No-Regret Online Learning Algorithms

Joseph Chuang-Chieh Lin

Department of Computer Science & Engineering, National Taiwan Ocean University

Fall 2024

Joseph C. C. Lin (CSE, NTOU, TW)

Credits for the resource

The slides are based on the lectures of Prof. Luca Trevisan: https://lucatrevisan.github.io/40391/index.html

the lectures of Prof. Shipra Agrawal: https://ieor8100.github.io/mab/

the lectures of Prof. Francesco Orabona: https://parameterfree.com/lecture-notes-on-online-learning/

and also Elad Hazan's textbook: Introduction to Online Convex Optimization, 2nd Edition.

Joseph C. C. Lin (CSE, NTOU, TW)

Outline

Introduction

- 2 Gradient Descent for Online Convex Optimization (GD)
- 3 Multiplicative Weight Update (MWU)
- 4 Follow The Leader (FTL)
- 5 Follow The Regularized Leader (FTRL)
 - MWU Revisited
 - FTRL with 2-norm regularizer
- 🜀 Multi-Armed Bandit (MAB)
 - Greedy Algorithms
 - Upper Confidence Bound (UCB)
 - Time-Decay e-Greedy

Outline

Introduction

- 2 Gradient Descent for Online Convex Optimization (GD)
- 3 Multiplicative Weight Update (MWU)
- 4 Follow The Leader (FTL)
- 5 Follow The Regularized Leader (FTRL)
 - MWU Revisited
 - FTRL with 2-norm regularizer
- Multi-Armed Bandit (MAB)
 - Greedy Algorithms
 - Upper Confidence Bound (UCB)
 - Time-Decay ε-Greedy

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Online Convex Optimization

Goal: Design an algorithm such that

- At discrete time steps $t = 1, 2, \ldots$, output $\boldsymbol{x}_t \in \mathcal{K}$, for each t.
 - $\mathcal{K}:$ a convex set of feasible solutions.
- After x_t is generated, a convex cost function $f_t : \mathcal{K} \mapsto \mathbb{R}$ is revealed.
- Then the algorithm suffers the loss $f_t(\mathbf{x}_t)$.

And we want to minimize the cost.

The difficulty

- The cost functions f_t is unknown before t.
- $f_1, f_2, \ldots, f_t, \ldots$ are not necessarily fixed.
 - Can be generated dynamically by an adversary.

What's the regret?

• The offline optimum: After T steps,

$$\min_{\boldsymbol{x}\in\mathcal{K}}\sum_{t=1}^{T}f_t(\boldsymbol{x})$$

• The regret after *T* steps:

$$\operatorname{regret}_{\mathcal{T}} = \sum_{t=1}^{\mathcal{T}} f_t(\boldsymbol{x}_t) - \min_{\boldsymbol{x} \in \mathcal{K}} \sum_{t=1}^{\mathcal{T}} f_t(\boldsymbol{x}).$$

Joseph C. C. Lin (CSE, NTOU, TW)

Fall 2024 7 / 81

What's the regret?

• The offline optimum: After T steps,

$$\min_{\boldsymbol{x}\in\mathcal{K}}\sum_{t=1}^{T}f_t(\boldsymbol{x}).$$

• The regret after T steps:

$$\operatorname{regret}_{T} = \sum_{t=1}^{T} f_t(\mathbf{x}_t) - \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} f_t(\mathbf{x}).$$

• The rescue: regret $_T \leq o(T)$.

Joseph C. C. Lin (CSE, NTOU, TW)

What's the regret?

• The offline optimum: After T steps,

$$\min_{\boldsymbol{x}\in\mathcal{K}}\sum_{t=1}^{T}f_t(\boldsymbol{x})$$

• The regret after T steps:

$$\operatorname{regret}_{T} = \sum_{t=1}^{T} f_t(\mathbf{x}_t) - \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} f_t(\mathbf{x}).$$

- The rescue: regret $_T \leq o(T)$. \Rightarrow **No-Regret** in average when $T \rightarrow \infty$.
 - For example, $\operatorname{regret}_{\mathcal{T}}/\mathcal{T} = \frac{\sqrt{\mathcal{T}}}{\mathcal{T}} \to 0$ when $\mathcal{T} \to \infty$.

・ロト ・回ト ・ヨト ・ヨ

Prerequisites (1/5)

Diameter

Let $\mathcal{K} \subseteq \mathbb{R}^d$ be a bounded convex and closed set in Euclidean space. We denote by D an upper bound on the diameter of \mathcal{K} :

$$\forall \boldsymbol{x}, \boldsymbol{y} \in \mathcal{K}, ||\boldsymbol{x} - \boldsymbol{y}|| \leq D.$$

Convex set

A set \mathcal{K} is convex if for any $\mathbf{x}, \mathbf{y} \in \mathcal{K}$, we have

$$\forall \alpha \in [0,1], \alpha \mathbf{x} + (1-\alpha)\mathbf{y} \in \mathcal{K}.$$

Joseph C. C. Lin (CSE, NTOU, TW)

Fall 2024 8 / 81

Prerequisites (2/5)

Convex function

A function $f : \mathcal{K} \mapsto \mathbb{R}$ is convex if for any $\mathbf{x}, \mathbf{y} \in \mathcal{K}$,

$$orall lpha \in [0,1], f((1-lpha)oldsymbol{x}+lphaoldsymbol{y}) \leq (1-lpha)f(oldsymbol{x})+lpha f(oldsymbol{y}).$$

Equivalently, if f is differentiable (i.e., $\nabla f(\mathbf{x})$ exists for all $\mathbf{x} \in \mathcal{K}$), then f is convex if and only if for all $\mathbf{x}, \mathbf{y} \in \mathcal{K}$,

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}).$$

Prerequisites (3/5)

Theorem [Rockafellar 1970]

Suppose that $f : \mathcal{K} \mapsto \mathbb{R}$ is a convex function and let $x \in \text{int dom}(f)$. If f is differentiable at x, then for all $y \in \mathbb{R}^d$,

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle.$$

Subgradient

For a function $f : \mathbb{R}^d \mapsto \mathbb{R}$, $g \in \mathbb{R}^d$ is a subgradient of f at $x \in \mathbb{R}^d$ if for all $y \in \mathbb{R}^d$,

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle.$$

• = •

Prerequisites (4/5)

Projection

The closest point of \boldsymbol{y} in a convex set \mathcal{K} in terms of norm $|| \cdot ||$:

$$\Pi_{\mathcal{K}}(\boldsymbol{y}) := \arg\min_{\boldsymbol{x}\in\mathcal{K}} ||\boldsymbol{x} - \boldsymbol{y}||.$$

Pythagoras Theorem

Let $\mathcal{K} \subseteq \mathbb{R}^d$ be a convex set, $\mathbf{y} \in \mathbb{R}^d$ and $\mathbf{x} = \Pi_{\mathcal{K}}(\mathbf{y})$. Then for any $\mathbf{z} \in \mathcal{K}$, we have

$$||\boldsymbol{y}-\boldsymbol{z}|| \geq ||\boldsymbol{x}-\boldsymbol{z}||.$$

Joseph C. C. Lin (CSE, NTOU, TW)

Prerequisites (5/5)

Minimum vs. zero gradient

$$abla f(\mathbf{x}) = 0 \text{ iff } \mathbf{x} \in \arg\min_{\mathbf{x} \in \mathbb{R}^d} \{f(\mathbf{x})\}.$$

Karush-Kuhn-Tucker (KKT) Theorem

Let $\mathcal{K} \subseteq \mathbb{R}^d$ be a convex set, $\mathbf{x}^* \in \arg\min_{\mathbf{x} \in \mathcal{K}} f(\mathbf{x})$. Then for any $\mathbf{y} \in \mathcal{K}$ we have

$$\nabla f(\mathbf{x}^*)^{\top}(\mathbf{y}-\mathbf{x}^*) \geq 0.$$

Joseph C. C. Lin (CSE, NTOU, TW)

Fall 2024 12 / 81

Convex losses to linear losses

- We have the convex loss function $f_t(\mathbf{x}_t)$ at time t.
- Say we have subgradients g_t for each x_t .
- $f(\mathbf{x}_t) f(\mathbf{u}) \le \langle \mathbf{g}, \mathbf{x}_t \mathbf{u} \rangle$ for each $\mathbf{u} \in \mathbb{R}^d$.

Joseph C. C. Lin (CSE, NTOU, TW)

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Convex losses to linear losses

- We have the convex loss function $f_t(\mathbf{x}_t)$ at time t.
- Say we have subgradients \boldsymbol{g}_t for each \boldsymbol{x}_t .

•
$$f(\boldsymbol{x}_t) - f(\boldsymbol{u}) \leq \langle \boldsymbol{g}, \boldsymbol{x}_t - \boldsymbol{u} \rangle$$
 for each $\boldsymbol{u} \in \mathbb{R}^d$.

• Hence, if we define $\tilde{f}_t(\mathbf{x}) := \langle \mathbf{g}_t, \mathbf{x} \rangle$, then for any $\mathbf{u} \in \mathbb{R}^d$,

$$\sum_{t=1}^{T} f_t(\boldsymbol{x}_t) - f(\boldsymbol{u}) \leq \sum_{t=1}^{T} \langle \boldsymbol{g}, \boldsymbol{x}_t - \boldsymbol{u} \rangle = \sum_{t=1}^{T} \tilde{f}_t(\boldsymbol{x}_t) - \tilde{f}(\boldsymbol{u}).$$

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Convex losses to linear losses

- We have the convex loss function $f_t(\mathbf{x}_t)$ at time t.
- Say we have subgradients \boldsymbol{g}_t for each \boldsymbol{x}_t .

•
$$f(\boldsymbol{x}_t) - f(\boldsymbol{u}) \leq \langle \boldsymbol{g}, \boldsymbol{x}_t - \boldsymbol{u} \rangle$$
 for each $\boldsymbol{u} \in \mathbb{R}^d$.

