Multi-Parameter Mechanism Design

Joseph Chuang-Chieh Lin

Dept. CSIE, Tamkang University, Taiwan

- In previous lectures, we only consider single-parameter mechanism design problems.
 - The only private parameter of an agent is her valuation.
- In this lecture, we:
 - Introduce multi-parameter environments, where each agent has multiple private parameters.
 - Introduce the Vickrey-Clarke-Groves (VCG) mechanisms.
 - It shows that DSIC welfare maximization is possible in principle in every multi-parameter environments.

イロン 不良 とうほう 不良 とうせい

General Mechanism Design Environments

The VCG Mechanism

Remarks

Practical Implementation of Combinatorial Auctions Indirect Mechanisms

Outline

General Mechanism Design Environments

The VCG Mechanism

Remarks

Practical Implementation of Combinatorial Auctions Indirect Mechanisms

= nar

ヘロン 人口ン ヘビン ヘビン

General Multi-Parameter Design Environment

- n strategic participants/agents.
- > a finite set Ω of outcomes.
- each agent *i* has a private nonnegative valuation $v_i(\omega)$ for each outcome $\omega \in \Omega$.

イロン 人間 とくほう イヨン

Single-Item Auction Revisited

Consider the single-item auction.

- In a the standard single parameter model,
 - ► $|\Omega| = n + 1.$
 - The n + 1 elements corresponds the winner of the item (if any).

э.

Single-Item Auction Revisited

Consider the single-item auction.

- In a the standard single parameter model,
 - $|\Omega| = n + 1.$
 - The n + 1 elements corresponds the winner of the item (if any).
 - The valuation of a bidder is 0 in all of the *n* outcomes (in which she doesn't win), leaving only one unknown parameter per bidder.

In the general multi-parameter framework, a bidder can have a different valuation for each possible outcome (i.e., winner; competitor).

- Multiple indivisible items are for sale.
- We have *n* bidders and a set *M* of *m* items.
- Bidders can have preferences between different subsets (bundles) of items.
- ► The outcome space Ω corresponds to *n*-vectors (S_1, \ldots, S_n) , where $S_i \subseteq M$ is the bundle allocated to bidder *i* (no item is allocated twice).
- \star How many different outcomes in $\Omega?$

ヘロン 人間 とくほ とくほ とう

- Multiple indivisible items are for sale.
- We have *n* bidders and a set *M* of *m* items.
- Bidders can have preferences between different subsets (bundles) of items.
- ► The outcome space Ω corresponds to *n*-vectors (S_1, \ldots, S_n) , where $S_i \subseteq M$ is the bundle allocated to bidder *i* (no item is allocated twice).
- \star How many different outcomes in $\Omega?$
 - $(n+1)^m$.

3

イロン 人間 とくほ とくほ とう

- Multiple indivisible items are for sale.
- We have *n* bidders and a set *M* of *m* items.
- Bidders can have preferences between different subsets (bundles) of items.
- ► The outcome space Ω corresponds to *n*-vectors (S_1, \ldots, S_n) , where $S_i \subseteq M$ is the bundle allocated to bidder *i* (no item is allocated twice).
- \star How many different outcomes in $\Omega?$
 - $(n+1)^m$.
- Each bidder has a private valuation $v_i(S)$ for each $S \subseteq M$.
- * So, how many private parameters does each bidder have?

- Multiple indivisible items are for sale.
- We have *n* bidders and a set *M* of *m* items.
- Bidders can have preferences between different subsets (bundles) of items.
- ► The outcome space Ω corresponds to *n*-vectors (S_1, \ldots, S_n) , where $S_i \subseteq M$ is the bundle allocated to bidder *i* (no item is allocated twice).
- \star How many different outcomes in $\Omega?$
 - $(n+1)^m$.
- Each bidder has a private valuation $v_i(S)$ for each $S \subseteq M$.
- * So, how many private parameters does each bidder have?

Outline

General Mechanism Design Environments

The VCG Mechanism

Remarks

Practical Implementation of Combinatorial Auctions Indirect Mechanisms

The General Theorem

Theorem 7.3 (Multi-Parameter Welfare Maximization)

In every general mechanism design environment, there is a DSIC welfare-maximizing mechanism.

Note that the computational efficiency is not asserted here.

ヘロマス ロマス 日マ 人口マ

The General Theorem

Theorem 7.3 (Multi-Parameter Welfare Maximization)

In every general mechanism design environment, there is a DSIC welfare-maximizing mechanism.

