indirect auction format for combinatorial auctions?
- Eliciting valuations for bundles from each bidder is avoided.
- The simplest way: sell the items separately.

How about selling items separately?

- So what's a natural indirect auction format for combinatorial auctions?
- Eliciting valuations for bundles from each bidder is avoided.
- The simplest way: sell the items separately.
- What's the issue or problem?

Substitutes vs. Complements

For two items A and B,

- substitute condition: $v(A B) \leq v(A)+v(B)$.
- Spectrum auction: two licenses (the same area \& equal-sized frequency ranges).
- iPhone $13+$ iPhone 14 announced together?
* Welfare maximization is computationally tractable.
- complement condition: $v(A B)>v(A)+v(B)$.
- Spectrum auction: a collection of licenses that are adjacent (geographically or frequency ranges).
- Two items with additional enhancement when they are both provided. [\star] Welfare maximization is computationally intractable.
- In real world: mixture of substitutes and complements.

Typical mistake \#1 of running separate single-item auctions

Hold the single-item auctions sequentially, one at a time.

- The scenario: A sequence of single-item auctions for two identical items.
- Items are sold via back-to-back second-price auctions.
- Let's say you are a bidder with a VERY HIGH valuation.
- Suppose that every other bidder bid truthfully.

Typical mistake \#1 of running separate single-item auctions

Hold the single-item auctions sequentially, one at a time.

- The scenario: A sequence of single-item auctions for two identical items.
- Items are sold via back-to-back second-price auctions.
- Let's say you are a bidder with a VERY HIGH valuation.
- Suppose that every other bidder bid truthfully.
* If you participate in the first auction, you will win and pay the second-highest valuation.

Typical mistake \#1 of running separate single-item auctions

Hold the single-item auctions sequentially, one at a time.

- The scenario: A sequence of single-item auctions for two identical items.
- Items are sold via back-to-back second-price auctions.
- Let's say you are a bidder with a VERY HIGH valuation.
- Suppose that every other bidder bid truthfully.
* If you participate in the first auction, you will win and pay the second-highest valuation.
* If you skip it, the bidder with the second-highest valuation wins the first auction and disappear.
- Then you would win the second auction at a price equal to the third-highest valuation.

A Story from the textbook

- In March 2000, Switzerland auctioned off three blocks of spectrum via a sequence of second-price auctions.
- The first two auctions were for identical items, 28 MHz blocks, and sold for 121 million and 134 million Swiss francs, respectively.
- This is already more price variation than one would like for identical items.
- But in the third auction, where a larger 56 MHz block was being sold, the selling price was only 55 million francs!
- Some of the bids must have been far from optimal, and both the welfare and revenue achieved by this auction are suspect.

Typical mistake \#2 of running separate single-item auctions

Use sealed-bid single-item auctions (simultaneously).

- Again, it's difficult for bidders to figure out how to bid, especially for multiple items.
- The challenge: the outcomes is prone to be of low welfare \& revenue.

Typical mistake \#2 of running separate single-item auctions

Use sealed-bid single-item auctions (simultaneously).

- Again, it's difficult for bidders to figure out how to bid, especially for multiple items.
- The challenge: the outcomes is prone to be of low welfare \& revenue.
- Consider that there are 3 bidders and 2 identical items, and each bidder wants only one.
- With simultaneous second-price single-item auctions,

Typical mistake \#2 of running separate single-item auctions

Use sealed-bid single-item auctions (simultaneously).

- Again, it's difficult for bidders to figure out how to bid, especially for multiple items.
- The challenge: the outcomes is prone to be of low welfare \& revenue.
- Consider that there are 3 bidders and 2 identical items, and each bidder wants only one.
- With simultaneous second-price single-item auctions,
- if each bidder targets only one item, one of the licenses is likely to have only one bidder and will be given away for free or sold at the reserve price.

A Story from the textbook

- In 1990, the New Zealand government auctioned off essentially identical licenses for television broadcasting using simultaneous (sealed-bid) second-price auctions.
- The revenue in the 1990 New Zealand auction was only $\$ 36$ million, a paltry fraction of the projected $\$ 250$ million.
- On one license, the high bid was $\$ 100,000$ while the second-highest bid (and selling price) was \$6!
- On another, the high bid was $\$ 7$ million and the second-highest was $\$ 5,000$.

The prevailing simultaneous ascending auctions (SAAs)

- Conceptually, SAAs are like a bunch of single-item English auctions run in parallel in the same room and one auctioneer per item.

The prevailing simultaneous ascending auctions (SAAs)

- Conceptually, SAAs are like a bunch of single-item English auctions run in parallel in the same room and one auctioneer per item.
- All bidders have to participate in the auction from the beginning and contribute to the discovery of appropriate prices.

The prevailing simultaneous ascending auctions (SAAs)

- Conceptually, SAAs are like a bunch of single-item English auctions run in parallel in the same room and one auctioneer per item.
- All bidders have to participate in the auction from the beginning and contribute to the discovery of appropriate prices.
- The gist: require that the number of items on which a bidder bids only decreases over time as prices rise.

The prevailing simultaneous ascending auctions (SAAs)

- Conceptually, SAAs are like a bunch of single-item English auctions run in parallel in the same room and one auctioneer per item.
- All bidders have to participate in the auction from the beginning and contribute to the discovery of appropriate prices.
- The gist: require that the number of items on which a bidder bids only decreases over time as prices rise.
- The primary reason that SAAs work better is price discovery.
- A bidder can abandon the items in the mid-course as she acquires better information about the likely selling prices of the items.

The prevailing simultaneous ascending auctions (SAAs)

- Conceptually, SAAs are like a bunch of single-item English auctions run in parallel in the same room and one auctioneer per item.
- All bidders have to participate in the auction from the beginning and contribute to the discovery of appropriate prices.
- The gist: require that the number of items on which a bidder bids only decreases over time as prices rise.
- The primary reason that SAAs work better is price discovery.
- A bidder can abandon the items in the mid-course as she acquires better information about the likely selling prices of the items.
- Again, bidder only need to determine their valuations on a need-to-know basis.
- Though such kind a mechanisms still has its vulnerabilities (skipped here for further readings).