• Hence, if we define $\tilde{f}_t(\mathbf{x}) := \langle \mathbf{g}_t, \mathbf{x} \rangle$, then for any $\mathbf{u} \in \mathbb{R}^d$,

$$\sum_{t=1}^{T} f_t(\boldsymbol{x}_t) - f(\boldsymbol{u}) \leq \sum_{t=1}^{T} \langle \boldsymbol{g}, \boldsymbol{x}_t - \boldsymbol{u} \rangle = \sum_{t=1}^{T} \tilde{f}_t(\boldsymbol{x}_t) - \tilde{f}(\boldsymbol{u}).$$

 $\text{OCO}\rightarrow\text{OLO}.$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Outline

Introduction

- 2 Gradient Descent for Online Convex Optimization (GD)
- 3 Multiplicative Weight Update (MWU)
- 4 Follow The Leader (FTL)
- 5 Follow The Regularized Leader (FTRL)
 - MWU Revisited
 - FTRL with 2-norm regularizer
- Multi-Armed Bandit (MAB)
 - Greedy Algorithms
 - Upper Confidence Bound (UCB)
 - Time-Decay ε-Greedy

Online Gradient Descent (GD)

- **1** Input: convex set \mathcal{K} , \mathcal{T} , $\mathbf{x}_1 \in \mathcal{K}$, step size $\{\eta_t\}$.
- **2** for $t \leftarrow 1$ to T do:
 - Play \mathbf{x}_t and observe cost $f_t(\mathbf{x}_t)$.
 - Opdate and Project:

$$egin{array}{rcl} m{y}_{t+1} &=& m{x}_t - \eta_t
abla f_t(m{x}_t) \ m{x}_{t+1} &=& \Pi_\mathcal{K}(m{y}_{t+1}) \end{array}$$

end for

Joseph C. C. Lin (CSE, NTOU, TW)

Fall 2024 15 / 81

GD for online convex optimization is of no-regret

Theorem A

Online gradient descent with step size $\{\eta_t = \frac{D}{G\sqrt{t}}, t \in [T]\}$ guarantees the following for all $T \ge 1$:

$$\operatorname{regret}_{T} = \sum_{t=1}^{T} f_{t}(\boldsymbol{x}_{t}) - \min_{\boldsymbol{x}^{*} \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(\boldsymbol{x}^{*}) \leq \frac{3}{2} GD\sqrt{T}.$$

Joseph C. C. Lin (CSE, NTOU, TW)

Proof of Theorem A (1/3)

• Let
$$\mathbf{x}^* \in rgmin_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^T f_t(\mathbf{x}).$$

• Since f_t is convex, we have

$$f_t(\boldsymbol{x}_t) - f_t(\boldsymbol{x}^*) \leq (\nabla f_t(\boldsymbol{x}_t))^{\top} (\boldsymbol{x}_t - \boldsymbol{x}^*).$$

• By the updating rule for x_{t+1} and the Pythagorean theorem, we have

$$|\mathbf{x}_{t+1} - \mathbf{x}^*||^2 = ||\Pi_{\mathcal{K}}(\mathbf{x}_t - \eta_t \nabla f_t(\mathbf{x}_t)) - \mathbf{x}^*||^2 \le ||\mathbf{x}_t - \eta_t \nabla f_t(\mathbf{x}_t) - \mathbf{x}^*||^2$$

Joseph C. C. Lin (CSE, NTOU, TW)

Fall 2024 17 / 81

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Proof of Theorem A (2/3)

Hence

$$\begin{aligned} ||\mathbf{x}_{t+1} - \mathbf{x}^*||^2 &\leq ||\mathbf{x}_t - \mathbf{x}^*||^2 + \eta_t^2 ||\nabla f_t(\mathbf{x}_t)||^2 - 2\eta_t (\nabla f_t(\mathbf{x}_t))^\top (\mathbf{x}_t - \mathbf{x}^*) \\ 2(\nabla f_t(\mathbf{x}_t))^\top (\mathbf{x}_t - \mathbf{x}^*) &\leq \frac{||\mathbf{x}_t - \mathbf{x}^*||^2 - ||\mathbf{x}_{t+1} - \mathbf{x}^*||^2}{\eta_t} + \eta_t G^2. \end{aligned}$$

• Summing above inequality from t = 1 to T and setting $\eta_t = \frac{D}{G\sqrt{t}}$ and $\frac{1}{\eta_0} := 0$ we have :

Joseph C. C. Lin (CSE, NTOU, TW)

Fall 2024 18 / 81

<ロ> <四> <四> <四> <四</td>

Proof of Theorem A (3/3)

$$2\left(\sum_{t=1}^{T} f_{t}(\mathbf{x}_{t}) - f_{t}(\mathbf{x}^{*})\right) \leq 2\sum_{t=1}^{T} \nabla f_{t}(\mathbf{x}_{t}))^{\top} (\mathbf{x}_{t} - \mathbf{x}^{*})$$

$$\leq \sum_{t=1}^{T} \frac{||\mathbf{x}_{t} - \mathbf{x}^{*}||^{2} - ||\mathbf{x}_{t+1} - \mathbf{x}^{*}||^{2}}{\eta_{t}} + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\leq \sum_{t=1}^{T} ||\mathbf{x}_{t} - \mathbf{x}^{*}||^{2} \left(\frac{1}{\eta_{t}} - \frac{1}{\eta_{t-1}}\right) + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\leq D^{2} \sum_{t=1}^{T} \left(\frac{1}{\eta_{t}} - \frac{1}{\eta_{t-1}}\right) + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\leq D^{2} \frac{1}{\eta_{T}} + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\leq 3DG \sqrt{T}.$$

Joseph C. C. Lin (CSE, NTOU, TW)

◆ ■ シ ■ シ へ C Fall 2024 19/81

< □ > < 同 > < 回 > < 回 > < 回 >

The Lower Bound

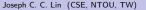
Theorem B

Let $\mathcal{K} = \{ \mathbf{x} \in \mathbb{R}^d : ||\mathbf{x}||_{\infty} \leq r \}$ be a convex subset of \mathbb{R}^d . Let A be any algorithm for Online Convex Optimization on \mathcal{K} . Then for any $T \geq 1$, there exists a sequence of vectors $\mathbf{g}_1, \ldots, \mathbf{g}_T$ with $||\mathbf{g}_t||_2 \leq L$ and $\mathbf{u} \in \mathcal{K}$ such that the regret of A satisfies

$$\operatorname{regret}_{\mathcal{T}}(\boldsymbol{u}) = \sum_{t=1}^{\mathcal{T}} \langle \boldsymbol{g}_t, \boldsymbol{x}_t \rangle - \sum_{t=1}^{\mathcal{T}} \langle \boldsymbol{g}_t, \boldsymbol{u} \rangle \geq \frac{\sqrt{2}LD\sqrt{\mathcal{T}}}{4}$$

• The diameter D of \mathcal{K} is at most $\sqrt{\sum_{i=1}^{d} (2r)^2} \leq 2r\sqrt{d}$.

• $||\mathbf{x}||_{\infty} \leq r \Leftrightarrow |\mathbf{x}(i)| \leq r$ for each $i \in [n]$.



Proof of Theorem B (1/2)

• The approach:

For any random variable \boldsymbol{z} with domain \mathcal{V} and any function f,

 $\sup_{\boldsymbol{x}\in V}f(\boldsymbol{x})\geq E[f(\boldsymbol{z})].$

Joseph C. C. Lin (CSE, NTOU, TW)

Proof of Theorem B (1/2)

• The approach:

For any random variable \boldsymbol{z} with domain \mathcal{V} and any function f,

 $\sup_{\boldsymbol{x}\in V}f(\boldsymbol{x})\geq E[f(\boldsymbol{z})].$

• regret $_{T} = \max_{\boldsymbol{u} \in \mathcal{K}} \operatorname{regret}_{T}(\boldsymbol{u}).$

Joseph C. C. Lin (CSE, NTOU, TW)

Proof of Theorem B (1/2)

• The approach:

For any random variable z with domain \mathcal{V} and any function f,

 $\sup_{\boldsymbol{x}\in V}f(\boldsymbol{x})\geq E[f(\boldsymbol{z})].$

•
$$\operatorname{regret}_{T} = \max_{\boldsymbol{u} \in \mathcal{K}} \operatorname{regret}_{T}(\boldsymbol{u}).$$

• Let $\boldsymbol{v}, \boldsymbol{w} \in \mathcal{K}$ such that $||\boldsymbol{v} - \boldsymbol{w}|| = D$.

Joseph C. C. Lin (CSE, NTOU, TW)

Fall 2024 21 / 81

Proof of Theorem B (1/2)

• The approach:

For any random variable z with domain \mathcal{V} and any function f,

 $\sup_{\boldsymbol{x}\in V}f(\boldsymbol{x})\geq E[f(\boldsymbol{z})].$

•
$$\operatorname{regret}_{\mathcal{T}} = \max_{\boldsymbol{u} \in \mathcal{K}} \operatorname{regret}_{\mathcal{T}}(\boldsymbol{u}).$$

- Let $\boldsymbol{v}, \boldsymbol{w} \in \mathcal{K}$ such that $||\boldsymbol{v} \boldsymbol{w}|| = D$.
- Let $z := \frac{v-w}{||v-w||}$

Joseph C. C. Lin (CSE, NTOU, TW)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proof of Theorem B (1/2)

• The approach:

For any random variable z with domain \mathcal{V} and any function f,

$$\sup_{\boldsymbol{x}\in V}f(\boldsymbol{x})\geq E[f(\boldsymbol{z})].$$

•
$$\operatorname{regret}_{\mathcal{T}} = \max_{\boldsymbol{u} \in \mathcal{K}} \operatorname{regret}_{\mathcal{T}}(\boldsymbol{u}).$$

- Let $\boldsymbol{v}, \boldsymbol{w} \in \mathcal{K}$ such that $||\boldsymbol{v} \boldsymbol{w}|| = D$.
- Let $\boldsymbol{z} := \frac{\boldsymbol{v} \boldsymbol{w}}{||\boldsymbol{v} \boldsymbol{w}||} \Rightarrow \langle \boldsymbol{z}, \boldsymbol{v} \boldsymbol{w} \rangle = D.$
- Let $\epsilon_1, \epsilon_2, \dots, \epsilon_T$ be i.i.d. random variables such that $\Pr[\epsilon_t = 1] = \Pr[\epsilon_t = -1] = 1/2$ for each t.

Joseph C. C. Lin (CSE, NTOU, TW)

Fall 2024 21 / 81

イロト イヨト イヨト イヨ

Proof of Theorem B (1/2)

• The approach:

For any random variable z with domain \mathcal{V} and any function f,

$$\sup_{\boldsymbol{x}\in V}f(\boldsymbol{x})\geq E[f(\boldsymbol{z})].$$

•
$$\operatorname{regret}_{\mathcal{T}} = \max_{\boldsymbol{u} \in \mathcal{K}} \operatorname{regret}_{\mathcal{T}}(\boldsymbol{u}).$$

• Let $\boldsymbol{v}, \boldsymbol{w} \in \mathcal{K}$ such that $||\boldsymbol{v} - \boldsymbol{w}|| = D$.

• Let
$$\boldsymbol{z} := \frac{\boldsymbol{v} - \boldsymbol{w}}{||\boldsymbol{v} - \boldsymbol{w}||} \Rightarrow \langle \boldsymbol{z}, \boldsymbol{v} - \boldsymbol{w} \rangle = D.$$

- Let $\epsilon_1, \epsilon_2, \dots, \epsilon_T$ be i.i.d. random variables such that $\Pr[\epsilon_t = 1] = \Pr[\epsilon_t = -1] = 1/2$ for each t.
- We choose the losses $\boldsymbol{g}_t = L \epsilon_t \boldsymbol{z}$.

VITOU CSE

Proof of Theorem B (1/2)

• The approach:

For any random variable \boldsymbol{z} with domain \mathcal{V} and any function f,

$$\sup_{\boldsymbol{x}\in V}f(\boldsymbol{x})\geq E[f(\boldsymbol{z})].$$

•
$$\operatorname{regret}_{\mathcal{T}} = \max_{\boldsymbol{u} \in \mathcal{K}} \operatorname{regret}_{\mathcal{T}}(\boldsymbol{u}).$$

• Let $\boldsymbol{v}, \boldsymbol{w} \in \mathcal{K}$ such that $||\boldsymbol{v} - \boldsymbol{w}|| = D$.