Note that the computational efficiency is not asserted here.

Let's discuss the main ideas behind the theorem before proving it.

・ロン ・ロン ・ロン ・ロン ・ロ

Consider the Two-Step Approach as Usual

- First, assume that the agents truthfully report their private information (i.e., $\boldsymbol{b} = \boldsymbol{v}$).
- ▶ Then, figure out which outcome (i.e., allocation) to pick.

э

イロン 人間 とくほ とくほど

Consider the Two-Step Approach as Usual

- First, assume that the agents truthfully report their private information (i.e., $\boldsymbol{b} = \boldsymbol{v}$).
- ▶ Then, figure out which outcome (i.e., allocation) to pick.
- Pick a welfare-maximizing outcome using bids as proxies for the unknown valuations.
- We define the allocation rule

$$\omega^* := oldsymbol{x}(oldsymbol{b}) = rgmax_{\omega\in\Omega} \sum_{i=1}^n b_i(\omega).$$

The Second Step

Define the payment rule to incentivize the agents!
 Hopefully we will have a DSIC mechanism.

э

イロン 人間 とくほ とくほん

The Second Step

- Define the payment rule to incentivize the agents!
 - Hopefully we will have a DSIC mechanism.
- However, unlike the single-parameter environments, here:
 - The report is multi-dimensional.
 - Myerson's lemma seems not to hold beyond single-parameter environments.
 - It's unclear how to define "monotonicity", "critical bid", etc.

ヘロマ ヘロマ ヘビマ ヘロマー

A Key Idea to the Payment Rule

Charge the agent the "externality" caused by agent i.

The welfare loss inflicted on the other n-1 agents by agent *i*'s presence.

- This remains well defined in general mechanism design environments!
- The corresponding payment rule:

$$p_i(oldsymbol{b}) = \left(\max_{\omega\in\Omega}\sum_{j
eq i}b_j(\omega)
ight) - \sum_{j
eq i}b_j(\omega^*),$$

Э

・ロット (四) (日) (日)

A Key Idea to the Payment Rule

Charge the agent the "externality" caused by agent i.

- The welfare loss inflicted on the other n-1 agents by agent *i*'s presence.
- This remains well defined in general mechanism design environments!
- The corresponding payment rule:

$$p_i(oldsymbol{b}) = \left(\max_{\omega\in\Omega}\sum_{j
eq i}b_j(\omega)
ight) - \sum_{j
eq i}b_j(\omega^*),$$

• You may check that the payment $p_i(\mathbf{b}) \ge 0$.

3

The VCG Mechanism

Definition: VCG Mechanism

A mechanism (\mathbf{x}, \mathbf{p}) with allocation and payment rule as

$$\omega^* := oldsymbol{x}(oldsymbol{b}) = rgmax_{\omega\in\Omega} \sum_{i=1}^n b_i(\omega).$$

and

$$p_i(oldsymbol{b}) = \left(\max_{\omega\in\Omega}\sum_{j
eq i}b_j(\omega)
ight) - \sum_{j
eq i}b_j(\omega^*),$$

respectively, is a Vickrey-Clarke-Groves or mechanism.

Joseph C.-C. Lin

CSIE, TKU, TW

$$p_i(\boldsymbol{b}) = \underbrace{b_i(\omega^*)}_{\text{bid}} - \underbrace{\left[\sum_{j=1}^n b_j(\omega^*) - \max_{\omega \in \Omega} \sum_{j \neq i} b_j(\omega)\right]}_{\text{rebate}}$$

Imagine the "rebate" as the increase in welfare attributable to agent i's presence.

E DQC

$$p_i(\boldsymbol{b}) = \underbrace{b_i(\omega^*)}_{\text{bid}} - \underbrace{\left[\sum_{j=1}^n b_j(\omega^*) - \max_{\omega \in \Omega} \sum_{j \neq i} b_j(\omega)\right]}_{\text{rebate}}$$

- Imagine the "rebate" as the increase in welfare attributable to agent i's presence.
- For example, in the second-price auction, say we have two agents with bids b₁ > b₂.

Э

ヘロマ ヘロマ ヘロマ

$$p_i(\boldsymbol{b}) = \underbrace{b_i(\omega^*)}_{\text{bid}} - \underbrace{\left[\sum_{j=1}^n b_j(\omega^*) - \max_{\omega \in \Omega} \sum_{j \neq i} b_j(\omega)\right]}_{\text{rebate}}$$

Imagine the "rebate" as the increase in welfare attributable to agent i's presence.