• Let
$$\boldsymbol{z} := \frac{\boldsymbol{v} - \boldsymbol{w}}{||\boldsymbol{v} - \boldsymbol{w}||} \Rightarrow \langle \boldsymbol{z}, \boldsymbol{v} - \boldsymbol{w} \rangle = D$$

- Let $\epsilon_1, \epsilon_2, \dots, \epsilon_T$ be i.i.d. random variables such that $\Pr[\epsilon_t = 1] = \Pr[\epsilon_t = -1] = 1/2$ for each t.
- We choose the losses $\boldsymbol{g}_t = L \epsilon_t \boldsymbol{z}$.
 - The cost at $t: \langle L\epsilon_t \boldsymbol{z}, \boldsymbol{x}_t \rangle$.

•
$$||g_t|| = \sqrt{L^2 \epsilon_t^2} \cdot ||\mathbf{z}|| \le L.$$

Proof of Theorem B (2/2)

$$\sup_{g_{1},...,g_{T}} \operatorname{regret}_{T} \geq E\left[\sum_{t=1}^{T} L\epsilon_{t}\langle z, x_{t}\rangle - \min_{u \in \mathcal{K}} \sum_{t=1}^{T} L\epsilon_{t}\langle z, u\rangle\right]$$

$$= E\left[-\min_{u \in \mathcal{K}} \sum_{t=1}^{T} L\epsilon_{t}\langle z, u\rangle\right] = E\left[\max_{u \in \mathcal{K}} \sum_{t=1}^{T} L\epsilon_{t}\langle z, u\rangle\right]$$

$$\geq E\left[\max_{u \in \{v,w\}} \sum_{t=1}^{T} L\epsilon_{t}\langle z, v + w\rangle + \frac{1}{2}\left|\sum_{t=1}^{T} L\epsilon_{t}\langle z, v - w\rangle\right|\right]$$

$$\geq \frac{L}{2}E\left[\left|\sum_{t=1}^{T} L\epsilon_{t}\langle z, v - w\rangle\right|\right] = \frac{LD}{2}E\left[\left|\sum_{t=1}^{T} \epsilon_{t}\right|\right]$$

$$\geq \frac{\sqrt{2}LD\sqrt{T}}{4}. \quad \text{(by Khintchine inequality)}$$

Joseph C. C. Lin (CSE, NTOU, TW)

No-Regret Online Learning

Fall 2024 22 / 81

Outline

Introduction

2 Gradient Descent for Online Convex Optimization (GD)

Multiplicative Weight Update (MWU)

- 4 Follow The Leader (FTL)
- 5 Follow The Regularized Leader (FTRL)
 - MWU Revisited
 - FTRL with 2-norm regularizer
- Multi-Armed Bandit (MAB)
 - Greedy Algorithms
 - Upper Confidence Bound (UCB)
 - Time-Decay ε-Greedy

Listen to the experts?

- Let's say we have *n* experts.
- We want to make best use of the advices coming from the experts.

Joseph C. C. Lin (CSE, NTOU, TW)

< 3 >

Listen to the experts?

- Let's say we have *n* experts.
- We want to make best use of the advices coming from the experts.
- The idea: at each time step, decide the probability distribution (i.e., weights) of the experts to follow their advice.

• $x_t = (x_t(1), x_t(2), \dots, x_t(n))$, where $x_t(i) \in [0, 1]$ and $\sum_i x_t(i) = 1$.

Joseph C. C. Lin (CSE, NTOU, TW)

Listen to the experts?

- Let's say we have *n* experts.
- We want to make best use of the advices coming from the experts.
- The idea: at each time step, decide the probability distribution (i.e., weights) of the experts to follow their advice.

• $x_t = (x_t(1), x_t(2), ..., x_t(n))$, where $x_t(i) \in [0, 1]$ and $\sum_i x_t(i) = 1$.

- The loss of following expert i at time t: $\ell_t(i)$.
- The expected loss of the algorithm at time t:

$$\langle \mathbf{x}_t, \boldsymbol{\ell}_t \rangle = \sum_{i=1}^n \mathbf{x}_t(i) \boldsymbol{\ell}_t(i).$$

The regret of listening to the experts...

$$\operatorname{regret}_{\mathcal{T}}^* = \sum_{t=1}^{\mathcal{T}} \langle \mathbf{x}_t, \boldsymbol{\ell}_t \rangle - \min_i \sum_{t=1}^{\mathcal{T}} \boldsymbol{\ell}_t(i).$$

- The set of feasible solutions K = Δ ⊆ ℝⁿ, probability distributions over {1,...,n}.
- $f_t(\mathbf{x}) = \sum_i \mathbf{x}(i) \ell_t(i)$: linear function.
- * Assume that $|\ell_t(i)| \leq 1$ for all t and i.

The MWU Algorithm

- The spirit: "Hedge".
- Well-known and frequently rediscovered.

Joseph C. C. Lin (CSE, NTOU, TW)

The MWU Algorithm

- The spirit: "Hedge".
- Well-known and frequently rediscovered.

Multiplicative Weight Update (MWU)

• Maintain a vector of weights $\boldsymbol{w}_t = (\boldsymbol{w}_t(1), \dots, \boldsymbol{w}_t(n))$ where $\boldsymbol{w}_1 := (1, 1, \dots, 1).$

• Update the weights at time t by

•
$$w_t(i) := w_{t-1}(i) \cdot e^{-\beta \ell_{t-1}(i)}$$

• $x_t := \frac{w_t(i)}{\sum_{j=1}^n w_t(j)}$.

β : a parameter which will be optimized later.

Joseph C. C. Lin (CSE, NTOU, TW)

The MWU Algorithm

- The spirit: "Hedge".
- Well-known and frequently rediscovered.

Multiplicative Weight Update (MWU)

• Maintain a vector of weights $\boldsymbol{w}_t = (\boldsymbol{w}_t(1), \dots, \boldsymbol{w}_t(n))$ where $\boldsymbol{w}_1 := (1, 1, \dots, 1).$

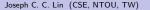
• Update the weights at time t by

•
$$w_t(i) := w_{t-1}(i) \cdot e^{-\beta \ell_{t-1}(i)}$$

• $x_t := \frac{w_t(i)}{\sum_{j=1}^n w_t(j)}$.

β : a parameter which will be optimized later.

The weight of expert *i* at time *t*: $e^{-\beta \sum_{k=1}^{t-1} \ell_k(i)}$.



MWU is of no-regret

Theorem 1 (MWU is of no-regret)

Assume that $|\ell_t(i)| \leq 1$ for all t and i. For $\beta \in (0, 1/2)$, the regret of MWU after T steps is bounded as

$$\operatorname{regret}_{T}^{*} \leq \beta \sum_{t=1}^{T} \sum_{i=1}^{n} \boldsymbol{x}_{t}(i) \boldsymbol{\ell}_{t}^{2}(i) + \frac{\ln n}{\beta} \leq \beta T + \frac{\ln n}{\beta}.$$

In particular, if $T > 4 \ln n$, then

$$\operatorname{regret}^*_{\mathcal{T}} \leq 2\sqrt{\mathcal{T}} \ln n$$

by setting
$$\beta = \sqrt{\frac{\ln n}{T}}$$
.

Proof of Theorem 1

Let
$$W_t := \sum_{i=1}^n \boldsymbol{w}_t(i)$$
.

The idea:

- If the algorithm incurs a large loss after T steps, then W_{T+1} is small.
- And, if W_{T+1} is small, then even the best expert performs quite badly.

Joseph C. C. Lin (CSE, NTOU, TW)

Proof of Theorem 1

Let
$$W_t := \sum_{i=1}^n \boldsymbol{w}_t(i)$$
.

The idea:

- If the algorithm incurs a large loss after T steps, then W_{T+1} is small.
- And, if W_{T+1} is small, then even the best expert performs quite badly.

Let
$$L^* := \min_i \sum_{t=1}^T \ell_t(i)$$
.

The proof (contd.)

Lemma 1 (W_{T+1} is SMALL $\Rightarrow L^*$ is LARGE)

 $W_{T+1} \ge e^{-\beta L^*}.$

Proof.

Let
$$j = \arg \min L^* = \arg \min_i \sum_{t=1}^T \ell_t(i)$$
.

$$W_{T+1} = \sum_{i=1}^{n} e^{-\beta \sum_{t=1}^{T} \ell_t(i)} \ge e^{-\beta \sum_{t=1}^{T} \ell_t(j)} = e^{-\beta L^*}$$

Joseph C. C. Lin (CSE, NTOU, TW)

No-Regret Online Learning

Fall 2024 29 / 81

The proof (contd.)

Lemma 2 (MWU brings large loss $\Rightarrow W_{T+1}$ is SMALL)

$$W_{T+1} \leq n \prod_{t=1}^{n} (1 - \beta \langle \mathbf{x}_t, \boldsymbol{\ell}_t \rangle + \beta^2 \langle \mathbf{x}_t, \boldsymbol{\ell}_t^2 \rangle),$$

Proof.

Note: $W_1 = n$.

$$\frac{W_{t+1}}{W_t} = \sum_{i=1}^n \frac{\boldsymbol{w}_{t+1}(i)}{W_t} = \sum_{i=1}^n \frac{\boldsymbol{w}_t(i) \cdot e^{-\beta \ell_t(i)}}{W_t}$$

The proof (contd.)

Lemma 2 (MWU brings large loss $\Rightarrow W_{T+1}$ is SMALL)

$$W_{T+1} \leq n \prod_{t=1}^{n} (1 - \beta \langle \mathbf{x}_t, \boldsymbol{\ell}_t \rangle + \beta^2 \langle \mathbf{x}_t, \boldsymbol{\ell}_t^2 \rangle),$$

Proof.

Note: $W_1 = n$.

$$\frac{W_{t+1}}{W_t} = \sum_{i=1}^n \frac{\mathbf{w}_{t+1}(i)}{W_t} = \sum_{i=1}^n \frac{\mathbf{w}_t(i) \cdot e^{-\beta \ell_t(i)}}{W_t} = \sum_{i=1}^n \mathbf{x}_t(i) \cdot e^{-\beta \ell_t(i)} \\
\leq \sum_{i=1}^n \mathbf{x}_t(i) \cdot (1 - \beta \ell_t(i) + \beta^2 \ell_t^2(i))$$

The proof (contd.)

Lemma 2 (MWU brings large loss $\Rightarrow W_{T+1}$ is SMALL)

$$W_{T+1} \leq n \prod_{t=1}^{n} (1 - \beta \langle \mathbf{x}_t, \boldsymbol{\ell}_t \rangle + \beta^2 \langle \mathbf{x}_t, \boldsymbol{\ell}_t^2 \rangle),$$

Proof.

Note: $W_1 = n$.

$$\begin{split} \frac{W_{t+1}}{W_t} &= \sum_{i=1}^n \frac{\boldsymbol{w}_{t+1}(i)}{W_t} = \sum_{i=1}^n \frac{\boldsymbol{w}_t(i) \cdot e^{-\beta \ell_t(i)}}{W_t} = \sum_{i=1}^n \boldsymbol{x}_t(i) \cdot e^{-\beta \ell_t(i)} \\ &\leq \sum_{i=1}^n \boldsymbol{x}_t(i) \cdot (1 - \beta \ell_t(i) + \beta^2 \ell_t^2(i)) \\ &= 1 - \beta \langle \boldsymbol{x}_t, \ell_t \rangle + \beta^2 \langle \boldsymbol{x}_t, \ell_t^2 \rangle \end{split}$$

The proof (contd.)

Lemma 2 (MWU brings large loss $\Rightarrow W_{T+1}$ is SMALL)

$$W_{T+1} \leq n \prod_{t=1}^{n} (1 - \beta \langle \mathbf{x}_t, \boldsymbol{\ell}_t \rangle + \beta^2 \langle \mathbf{x}_t, \boldsymbol{\ell}_t^2 \rangle),$$

Proof.

Note: $W_1 = n$.

$$\frac{W_{t+1}}{W_t} = \sum_{i=1}^n \frac{\mathbf{w}_{t+1}(i)}{W_t} = \sum_{i=1}^n \frac{\mathbf{w}_t(i) \cdot e^{-\beta \ell_t(i)}}{W_t} = \sum_{i=1}^n \mathbf{x}_t(i) \cdot e^{-\beta \ell_t(i)}$$

$$\leq \sum_{i=1}^n \mathbf{x}_t(i) \cdot (1 - \beta \ell_t(i) + \beta^2 \ell_t^2(i))$$

$$= 1 - \beta \langle \mathbf{x}_t, \ell_t \rangle + \beta^2 \langle \mathbf{x}_t, \ell_t^2 \rangle \leq e^{-\beta \langle \mathbf{x}_t, \ell_t \rangle + \beta^2 \langle \mathbf{x}_t, \ell_t^2 \rangle}.$$

The proof (contd.)

Lemma 2 (MWU brings large loss $\Rightarrow W_{T+1}$ is SMALL)

$$W_{T+1} \leq n \prod_{t=1}^{n} e^{-\beta \langle x_t, \ell_t \rangle + \beta^2 \langle x_t, \ell_t^2 \rangle}.$$

Proof.

Note: $W_1 = n$.

$$\frac{W_{t+1}}{W_t} = \sum_{i=1}^n \frac{\boldsymbol{w}_{t+1}(i)}{W_t} = \sum_{i=1}^n \frac{\boldsymbol{w}_t(i) \cdot e^{-\beta \ell_t(i)}}{W_t} = \sum_{i=1}^n \boldsymbol{x}_t(i) \cdot e^{-\beta \ell_t(i)}$$

$$\leq \sum_{i=1}^n \boldsymbol{x}_t(i) \cdot (1 - \beta \ell_t(i) + \beta^2 \ell_t^2(i))$$

$$= 1 - \beta \langle \boldsymbol{x}_t, \boldsymbol{\ell}_t \rangle + \beta^2 \langle \boldsymbol{x}_t, \boldsymbol{\ell}_t^2 \rangle \leq e^{-\beta \langle \boldsymbol{x}_t, \boldsymbol{\ell}_t \rangle + \beta^2 \langle \boldsymbol{x}_t, \boldsymbol{\ell}_t^2 \rangle}.$$

The proof (contd.)

Hence

$$\ln W_{T+1} \leq \ln n - \left(\sum_{i=1}^{T} \beta \langle \boldsymbol{\ell}_t, \boldsymbol{x}_t \rangle\right) + \left(\sum_{i=1}^{T} \beta^2 \langle \boldsymbol{\ell}_t^2, \boldsymbol{x}_t \rangle\right)$$

and In
$$W_{T+1} \ge -\beta L^*$$
.

Joseph C. C. Lin (CSE, NTOU, TW)

イロト イポト イヨト イヨ

The proof (contd.)

Hence

$$\ln W_{T+1} \leq \ln n - \left(\sum_{i=1}^{T} \beta \langle \boldsymbol{\ell}_t, \boldsymbol{x}_t \rangle\right) + \left(\sum_{i=1}^{T} \beta^2 \langle \boldsymbol{\ell}_t^2, \boldsymbol{x}_t \rangle\right)$$

and In $W_{T+1} \ge -\beta L^*$.

Thus,

$$\left(\sum_{t=1}^{T} \langle \boldsymbol{\ell}_t, \boldsymbol{x}_t \rangle \right) - \boldsymbol{L}^* \leq \frac{\ln n}{\beta} + \beta \sum_{t=1}^{T} \langle \boldsymbol{\ell}_t^2, \boldsymbol{x}_t \rangle.$$

The proof (contd.)

Hence

$$\ln W_{\mathcal{T}+1} \leq \ln n - \left(\sum_{i=1}^{\mathcal{T}} \beta \langle \boldsymbol{\ell}_t, \boldsymbol{x}_t \rangle\right) + \left(\sum_{i=1}^{\mathcal{T}} \beta^2 \langle \boldsymbol{\ell}_t^2, \boldsymbol{x}_t \rangle\right)$$

and In $W_{T+1} \ge -\beta L^*$.

Thus,

$$\left(\sum_{t=1}^{T} \langle \boldsymbol{\ell}_t, \boldsymbol{x}_t \rangle \right) - L^* \leq \frac{\ln n}{\beta} + \beta \sum_{t=1}^{T} \langle \boldsymbol{\ell}_t^2, \boldsymbol{x}_t \rangle.$$

Take $\beta = \sqrt{\frac{\ln n}{T}}$, we have regret $T \leq 2\sqrt{T \ln n}$.

Outline

Introduction

- 2 Gradient Descent for Online Convex Optimization (GD)
- 3 Multiplicative Weight Update (MWU)

Follow The Leader (FTL)

- 5 Follow The Regularized Leader (FTRL)
 - MWU Revisited
 - FTRL with 2-norm regularizer
- Multi-Armed Bandit (MAB)
 - Greedy Algorithms
 - Upper Confidence Bound (UCB)
 - Time-Decay ε-Greedy

Why so complicated?

• How about just following the one with best performance?

Joseph C. C. Lin (CSE, NTOU, TW)

Image: A matched and A matc

Why so complicated?

How about just following the one with best performance?
Follow The Leader (FTL) Algorithm.

Joseph C. C. Lin (CSE, NTOU, TW)

Why so complicated?

- How about just following the one with best performance?
 Follow The Leader (FTL) Algorithm.
- First, we assume to make no assumptions on \mathcal{K} and $\{f_t : L \mapsto \mathbb{R}\}$.
- At time t, we are given previous cost functions f_1, \ldots, f_{t-1} , and then give the solution

$$\mathbf{x}_t := \arg\min_{\mathbf{x}\in\mathcal{K}}\sum_{k=1}^{t-1} f_k(\mathbf{x}).$$

Why so complicated?

- How about just following the one with best performance?
 Follow The Leader (FTL) Algorithm.
- First, we assume to make no assumptions on \mathcal{K} and $\{f_t : L \mapsto \mathbb{R}\}$.
- At time t, we are given previous cost functions f_1, \ldots, f_{t-1} , and then give the solution

$$\mathbf{x}_t := \arg\min_{\mathbf{x}\in\mathcal{K}}\sum_{k=1}^{t-1} f_k(\mathbf{x}).$$

That is, the best solution for the previous t - 1 steps.

Why so complicated?

- How about just following the one with best performance?
 Follow The Leader (FTL) Algorithm.
- First, we assume to make no assumptions on \mathcal{K} and $\{f_t : L \mapsto \mathbb{R}\}$.
- At time t, we are given previous cost functions f_1, \ldots, f_{t-1} , and then give the solution

$$\mathbf{x}_t := \arg\min_{\mathbf{x}\in\mathcal{K}}\sum_{k=1}^{t-1} f_k(\mathbf{x}).$$

That is, the best solution for the previous t - 1 steps.

• It seems reasonable and makes sense, doesn't it?

FTL leads to "overfitting"

t:		1
x _t :		(0.5, 0.5)
ℓ_t :		(0,0.5)
$f_t(\mathbf{x}_t)$:		0.25
. S t	()	

 $\arg\min_{\boldsymbol{x}}\sum_{k=1}^{t}f_{k}(\boldsymbol{x}):\qquad(1,0)$

Joseph C. C. Lin (CSE, NTOU, TW)

FTL leads to "overfitting"

t:	1	2
\boldsymbol{x}_t :	(0.5, 0.5)	(1,0)
ℓ_t :	(0,0.5)	(1,0)
$f_t(\mathbf{x}_t)$:	0.25	1
. st	(, -)	

 $\arg\min_{\mathbf{x}}\sum_{k=1}^{t}f_{k}(\mathbf{x})$: (1,0) (0,1)

Joseph C. C. Lin (CSE, NTOU, TW)

イロト イヨト イヨト イヨト

FTL leads to "overfitting"

t:	1	2	3
\boldsymbol{x}_t :	(0.5, 0.5)	(1,0)	(0,1)
ℓ_t :	(0,0.5)	(1,0)	(0,1)
$f_t(\mathbf{x}_t)$:	0.25	1	1
$\cdot \nabla t (())$	(1, 0)	(0,1)	$(1 \ 0)$

Joseph C. C. Lin (CSE, NTOU, TW)

FTL leads to "overfitting"

<i>t</i> :	1	2	3	4
\boldsymbol{x}_t :	(0.5, 0.5)	(1,0)	(0,1)	(1,0)
ℓ_t :	(0,0.5)	(1,0)	(0,1)	(1,0)
$f_t(\mathbf{x}_t)$:	0.25	1	1	1
$\operatorname{argmin}_{\boldsymbol{x}}\sum_{k=1}^{t}f_{k}(\boldsymbol{x})$:	(1,0)	(0,1)	(1,0)	(0,1)

Joseph C. C. Lin (CSE, NTOU, TW)

FTL leads to "overfitting"

t:	1	2	3	4	5
\boldsymbol{x}_t :	(0.5, 0.5)	(1,0)	(0,1)	(1,0)	(0,1)
ℓ_t :	(0,0.5)	(1,0)	(0,1)	(1,0)	(0, 1)
$f_t(\mathbf{x}_t)$:	0.25	1	1	1	1
$\operatorname{argmin}_{\boldsymbol{x}}\sum_{k=1}^{t}f_{k}(\boldsymbol{x})$:	(1,0)	(0,1)	(1,0)	(0,1)	(1,0)

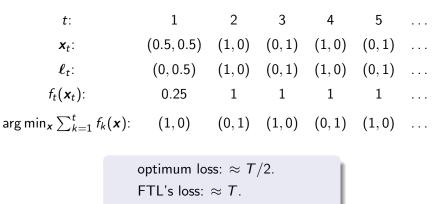
Joseph C. C. Lin (CSE, NTOU, TW)

FTL leads to "overfitting"

t:	1	2	3	4	5	
\boldsymbol{x}_t :	(0.5, 0.5)	(1,0)	(0,1)	(1,0)	(0, 1)	
ℓ_t :	(0,0.5)	(1,0)	(0,1)	(1,0)	(0, 1)	
$f_t(\mathbf{x}_t)$:	0.25	1	1	1	1	
$\arg\min_{\boldsymbol{x}}\sum_{k=1}^{t}f_{k}(\boldsymbol{x})$:	(1,0)	(0,1)	(1,0)	(0,1)	(1,0)	

Joseph C. C. Lin (CSE, NTOU, TW)

FTL leads to "overfitting"



regret: pprox T/2 (linear).