For example, in the second-price auction, say we have two agents with bids b₁ > b₂.

• The highest bidder pays $b_1 - (b_1 - b_2) = b_2!$

$$p_i(\boldsymbol{b}) = \underbrace{b_i(\omega^*)}_{\text{bid}} - \underbrace{\left[\sum_{j=1}^n b_j(\omega^*) - \max_{\omega \in \Omega} \sum_{j \neq i} b_j(\omega)\right]}_{\text{rebate}} \leq b_i(\omega^*).$$

Imagine the "rebate" as the increase in welfare attributable to agent i's presence.

For example, in the second-price auction, say we have two agents with bids b₁ > b₂.

• The highest bidder pays $b_1 - (b_1 - b_2) = b_2!$

Truthful reporting always guarantees nonnegative utility!

Proof of Theorem 7.3 (1/2)

- Fix an arbitrary general mechanism design environment.
- Let (x, p) denote the corresponding CVG mechanism.
- The mechanism maximizes the social welfare whenever the reports are truthful or not (by definition).
- Next, we have to verify the DSIC condition.
 - We need to show that for every agent *i* and every set \mathbf{b}_{-i} , agent *i* maximizes her utility $v_i(\mathbf{x}(\mathbf{b})) p_i(\mathbf{b})$ by setting $\mathbf{b}_i = \mathbf{v}_i$.

Proof of Theorem 7.3 (2/2)

Fix *i* and \boldsymbol{b}_{-i} . When the chosen outcome $\boldsymbol{x}(\boldsymbol{b})$ is ω^* , we have

$$v_i(\omega^*) - p_i(\boldsymbol{b}) = \underbrace{\left[v_i(\omega^*) + \sum_{j \neq i} b_j(\omega^*)
ight]}_{(A)} - \underbrace{\left[\max_{\omega \in \Omega} \sum_{j \neq i} b_j(\omega)
ight]}_{(B)}.$$

Proof of Theorem 7.3 (2/2)

Fix *i* and \boldsymbol{b}_{-i} . When the chosen outcome $\boldsymbol{x}(\boldsymbol{b})$ is ω^* , we have

$$v_i(\omega^*) - p_i(\boldsymbol{b}) = \underbrace{\left[v_i(\omega^*) + \sum_{j \neq i} b_j(\omega^*)
ight]}_{(A)} - \underbrace{\left[\max_{\omega \in \Omega} \sum_{j \neq i} b_j(\omega)
ight]}_{(B)}.$$

(B) can be viewed as a constant. So we focus on maximizing (A).

Proof of Theorem 7.3 (2/2)

Fix *i* and \boldsymbol{b}_{-i} . When the chosen outcome $\boldsymbol{x}(\boldsymbol{b})$ is ω^* , we have

$$v_i(\omega^*) - p_i(\boldsymbol{b}) = \underbrace{\left[v_i(\omega^*) + \sum_{j \neq i} b_j(\omega^*)
ight]}_{(A)} - \underbrace{\left[\max_{\omega \in \Omega} \sum_{j \neq i} b_j(\omega)
ight]}_{(B)}$$

(B) can be viewed as a constant. So we focus on maximizing (A).

• For agent *i*, assume that ω^* is chosen, setting $b_i = v_i$ makes (A) maximized.

$$v_i(\omega^*) + \sum_{j \neq i} b_j(\omega^*) = \sum_j b_j(\omega^*).$$

• Recall that
$$\omega^* = \arg \max_{\omega \in \Omega} \sum_{i=1}^n b_i(\omega)$$
.

Outline

General Mechanism Design Environments

The VCG Mechanism

Remarks

Practical Implementation of Combinatorial Auctions Indirect Mechanisms

Practical Considerations (1/3)

- Preference elicitation is a challenge.
 - Consider getting reports b₁,..., b_n from n agents in a combinatorial auction with m items.

Practical Considerations (1/3)

- Preference elicitation is a challenge.
 - Consider getting reports b₁,..., b_n from n agents in a combinatorial auction with m items.
 - Each bidder has 2^m private parameters!
 - It's hard for her to figure out or write down so many numbers.
 - No seller would want to read them.