Joseph C. C. Lin (CSE, NTOU, TW)

イロト イヨト イヨト イヨト

Analysis of FTL

Theorem 2 (Analysis of FTL)

For any sequence of cost functions f_1, \ldots, f_t and any number of time steps T, the FTL algorithm satisfies

$$\mathsf{regret}_{\mathcal{T}} \leq \sum_{t=1}^{\mathcal{T}} (f_t(\boldsymbol{x}_t) - f_t(\boldsymbol{x}_{t+1})).$$

Joseph C. C. Lin (CSE, NTOU, TW)

Analysis of FTL

Theorem 2 (Analysis of FTL)

For any sequence of cost functions f_1, \ldots, f_t and any number of time steps T, the FTL algorithm satisfies

$$\mathsf{regret}_{\mathcal{T}} \leq \sum_{t=1}^{\mathcal{T}} (f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1})).$$

Implication: If $f_t(\cdot)$ is Lipschitz w.r.t. to some distance function $||\cdot||$, then x_t and x_{t+1} are close $\Rightarrow ||f_t(x_t) - f_t(x_{t+1})||$ can't be too large. **Modify FTL:** x_t 's shouldn't change too much from step by step.

Proof of Theorem 2

Recall that

$$\operatorname{regret}_{T} = \sum_{t=1}^{T} f_t(\boldsymbol{x}_t) - \min_{\boldsymbol{x} \in \mathcal{K}} \sum_{t=1}^{T} f_t(\boldsymbol{x})$$

Joseph C. C. Lin (CSE, NTOU, TW)

Proof of Theorem 2

Recall that

$$\operatorname{regret}_{\mathcal{T}} = \sum_{t=1}^{\mathcal{T}} f_t(\boldsymbol{x}_t) - \min_{\boldsymbol{x} \in \mathcal{K}} \sum_{t=1}^{\mathcal{T}} f_t(\boldsymbol{x}) \leq \sum_{t=1}^{\mathcal{T}} (f_t(\boldsymbol{x}_t) - f_t(\boldsymbol{x}_{t+1})).$$

The theorem $\Leftrightarrow \sum_{t=1}^{T} f_t(\mathbf{x}_{t+1}) \leq \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} f_t(\mathbf{x}).$

Joseph C. C. Lin (CSE, NTOU, TW)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proof of Theorem 2

Recall that

$$\operatorname{regret}_{T} = \sum_{t=1}^{T} f_t(\boldsymbol{x}_t) - \min_{\boldsymbol{x} \in \mathcal{K}} \sum_{t=1}^{T} f_t(\boldsymbol{x}) \leq \sum_{t=1}^{T} (f_t(\boldsymbol{x}_t) - f_t(\boldsymbol{x}_{t+1})).$$

The theorem $\Leftrightarrow \sum_{t=1}^{T} f_t(\mathbf{x}_{t+1}) \leq \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} f_t(\mathbf{x}).$

Prove by induction. T = 1: The definition of x_2 .

Joseph C. C. Lin (CSE, NTOU, TW)

Proof of Theorem 2

Recall that

$$\operatorname{regret}_{T} = \sum_{t=1}^{T} f_t(\mathbf{x}_t) - \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} f_t(\mathbf{x}) \leq \sum_{t=1}^{T} (f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1})).$$

The theorem $\Leftrightarrow \sum_{t=1}^{T} f_t(\mathbf{x}_{t+1}) \leq \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} f_t(\mathbf{x}).$

Prove by induction. T = 1: The definition of x_2 .

Assume that it holds up to T. Then:

Joseph C. C. Lin (CSE, NTOU, TW)

Proof of Theorem 2

Recall that

$$\operatorname{regret}_{T} = \sum_{t=1}^{T} f_t(\mathbf{x}_t) - \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} f_t(\mathbf{x}) \leq \sum_{t=1}^{T} (f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1})).$$

The theorem $\Leftrightarrow \sum_{t=1}^{T} f_t(\mathbf{x}_{t+1}) \leq \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} f_t(\mathbf{x}).$

Prove by induction. T = 1: The definition of x_2 . Assume that it holds up to T. Then:

$$\sum_{t=1}^{T+1} f_t(\boldsymbol{x}_{t+1}) = \sum_{t=1}^{T} f_t(\boldsymbol{x}_{t+1}) + f_{T+1}(\boldsymbol{x}_{T+2}) \le \sum_{t=1}^{T+1} f_t(\boldsymbol{x}_{T+2}) = \min_{\boldsymbol{x} \in \mathcal{K}} \sum_{t=1}^{T+1} f_t(\boldsymbol{x}),$$

No-Regret Online Learning Follow The Leader (FTL)

Proof of Theorem 2

Recall that

$$\operatorname{regret}_{T} = \sum_{t=1}^{T} f_t(\mathbf{x}_t) - \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} f_t(\mathbf{x}) \leq \sum_{t=1}^{T} (f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1})).$$

The theorem $\Leftrightarrow \sum_{t=1}^{T} f_t(\mathbf{x}_{t+1}) \leq \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} f_t(\mathbf{x}).$

Prove by induction. T = 1: The definition of x_2 . Assume that it holds up to T. Then:

$$\sum_{t=1}^{T+1} f_t(\boldsymbol{x}_{t+1}) = \sum_{t=1}^{T} f_t(\boldsymbol{x}_{t+1}) + f_{T+1}(\boldsymbol{x}_{T+2}) \le \sum_{t=1}^{T+1} f_t(\boldsymbol{x}_{T+2}) = \min_{\boldsymbol{x}\in\mathcal{K}} \sum_{t=1}^{T+1} f_t(\boldsymbol{x}),$$

where

$$\sum_{t=1}^{T} f_t(\boldsymbol{x}_{t+1}) \leq \min_{\boldsymbol{x} \in \mathcal{K}} \sum_{t=1}^{T} f_t(\boldsymbol{x}) \leq \sum_{t=1}^{T} f_t(\boldsymbol{x}_{T+2}).$$

Outline

Introduction

- 2 Gradient Descent for Online Convex Optimization (GD)
- 3 Multiplicative Weight Update (MWU)
- 4 Follow The Leader (FTL)

5 Follow The Regularized Leader (FTRL)

- MWU Revisited
- FTRL with 2-norm regularizer
- Multi-Armed Bandit (MAB)
 - Greedy Algorithms
 - Upper Confidence Bound (UCB)
 - Time-Decay ε-Greedy

Introducing REGULARIZATION

• You might have already been using regularization for quite a long time.

Joseph C. C. Lin (CSE, NTOU, TW)

Introducing REGULARIZATION

Joseph C. C. Lin (CSE, NTOU, TW)

Introducing REGULARIZATION

Joseph C. C. Lin (CSE, NTOU, TW)

< □ > < 同 > < 回 > < 回 > < 回 >

The regularizer

At each step, we compute the solution

$$oldsymbol{x}_t := rg\min_{oldsymbol{x} \in \mathcal{K}} \left(oldsymbol{R}(oldsymbol{x}) + \sum_{k=1}^{t-1} f_k(oldsymbol{x})
ight).$$

This is called Follow the Regularized Leader (FTRL). In short,

$$\mathsf{FTRL} = \mathsf{FTL} + \mathsf{Regularizer}.$$

Joseph C. C. Lin (CSE, NTOU, TW)

Fall 2024 41 / 81

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Analysis of FTRL

Theorem 3 (Analysis of FTRL)

For

- every sequence of cost function $\{f_t(\cdot)\}_{t\geq 1}$ and
- every regularizer function $R(\cdot)$,

for every x, the regret with respect to x after T steps of the FTRL algorithm is bounded as

$$\operatorname{regret}_{\mathcal{T}}(\boldsymbol{x}) \leq \left(\sum_{t=1}^{T} f_t(\boldsymbol{x}_t) - f_t(\boldsymbol{x}_{t+1})\right) + R(\boldsymbol{x}) - R(\boldsymbol{x}_1),$$

where regret $_{\mathcal{T}}(\mathbf{x}) := \sum_{t=1}^{\mathcal{T}} (f_t(\mathbf{x}_t) - f_t(\mathbf{x})).$

Proof of Theorem 3

• Consider a *mental* experiment:

Joseph C. C. Lin (CSE, NTOU, TW)

Proof of Theorem 3

• Consider a *mental* experiment:

- We run the FTL algorithm for T + 1 steps.
- The sequence of cost functions: R, f_1 , f_2 , ..., f_T .
 - Use x_1 as the first solution.
- The solutions: x_1 , x_1 , x_2 , ..., x_T .

Joseph C. C. Lin (CSE, NTOU, TW)

Proof of Theorem 3

• Consider a *mental* experiment:

- We run the FTL algorithm for T + 1 steps.
- The sequence of cost functions: R, f_1 , f_2 , ..., f_T .
 - Use x_1 as the first solution.
- The solutions: $\mathbf{x}_1, \mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_T$.

• The regret:

$$R(\mathbf{x}_1) - R(\mathbf{x}) + \sum_{t=1}^{T} (f_t(\mathbf{x}_t) - f_t(\mathbf{x}))$$

Proof of Theorem 3

• Consider a *mental* experiment:

- We run the FTL algorithm for T + 1 steps.
- The sequence of cost functions: R, f_1 , f_2 , ..., f_T .
 - Use x_1 as the first solution.
- The solutions: x_1 , x_1 , x_2 , ..., x_T .

• The regret:

$$R(\mathbf{x}_1) - R(\mathbf{x}) + \sum_{t=1}^{T} (f_t(\mathbf{x}_t) - f_t(\mathbf{x})) \le R(\mathbf{x}_1) - R(\mathbf{x}_1) + \sum_{t=1}^{T} (f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1}))$$

minimizer of $R(\cdot)$

Proof of Theorem 3

• Consider a *mental* experiment:

- We run the FTL algorithm for T + 1 steps.
- The sequence of cost functions: R, f_1 , f_2 , ..., f_T .
 - Use x_1 as the first solution.
- The solutions: x_1 , x_1 , x_2 , ..., x_T .

• The regret:

$$R(\mathbf{x}_1) - R(\mathbf{x}) + \sum_{t=1}^{T} (f_t(\mathbf{x}_t) - f_t(\mathbf{x})) \le R(\mathbf{x}_1) - R(\mathbf{x}_1) + \sum_{t=1}^{T} (f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1}))$$

output of FTRL at t+1

Outline

1 Introduction

- 2 Gradient Descent for Online Convex Optimization (GD)
- 3 Multiplicative Weight Update (MWU)
- 4 Follow The Leader (FTL)
- 5 Follow The Regularized Leader (FTRL)
 - MWU Revisited
 - FTRL with 2-norm regularizer
 - Multi-Armed Bandit (MAB)
 - Greedy Algorithms
 - Upper Confidence Bound (UCB)
 - Time-Decay ε-Greedy

Using negative-entropy regularization

 We have seen an example that FTL tends to put all probability mass on one expert (it's bad!)

Using negative-entropy regularization

- We have seen an example that FTL tends to put all probability mass on one expert (it's bad!)
- Idea: penalize over "concentralized" distributions.
 - negative-entropy: a good measure of how centralized a distribution is.

(4) (3) (4) (4) (4)

Using negative-entropy regularization

- We have seen an example that FTL tends to put all probability mass on one expert (it's bad!)
- Idea: penalize over "concentralized" distributions.
 - negative-entropy: a good measure of how centralized a distribution is.

$$R(\mathbf{x}) := \mathbf{c} \cdot \sum_{i=1}^{n} \mathbf{x}(i) \ln \mathbf{x}(i).$$

< ∃ > < ∃

Using negative-entropy regularization

- We have seen an example that FTL tends to put all probability mass on one expert (it's bad!)
- Idea: penalize over "concentralized" distributions.
 - negative-entropy: a good measure of how centralized a distribution is.

$$R(\mathbf{x}) := \mathbf{c} \cdot \sum_{i=1}^{n} \mathbf{x}(i) \ln \mathbf{x}(i).$$

So our FTRL gives

$$\mathbf{x}_{t} = \arg\min_{\mathbf{x}\in\Delta} \left(\sum_{k=1}^{t-1} \langle \ell_{k}, \mathbf{x} \rangle + c \cdot \sum_{i=1}^{n} \mathbf{x}(i) \ln \mathbf{x}(i) \right).$$

Using negative entropy regularization

$$\mathbf{x}_t = \arg\min_{\mathbf{x}\in\Delta} \left(\sum_{k=1}^{t-1} \langle \boldsymbol{\ell}_k, \mathbf{x} \rangle + c \cdot \sum_{i=1}^n \mathbf{x}(i) \ln \mathbf{x}(i) \right).$$

• The constraint $\mathbf{x} \in \Delta \Rightarrow \sum_{i} \mathbf{x}_{i} = 1$.

• So we use Lagrange multiplier to solve

$$\mathcal{L} = \left(\sum_{k=1}^{t-1} \langle \boldsymbol{\ell}_k, \boldsymbol{x} \rangle\right) + c \cdot \left(\sum_{i=1}^n \boldsymbol{x}(i) \ln \boldsymbol{x}(i)\right) + \lambda \cdot (\langle \boldsymbol{x}, \boldsymbol{1} \rangle - 1).$$

Joseph C. C. Lin (CSE, NTOU, TW)

Using negative entropy regularization

$$\mathbf{x}_t = \arg\min_{\mathbf{x}\in\Delta} \left(\sum_{k=1}^{t-1} \langle \boldsymbol{\ell}_k, \mathbf{x} \rangle + c \cdot \sum_{i=1}^n \mathbf{x}(i) \ln \mathbf{x}(i) \right).$$

• The constraint $\mathbf{x} \in \Delta \Rightarrow \sum_{i} \mathbf{x}_{i} = 1$.

• So we use Lagrange multiplier to solve

$$\mathcal{L} = \left(\sum_{k=1}^{t-1} \langle \boldsymbol{\ell}_k, \boldsymbol{x} \rangle\right) + c \cdot \left(\sum_{i=1}^n \boldsymbol{x}(i) \ln \boldsymbol{x}(i)\right) + \lambda \cdot (\langle \boldsymbol{x}, \boldsymbol{1} \rangle - 1).$$

• The partial derivative $\frac{\partial \mathcal{L}}{\partial \mathbf{x}(i)}$:

$$\left(\sum_{k=1}^{t-1} \ell_k(i)\right) + c \cdot (1 + \ln \mathbf{x}_i) + \lambda$$

Rediscover MWU?

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{x}(i)} = 0 \quad \Rightarrow \quad \boldsymbol{x}(i) = \exp\left(-1 - \frac{\lambda}{c} - \frac{1}{c} \sum_{k=1}^{t-1} \ell_k(i)\right)$$

Joseph C. C. Lin (CSE, NTOU, TW)

Fall 2024 47 / 81

Rediscover MWU?

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{x}(i)} = 0 \quad \Rightarrow \quad \boldsymbol{x}(i) = \exp\left(-1 - \frac{\lambda}{c} - \frac{1}{c} \sum_{k=1}^{t-1} \ell_k(i)\right)$$

Take the value of λ to make the solution a probability distribution. Thus,

Joseph C. C. Lin (CSE, NTOU, TW)

Fall 2024 47 / 81

Rediscover MWU?

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{x}(i)} = 0 \quad \Rightarrow \quad \boldsymbol{x}(i) = \exp\left(-1 - \frac{\lambda}{c} - \frac{1}{c} \sum_{k=1}^{t-1} \ell_k(i)\right)$$

Take the value of λ to make the solution a probability distribution. Thus,

$$\mathbf{x}(i) = \frac{\exp\left(-\frac{1}{c}\sum_{k=1}^{t-1}\ell_k(i)\right)}{\sum_j \exp\left(-\frac{1}{c}\sum_{k=1}^{t-1}\ell_k(j)\right)}.$$

Joseph C. C. Lin (CSE, NTOU, TW)

Rediscover MWU?

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{x}(i)} = 0 \quad \Rightarrow \quad \boldsymbol{x}(i) = \exp\left(-1 - \frac{\lambda}{c} - \frac{1}{c} \sum_{k=1}^{t-1} \ell_k(i)\right)$$

Take the value of λ to make the solution a probability distribution. Thus,

$$\mathbf{x}(i) = \frac{\exp\left(-\frac{1}{c}\sum_{k=1}^{t-1}\ell_k(i)\right)}{\sum_j \exp\left(-\frac{1}{c}\sum_{k=1}^{t-1}\ell_k(j)\right)}.$$

Exactly the solution of MWU if we take $c = 1/\beta!$

イロト イボト イヨト イヨ

Rediscover MWU?

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{x}(i)} = 0 \quad \Rightarrow \quad \boldsymbol{x}(i) = \exp\left(-1 - \frac{\lambda}{c} - \frac{1}{c} \sum_{k=1}^{t-1} \ell_k(i)\right)$$

Take the value of λ to make the solution a probability distribution. Thus,

$$\mathbf{x}(i) = \frac{\exp\left(-\frac{1}{c}\sum_{k=1}^{t-1}\boldsymbol{\ell}_k(i)\right)}{\sum_j \exp\left(-\frac{1}{c}\sum_{k=1}^{t-1}\boldsymbol{\ell}_k(j)\right)}.$$

Exactly the solution of MWU if we take $c = 1/\beta!$

• Now it remains to bound the deviation of each step.

Joseph C. C. Lin (CSE, NTOU, TW)

Fall 2024 47 / 81

Regret of FTRL + Negative-Entropy Regularization

• At each step,

$$f_t(\boldsymbol{x}_t) - f_t(\boldsymbol{x}_{t+1}) = \langle \boldsymbol{\ell}_t, \boldsymbol{x}_t - \boldsymbol{x}_{t+1} \rangle$$

- Let's go back to use the notation of MWU.
 - $\boldsymbol{w}_1(i) = 1$ (initialization).

•
$$w_{t+1}(i) = w_t(i) \cdot e^{-\ell_t(i)/d}$$

< □ > < /□ >

• = • •

Regret of FTRL + Negative-Entropy Regularization

• At each step,

$$f_t(\boldsymbol{x}_t) - f_t(\boldsymbol{x}_{t+1}) = \langle \boldsymbol{\ell}_t, \boldsymbol{x}_t - \boldsymbol{x}_{t+1} \rangle$$

• Let's go back to use the notation of MWU.

• So,
$$\mathbf{x}_t = \frac{\mathbf{w}_t(i)}{\sum_j \mathbf{w}_t(j)}$$
.

Then,

$$\begin{aligned} \mathbf{x}_{t+1}(i) &= \frac{\mathbf{w}_{t+1}(i)}{\sum_{j} \mathbf{w}_{t+1}(j)} = \frac{\mathbf{w}_{t}(i)e^{-\ell_{t}(i)/c}}{\sum_{j} \mathbf{w}_{t+1}(j)} \geq \frac{\mathbf{w}_{t}(i)e^{-\ell_{t}(i)/c}}{\sum_{j} \mathbf{w}_{t}(j)} \\ &\geq \mathbf{x}_{t}(i) \cdot e^{-1/c} \geq (1 - 1/c)\mathbf{x}_{t}(i). \end{aligned}$$

Regret of FTRL + Negative-Entropy Regularization

• At each step,

$$f_t(\boldsymbol{x}_t) - f_t(\boldsymbol{x}_{t+1}) = \langle \boldsymbol{\ell}_t, \boldsymbol{x}_t - \boldsymbol{x}_{t+1} \rangle$$

• Let's go back to use the notation of MWU.

•
$$w_1(i) = 1$$
 (initialization).
• $w_{t+1}(i) = w_t(i) \cdot e^{-\ell_t(i)/c}$

• So,
$$\mathbf{x}_t = \frac{\mathbf{w}_t(i)}{\sum_j \mathbf{w}_t(j)}$$
.

Then,

$$\begin{aligned} \mathbf{x}_{t+1}(i) &= \frac{\mathbf{w}_{t+1}(i)}{\sum_{j} \mathbf{w}_{t+1}(j)} = \frac{\mathbf{w}_{t}(i)e^{-\ell_{t}(i)/c}}{\sum_{j} \mathbf{w}_{t+1}(j)} \geq \frac{\mathbf{w}_{t}(i)e^{-\ell_{t}(i)/c}}{\sum_{j} \mathbf{w}_{t}(j)} \\ &\geq \mathbf{x}_{t}(i) \cdot e^{-1/c} \geq (1 - 1/c)\mathbf{x}_{t}(i). \end{aligned}$$

: weights are non-increasing

Joseph C. C. Lin (CSE, NTOU, TW)

A = >

Regret of FTRL + Negative-Entropy Regularization

• At each step,

$$f_t(\boldsymbol{x}_t) - f_t(\boldsymbol{x}_{t+1}) = \langle \boldsymbol{\ell}_t, \boldsymbol{x}_t - \boldsymbol{x}_{t+1} \rangle$$

• Let's go back to use the notation of MWU.

• So,
$$\mathbf{x}_t = \frac{\mathbf{w}_t(i)}{\sum_j \mathbf{w}_t(j)}$$
.

Then,

$$\begin{aligned} \mathbf{x}_{t+1}(i) &= \frac{\mathbf{w}_{t+1}(i)}{\sum_{j} \mathbf{w}_{t+1}(j)} = \frac{\mathbf{w}_{t}(i)e^{-\ell_{t}(i)/c}}{\sum_{j} \mathbf{w}_{t+1}(j)} \geq \frac{\mathbf{w}_{t}(i)e^{-\ell_{t}(i)/c}}{\sum_{j} \mathbf{w}_{t}(j)} \\ &\geq \mathbf{x}_{t}(i) \cdot e^{-1/c} \geq (1 - 1/c)\mathbf{x}_{t}(i). \end{aligned}$$

assume $0 \leq \ell_t(i) \leq 1$

イロト イポト イヨト イヨ

Regret of FTRL + Negative-Entropy Regularization

• At each step,

$$f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1}) = \langle \boldsymbol{\ell}_t, \mathbf{x}_t - \mathbf{x}_{t+1} \rangle \leq \sum_i \boldsymbol{\ell}_t(i) \cdot \frac{1}{c} \mathbf{x}_t(i) \leq \frac{1}{c}$$

• Let's go back to use the notation of MWU.

• So,
$$\mathbf{x}_t = \frac{\mathbf{w}_t(i)}{\sum_j \mathbf{w}_t(j)}$$
.