Practical Considerations (2/3)

- As in single-parameter environments, welfare maximization could be a computationally intractable.
 - Recall the knapsack auction.
- Sometimes even approximate welfare maximization is still computationally intractable.

ヘロマ ヘロマ ヘビマ ヘロマ

Practical Considerations (3/3)

VCG mechanisms can have bad revenue.

Exercise 4 (5%)

- 1. Consider a combinatorial auction with two bidders and two items A and B. The first bidder only wants both items, so $v_1(\{A, B\}) = 1$ and is 0 otherwise. The second bidder only wants item A, so $v_2(\{A, B\}) = v_2(\{A\}) = 1$ and is 0 otherwise. Please show that the revenue of the VCG mechanism is 1 in this example.
- Now suppose that we add a third bidder who only wants item B, so
 v₃({A, B}) = v₃({B}) = 1. Please show that the maximum welfare is 2 but the VCG revenue is 0 in this case.

Recall the issues

- Combinatorial auction: n bidders, m items, bidder i's valuation v_i(S) for each bundle S of items.
- The number of parameters that each bidder reports in the VCG mechanism (or any other direct-revelation mechanism) grows exponentially with m.

Э

ヘロマス 留マス ほどん ほど

Indirect Mechanism

- Learn information about bidders' preferences only on a need-to-know basis.
- ▶ The canonical indirect auction: ascending English auction.
 - \star An auctioneer asks for takers at successively higher prices.
 - \star The auction ends when no one accepts the currently proposed price.
- $\star\,$ The winner (if any): the bidder who accepted the previously proposed price
 - \checkmark This previous price is the final sale price.

Indirect Mechanism

- Learn information about bidders' preferences only on a need-to-know basis.
- ► The canonical indirect auction: ascending English auction.
 - \star An auctioneer asks for takers at successively higher prices.
 - * The auction ends when no one accepts the currently proposed price.
- \star The winner (if any): the bidder who accepted the previously proposed price
 - \checkmark This previous price is the final sale price.
- Empirically, bidders are more likely to play their dominant strategies in this kind of auction than a sealed-bid second-price auction.
 - Bidders: not likely to overbid;
 - Seller: only learns a lower bound on the highest bid.

How about selling items separately?

So what's a natural indirect auction format for combinatorial auctions?
 Eliciting valuations for bundles from each bidder is avoided.

э

・ロット (日) (日) (日)

How about selling items separately?

- So what's a natural indirect auction format for combinatorial auctions?
 Eliciting valuations for bundles from each bidder is avoided.
- The simplest way: sell the items separately.

Э

ヘロマスロマス 日マス

How about selling items separately?

- So what's a natural indirect auction format for combinatorial auctions?
 Eliciting valuations for bundles from each bidder is avoided.
- The simplest way: sell the items separately.
- What's the issue or problem?

Э

ヘロマスロマス 日マス

Indirect Mechanisms

Substitutes vs. Complements

For two items A and B,

• substitute condition: $v(AB) \le v(A) + v(B)$.

- Spectrum auction: two licenses (the same area & equal-sized frequency ranges).
- iPhone 13 + iPhone 14 announced together?
- * Welfare maximization is computationally tractable.
- complement condition: v(AB) > v(A) + v(B).
 - Spectrum auction: a collection of licenses that are adjacent (geographically or frequency ranges).
 - Two items with additional enhancement when they are both provided. [*] Welfare maximization is computationally *intractable*.

In real world: mixture of substitutes and complements.

Typical mistake #1 of running separate single-item auctions

Hold the single-item auctions sequentially, one at a time.

- ▶ The scenario: A sequence of single-item auctions for two identical items.
 - Items are sold via back-to-back second-price auctions.
- Let's say you are a bidder with a VERY HIGH valuation.
- Suppose that every other bidder bid truthfully.

ヘロマス ロマス 日本 人口 マイロマ

Typical mistake #1 of running separate single-item auctions

Hold the single-item auctions sequentially, one at a time.

- ▶ The scenario: A sequence of single-item auctions for two identical items.
 - Items are sold via back-to-back second-price auctions.
- Let's say you are a bidder with a VERY HIGH valuation.
- Suppose that every other bidder bid truthfully.
- * If you participate in the first auction, you will win and pay the second-highest valuation.

3

イロン イロン イヨン

Typical mistake #1 of running separate single-item auctions

Hold the single-item auctions sequentially, one at a time.