Then,

$$\begin{aligned} \mathbf{x}_{t+1}(i) &= \frac{\mathbf{w}_{t+1}(i)}{\sum_{j} \mathbf{w}_{t+1}(j)} = \frac{\mathbf{w}_{t}(i)e^{-\ell_{t}(i)/c}}{\sum_{j} \mathbf{w}_{t+1}(j)} \geq \frac{\mathbf{w}_{t}(i)e^{-\ell_{t}(i)/c}}{\sum_{j} \mathbf{w}_{t}(j)} \\ &\geq \mathbf{x}_{t}(i) \cdot e^{-1/c} \geq (1 - 1/c)\mathbf{x}_{t}(i). \end{aligned}$$

Regret of FTRL + Negative-Entropy Regularization

• By Theorem 3, for any x,

$$\operatorname{regret}_{\mathcal{T}}(\boldsymbol{x}) \leq \sum_{t=1}^{\mathcal{T}} \left(f_t(\boldsymbol{x}_t) - f_t(\boldsymbol{x}_{t+1}) \right) + R(\boldsymbol{x}) - R(\boldsymbol{x}_1) \leq \frac{\mathcal{T}}{c} + c \ln n.$$

Joseph C. C. Lin (CSE, NTOU, TW)

< □ > < /□ >

→ Ξ →

Regret of FTRL + Negative-Entropy Regularization

• By Theorem 3, for any x,

$$\operatorname{regret}_T(\mathbf{x}) \leq \sum_{t=1}^T \left(f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1}) \right) + R(\mathbf{x}) - R(\mathbf{x}_1) \leq \frac{T}{c} + c \ln n.$$

∵ max entropy for uniform distribution

Joseph C. C. Lin (CSE, NTOU, TW)

→ Ξ →

Regret of FTRL + Negative-Entropy Regularization

• By Theorem 3, for any x,

$$\operatorname{regret}_{T}(\mathbf{x}) \leq \sum_{t=1}^{T} \left(f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1}) \right) + R(\mathbf{x}) - R(\mathbf{x}_1) \leq \frac{T}{c} + c \ln n.$$

Again, we have regret $\tau \leq 2\sqrt{T \ln n}$ by choosing $c = \sqrt{\frac{T}{\ln n}}$.

Joseph C. C. Lin (CSE, NTOU, TW)

イロト イヨト イヨト イヨ

Regret of FTRL + Negative-Entropy Regularization

• By Theorem 3, for any x,

$$\operatorname{regret}_{T}(\mathbf{x}) \leq \sum_{t=1}^{T} \left(f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1}) \right) + R(\mathbf{x}) - R(\mathbf{x}_1) \leq \frac{T}{c} + c \ln n.$$

Again, we have regret $T \leq 2\sqrt{T \ln n}$ by choosing $c = \sqrt{\frac{T}{\ln n}}$.

 $\bullet\,$ Note the slight difference b/w regret and regret*.

Joseph C. C. Lin (CSE, NTOU, TW)

No-Regret Online Learning Follow The Regularized Leader (FTRL) FTRL with 2-norm regularizer

Outline

1 Introduction

- 2 Gradient Descent for Online Convex Optimization (GD)
- 3 Multiplicative Weight Update (MWU)
- 4 Follow The Leader (FTL)
- 5 Follow The Regularized Leader (FTRL)
 - MWU Revisited
 - FTRL with 2-norm regularizer
 - Multi-Armed Bandit (MAB)
 - Greedy Algorithms
 - Upper Confidence Bound (UCB)
 - Time-Decay *e*-Greedy

No-Regret Online Learning Follow The Regularized Leader (FTRL) FTRL with 2-norm regularizer

L2 Regularization

- Let's try to apply the FTRL to the case that the regularizer is of L2 norm!
- Consider also linear cost functions but $\mathcal{K} = \mathbb{R}^n$ first.
- What kind of problem we might encounter?

Joseph C. C. Lin (CSE, NTOU, TW)

I ≡ ►

No-Regret Online Learning Follow The Regularized Leader (FTRL) FTRL with 2-norm regularizer

L2 Regularization

- Let's try to apply the FTRL to the case that the regularizer is of L2 norm!
- Consider also linear cost functions but $\mathcal{K} = \mathbb{R}^n$ first.
- What kind of problem we might encounter?
- The offline optimum could be $-\infty$.
- FTL will also tend to find a solution of "big" size, too.

(4) (3) (4) (4) (4)

L2 Regularization

- Let's try to apply the FTRL to the case that the regularizer is of L2 norm!
- Consider also linear cost functions but $\mathcal{K} = \mathbb{R}^n$ first.
- What kind of problem we might encounter?
- The offline optimum could be $-\infty$.
- FTL will also tend to find a solution of "big" size, too.
- To fight this tendency, it makes sense to use a regularizer which penalizes the size of a solution.

$R(\boldsymbol{x}) := c||\boldsymbol{x}||^2.$

The regularizer of 2-norm tells us...

- $x_1 = 0$.
- $\mathbf{x}_{t+1} = \arg\min_{\mathbf{x}\in\mathbb{R}^n} c ||\mathbf{x}||^2 + \sum_{k=1}^t \langle \ell_k, \mathbf{x} \rangle.$
- Compute the gradient:

$$2c\mathbf{x} + \sum_{k=1}^{t} \ell_k = 0$$
$$\Rightarrow \quad \mathbf{x} = -\frac{1}{2c} \sum_{k=1}^{t} \ell_k.$$

Hence,
$$x_1 = 0, x_{t+1} = x_t - \frac{1}{2c}\ell_t$$
.

The regularizer of 2-norm tells us...

- $x_1 = 0$.
- $\mathbf{x}_{t+1} = \arg\min_{\mathbf{x}\in\mathbb{R}^n} c ||\mathbf{x}||^2 + \sum_{k=1}^t \langle \boldsymbol{\ell}_k, \mathbf{x} \rangle.$ convex
- Compute the gradient:

$$2c\mathbf{x} + \sum_{k=1}^{t} \ell_k = 0$$
$$\Rightarrow \quad \mathbf{x} = -\frac{1}{2c} \sum_{k=1}^{t} \ell_k.$$

Hence,
$$x_1 = 0, x_{t+1} = x_t - \frac{1}{2c}\ell_t$$
.

The regularizer of 2-norm tells us...

- $x_1 = 0$.
- $\mathbf{x}_{t+1} = \arg\min_{\mathbf{x}\in\mathbb{R}^n} c ||\mathbf{x}||^2 + \sum_{k=1}^t \langle \ell_k, \mathbf{x} \rangle.$
- Compute the gradient:

$$2c\mathbf{x} + \sum_{k=1}^{t} \ell_k = 0$$
$$\Rightarrow \quad \mathbf{x} = -\frac{1}{2c} \sum_{k=1}^{t} \ell_k.$$

Hence,
$$x_1 = 0, x_{t+1} = x_t - \frac{1}{2c} \ell_t$$
.

The regularizer of 2-norm tells us...

- $x_1 = 0$.
- $\mathbf{x}_{t+1} = \arg\min_{\mathbf{x}\in\mathbb{R}^n} c ||\mathbf{x}||^2 + \sum_{k=1}^t \langle \ell_k, \mathbf{x} \rangle.$
- Compute the gradient:

$$2c\mathbf{x} + \sum_{k=1}^{t} \ell_k = 0$$

 $\Rightarrow \mathbf{x} = -\frac{1}{2c} \sum_{k=1}^{t} \ell_k.$

Hence, $\mathbf{x}_1 = \mathbf{0}, \mathbf{x}_{t+1} = \mathbf{x}_t - \frac{1}{2c}\ell_t$. \rightarrow penalize the experts that performed badly in the past!

The regret of FTRL with 2-norm regularization

First, we have

$$f_t(\boldsymbol{x}_t) - f_t(\boldsymbol{x}_{t+1}) = \langle \boldsymbol{\ell}_t, \boldsymbol{x}_t - \boldsymbol{x}_{t+1} \rangle = \left\langle \boldsymbol{\ell}_t, rac{1}{2c} \boldsymbol{\ell}_t
ight
angle = rac{1}{2c} || \boldsymbol{\ell}_t ||^2.$$

• So, with respect to a solution x,

$$\operatorname{regret}_{T}(\mathbf{x}) \leq R(\mathbf{x}) - R(\mathbf{x}_{1}) + \sum_{t=1}^{T} f_{t}(\mathbf{x}_{t}) - f_{t}(\mathbf{x}_{t+1})$$
$$= c||\mathbf{x}||^{2} + \frac{1}{2c} \sum_{t=1}^{T} ||\boldsymbol{\ell}_{t}||^{2}.$$

• Suppose that $||\ell_t|| \le L$ for each t and $||\mathbf{x}|| \le D$. Then by optimizing $c = \sqrt{\frac{T}{2D^2L^2}}$, we have

regret_T(
$$\mathbf{x}$$
) $\leq DL\sqrt{2T}$.

Joseph C. C. Lin (CSE, NTOU, TW)

No-Regret Online Learning

(4) (3) (4) (4) (4)

Dealing with constraints

- Let's deal with the constraint that K is an arbitrary convex set instead of ℝⁿ.
- Using the same regularizer, we have our FTRL which gives

$$\begin{split} \mathbf{x}_1 &= \arg\min_{\mathbf{x}\in\mathcal{K}} c ||\mathbf{x}||^2, \\ \mathbf{x}_{t+1} &= \arg\min_{\mathbf{x}\in\mathcal{K}} c ||\mathbf{x}||^2 + \sum_{k=1}^t \langle \boldsymbol{\ell}_t, \mathbf{x} \rangle. \end{split}$$

Joseph C. C. Lin (CSE, NTOU, TW)

Dealing with constraints

- Let's deal with the constraint that K is an arbitrary convex set instead of ℝⁿ.
- Using the same regularizer, we have our FTRL which gives

$$\begin{split} \mathbf{x}_1 &= \arg\min_{\mathbf{x}\in\mathcal{K}} c ||\mathbf{x}||^2, \\ \mathbf{x}_{t+1} &= \arg\min_{\mathbf{x}\in\mathcal{K}} c ||\mathbf{x}||^2 + \sum_{k=1}^t \langle \boldsymbol{\ell}_t, \mathbf{x} \rangle. \end{split}$$

• **The idea:** First solve the unconstrained optimization and then project the solution on *K*.

Joseph C. C. Lin (CSE, NTOU, TW)

(4) (3) (4) (4) (4)

< □ > < @ >

Unconstrained optimization + projection

$$\begin{split} \mathbf{y}_{t+1} &= \arg\min_{\mathbf{y}\in\mathbb{R}^n} c ||\mathbf{y}||^2 + \sum_{k=1}^t \langle \boldsymbol{\ell}_t, \mathbf{y} \rangle. \\ \mathbf{x}_{t+1}' &= \Pi_{\mathcal{K}}(\mathbf{y}_{t+1}) = \arg\min_{\mathbf{x}\in\mathcal{K}} ||\mathbf{x} - \mathbf{y}_{t+1}||. \end{split}$$

Joseph C. C. Lin (CSE, NTOU, TW)

Image: A matched and A matc

Unconstrained optimization + projection

$$\begin{split} \mathbf{y}_{t+1} &= \arg\min_{\mathbf{y}\in\mathbb{R}^n} c ||\mathbf{y}||^2 + \sum_{k=1}^t \langle \boldsymbol{\ell}_t, \mathbf{y} \rangle. \\ \mathbf{x}_{t+1}' &= \Pi_{\mathcal{K}}(\mathbf{y}_{t+1}) = \arg\min_{\mathbf{x}\in\mathcal{K}} ||\mathbf{x} - \mathbf{y}_{t+1}||. \end{split}$$

• Claim: $x'_{t+1} = x_{t+1}$.