- ▶ The scenario: A sequence of single-item auctions for two identical items.
 - Items are sold via back-to-back second-price auctions.
- Let's say you are a bidder with a VERY HIGH valuation.
- Suppose that every other bidder bid truthfully.
- * If you participate in the first auction, you will win and pay the second-highest valuation.
- * If you skip it, the bidder with the second-highest valuation wins the first auction and disappear.
 - Then you would win the second auction at a price equal to the third-highest valuation.

Indirect Mechanisms

A Story from the textbook

- In March 2000, Switzerland auctioned off three blocks of spectrum via a sequence of second-price auctions.
- The first two auctions were for identical items, 28 MHz blocks, and sold for 121 million and 134 million Swiss francs, respectively.
 - This is already more price variation than one would like for identical items.
- But in the third auction, where a larger 56 MHz block was being sold, the selling price was only 55 million francs!
- Some of the bids must have been far from optimal, and both the welfare and revenue achieved by this auction are suspect.

Typical mistake #2 of running separate single-item auctions

Use sealed-bid single-item auctions (simultaneously).

- Again, it's difficult for bidders to figure out how to bid, especially for multiple items.
- ▶ The challenge: the outcomes is prone to be of low welfare & revenue.

イロン (行) (下) (日)

Typical mistake #2 of running separate single-item auctions

Use sealed-bid single-item auctions (simultaneously).

- Again, it's difficult for bidders to figure out how to bid, especially for multiple items.
- ▶ The challenge: the outcomes is prone to be of low welfare & revenue.
- Consider that there are 3 bidders and 2 identical items, and each bidder wants only one.
- With simultaneous second-price single-item auctions,

3

Typical mistake #2 of running separate single-item auctions

Use sealed-bid single-item auctions (simultaneously).

- Again, it's difficult for bidders to figure out how to bid, especially for multiple items.
- ▶ The challenge: the outcomes is prone to be of low welfare & revenue.
- Consider that there are 3 bidders and 2 identical items, and each bidder wants only one.
- With simultaneous second-price single-item auctions,
 - if each bidder targets only one item, one of the licenses is likely to have only one bidder and will be given away for free or sold at the reserve price.

A Story from the textbook

- In 1990, the New Zealand government auctioned off essentially identical licenses for television broadcasting using simultaneous (sealed-bid) second-price auctions.
- ► The revenue in the 1990 New Zealand auction was only \$36 million, a paltry fraction of the projected \$250 million.
 - On one license, the high bid was \$100,000 while the second-highest bid (and selling price) was \$6!
 - On another, the high bid was \$7 million and the second-highest was \$5,000.

3

イロン イロン イヨン

Conceptually, SAAs are like a bunch of single-item English auctions run in parallel in the same room and one auctioneer per item.

Э

ヘロン 人間 とくほ とくほ とう

- Conceptually, SAAs are like a bunch of single-item English auctions run in parallel in the same room and one auctioneer per item.
- All bidders have to participate in the auction from the beginning and contribute to the discovery of appropriate prices.

- Conceptually, SAAs are like a bunch of single-item English auctions run in parallel in the same room and one auctioneer per item.
- All bidders have to participate in the auction from the beginning and contribute to the discovery of appropriate prices.
- The gist: require that the number of items on which a bidder bids only decreases over time as prices rise.

・ロン ・ ロン ・ ロン ・ ロン - 日

- Conceptually, SAAs are like a bunch of single-item English auctions run in parallel in the same room and one auctioneer per item.
- All bidders have to participate in the auction from the beginning and contribute to the discovery of appropriate prices.
- The gist: require that the number of items on which a bidder bids only decreases over time as prices rise.
- ▶ The primary reason that SAAs work better is price discovery.
 - A bidder can abandon the items in the mid-course as she acquires better information about the likely selling prices of the items.

- Conceptually, SAAs are like a bunch of single-item English auctions run in parallel in the same room and one auctioneer per item.
- All bidders have to participate in the auction from the beginning and contribute to the discovery of appropriate prices.
- The gist: require that the number of items on which a bidder bids only decreases over time as prices rise.
- ► The primary reason that SAAs work better is price discovery.
 - A bidder can abandon the items in the mid-course as she acquires better information about the likely selling prices of the items.
 - Again, bidder only need to determine their valuations on a need-to-know basis.
- Though such kind a mechanisms still has its vulnerabilities (skipped here for further readings).