Joseph C. C. Lin (CSE, NTOU, TW)

< □ > < 同 > < 回 > < Ξ > < Ξ

Proof of the claim: $\mathbf{x}'_{t+1} = \mathbf{x}_{t+1}$

- First, we already have that $y_{t+1} = -\frac{1}{2c} \sum_{k=1}^{t} \ell_t$.
- Then,

$$\begin{aligned} \mathbf{x}'_{t+1} &= \arg\min_{\mathbf{x}\in\mathcal{K}} ||\mathbf{x} - \mathbf{y}_{t+1}|| = \arg\min_{\mathbf{x}\in\mathcal{K}} ||\mathbf{x} - \mathbf{y}_{t+1}||^2 \\ &= \arg\min_{\mathbf{x}\in\mathcal{K}} ||\mathbf{x}||^2 - 2\langle \mathbf{x}, \mathbf{y}_{t+1} \rangle + ||\mathbf{y}_{t+1}||^2 \end{aligned}$$

Joseph C. C. Lin (CSE, NTOU, TW)

<ロ> <四> <四> <四> <四</td>

Proof of the claim: $\mathbf{x}'_{t+1} = \mathbf{x}_{t+1}$

- First, we already have that $y_{t+1} = -\frac{1}{2c} \sum_{k=1}^{t} \ell_t$.
- Then,

$$\begin{aligned} \mathbf{x}_{t+1}' &= \arg\min_{\mathbf{x}\in\mathcal{K}} ||\mathbf{x} - \mathbf{y}_{t+1}|| = \arg\min_{\mathbf{x}\in\mathcal{K}} ||\mathbf{x} - \mathbf{y}_{t+1}||^2 \\ &= \arg\min_{\mathbf{x}\in\mathcal{K}} ||\mathbf{x}||^2 - 2\langle \mathbf{x}, \mathbf{y}_{t+1} \rangle + ||\mathbf{y}_{t+1}||^2 \\ &= \arg\min_{\mathbf{x}\in\mathcal{K}} ||\mathbf{x}||^2 - 2\langle \mathbf{x}, \mathbf{y}_{t+1} \rangle \\ &= \arg\min_{\mathbf{x}\in\mathcal{K}} ||\mathbf{x}||^2 - 2\left\langle \mathbf{x}, -\frac{1}{2c}\sum_{k=1}^t \ell_t \right\rangle \\ &= \arg\min_{\mathbf{x}\in\mathcal{K}} c||\mathbf{x}||^2 + \left\langle \mathbf{x}, \sum_{k=1}^t \ell_t \right\rangle \\ &= \mathbf{x}_{t+1}. \end{aligned}$$

< □ > < 同 > < 回 > < Ξ > < Ξ

To bound the regret

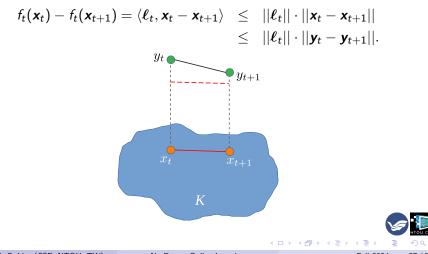
$$f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1}) = \langle \boldsymbol{\ell}_t, \mathbf{x}_t - \mathbf{x}_{t+1} \rangle \le ||\boldsymbol{\ell}_t|| \cdot ||\mathbf{x}_t - \mathbf{x}_{t+1}||$$

Joseph C. C. Lin (CSE, NTOU, TW)

No-Regret Online Learning

Fall 2024 57 / 81

To bound the regret



Joseph C. C. Lin (CSE, NTOU, TW)

No-Regret Online Learning

Fall 2024 57 / 81

To bound the regret

$$egin{aligned} f_t(oldsymbol{x}_t) - f_t(oldsymbol{x}_{t+1}) &= \langle oldsymbol{\ell}_t, oldsymbol{x}_t - oldsymbol{x}_{t+1}
angle & \leq & ||oldsymbol{\ell}_t|| \cdot ||oldsymbol{x}_t - oldsymbol{x}_{t+1}|| \ &\leq & 1 \ &2c} ||oldsymbol{\ell}_t||^2. \end{aligned}$$

So, assume $\max_{\pmb{x}\in\mathcal{K}}||\pmb{x}|| \leq D$ and $||\pmb{\ell}_t|| \leq L$ for all t, we have

regret_T
$$\leq c ||\mathbf{x}^*||^2 - c ||\mathbf{x}_1||^2 + \frac{1}{2c} \sum_{t=1}^T ||\boldsymbol{\ell}_t||^2$$

 $\leq cD^2 + \frac{1}{2c} TL^2$

To bound the regret

$$egin{array}{lll} f_t(oldsymbol{x}_t)-f_t(oldsymbol{x}_{t+1})&\leq&||oldsymbol{\ell}_t||\cdot||oldsymbol{x}_t-oldsymbol{x}_{t+1}||\ &\leq&||oldsymbol{\ell}_t||\cdot||oldsymbol{y}_t-oldsymbol{x}_{t+1}||\ &\leq&rac{1}{2c}||oldsymbol{\ell}_t||^2. \end{array}$$

So, assume $\max_{\pmb{x}\in\mathcal{K}}||\pmb{x}|| \leq D$ and $||\pmb{\ell}_t|| \leq L$ for all t, we have

$$regret_{T} \leq c||\mathbf{x}^{*}||^{2} - c||\mathbf{x}_{1}||^{2} + \frac{1}{2c} \sum_{t=1}^{T} ||\boldsymbol{\ell}_{t}||^{2} \\ \leq cD^{2} + \frac{1}{2c} TL^{2} \leq DL\sqrt{2T}.$$

Outline

1 Introduction

- 2 Gradient Descent for Online Convex Optimization (GD)
- 3 Multiplicative Weight Update (MWU)
- 4 Follow The Leader (FTL)
- 5 Follow The Regularized Leader (FTRL)
 - MWU Revisited
 - FTRL with 2-norm regularizer

💿 Multi-Armed Bandit (MAB)

- Greedy Algorithms
- Upper Confidence Bound (UCB)
- Time-Decay *e*-Greedy

No-Regret Online Learning Multi-Armed Bandit (MAB)

Multi-Armed Bandit

Fig.: Image credit: Microsoft Research

Joseph C. C. Lin (CSE, NTOU, TW)

∃ >

The setting

- We can see N arms as N experts.
- Arms give are independent.
- We can only pull an arm and observe the reward of it.
 - It's NOT possible to observe the reward of pulling the other arms...
- Each arm *i* has its own reward $r_i \in [0, 1]$.

Joseph C. C. Lin (CSE, NTOU, TW)

< □ > < 凸

< ∃ ►

Fall 2024 61 / 81

The setting

- We can see N arms as N experts.
- Arms give are independent.
- We can only pull an arm and observe the reward of it.
 - It's NOT possible to observe the reward of pulling the other arms...
- Each arm *i* has its own reward $r_i \in [0, 1]$.
 - μ_i : the mean of reward of arm *i*
 - $\hat{\mu}_i$: the empirical mean of reward of arm i
 - $\mu^{\ast}:$ the mean of reward of the BEST arm.

•
$$\Delta_i$$
: $\mu^* - \mu_i$.

- Index of the best arm: $I^* := \arg \max_{i \in \{1,...,N\}} \mu_i$.
- The associated highest expected reward: $\mu^* = \mu_{I^*}$.

< ロト < 同ト < ヨト < ヨ

Let I_t be the arm played by the algorithm at time t. The regret of the algorithm in T rounds is

$$\operatorname{regret}_{\mathcal{T}} = \sum_{t=1}^{\mathcal{T}} (\mu^* - \mu_{l_t})$$

Joseph C. C. Lin (CSE, NTOU, TW)

< ∃ ►

Let I_t be the arm played by the algorithm at time t. The regret of the algorithm in T rounds is

regret_T =
$$\sum_{t=1}^{T} (\mu^* - \mu_{I_t}) = \sum_{i=1}^{N} \sum_{t:I_t=i} (\mu^* - \mu_i)$$

Joseph C. C. Lin (CSE, NTOU, TW)

< ∃ ►

Let I_t be the arm played by the algorithm at time t. The regret of the algorithm in T rounds is

$$\operatorname{regret}_{\mathcal{T}} = \sum_{t=1}^{\mathcal{T}} (\mu^* - \mu_{I_t}) = \sum_{i=1}^{N} \sum_{t:I_t=i} (\mu^* - \mu_i)$$
$$= \sum_{i=1}^{N} n_{i,\mathcal{T}} \Delta_i$$

Joseph C. C. Lin (CSE, NTOU, TW)

< ∃ ►

Let I_t be the arm played by the algorithm at time t. The regret of the algorithm in T rounds is

$$\operatorname{regret}_{T} = \sum_{t=1}^{T} (\mu^{*} - \mu_{l_{t}}) = \sum_{i=1}^{N} \sum_{t:l_{t}=i} (\mu^{*} - \mu_{i})$$
$$= \sum_{i=1}^{N} n_{i,T} \Delta_{i}$$
$$= \sum_{i:\mu < \mu^{*}} n_{i,T} \Delta_{i}.$$

Joseph C. C. Lin (CSE, NTOU, TW)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Outline

1 Introduction

- 2 Gradient Descent for Online Convex Optimization (GD)
- 3 Multiplicative Weight Update (MWU)
- 4 Follow The Leader (FTL)
- 5 Follow The Regularized Leader (FTRL)
 - MWU Revisited
 - FTRL with 2-norm regularizer

💿 Multi-Armed Bandit (MAB)

- Greedy Algorithms
- Upper Confidence Bound (UCB)
- Time-Decay ε-Greedy

A Naïve Greedy Algorithm

Greedy Algorithm

• For $t \leq cN$, select a random arm with probability 1/N and pull it.

- For t > cN, pull the arm $I_t := \arg \max_{i=1,...,N} \hat{\mu}_{i,t}$.
 - Here *c* is a constant.

Joseph C. C. Lin (CSE, NTOU, TW)

A Naïve Greedy Algorithm

Greedy Algorithm

- For $t \leq cN$, select a random arm with probability 1/N and pull it.
- **2** For t > cN, pull the arm $I_t := \arg \max_{i=1,...,N} \hat{\mu}_{i,t}$.
 - Here c is a constant.
 - This algorithm is of linear regret, hence is not a no-regret algorithm.

A Naïve Greedy Algorithm

Greedy Algorithm

- For $t \leq cN$, select a random arm with probability 1/N and pull it.
- **2** For t > cN, pull the arm $I_t := \arg \max_{i=1,...,N} \hat{\mu}_{i,t}$.
 - Here *c* is a constant.
 - This algorithm is of linear regret, hence is not a no-regret algorithm.
 - For example,
 - Arm 1: 0/1 reward with mean 3/4.
 - Arm 2: Fixed reward of 1/4.
 - After cN = 2c steps, with constant probability, we have $\hat{\mu}_{1,cN} < \hat{\mu}_{2,cN}$.

A Naïve Greedy Algorithm

Greedy Algorithm

- For $t \leq cN$, select a random arm with probability 1/N and pull it.
- **2** For t > cN, pull the arm $I_t := \arg \max_{i=1,...,N} \hat{\mu}_{i,t}$.
 - Here *c* is a constant.
 - This algorithm is of linear regret, hence is not a no-regret algorithm.
 - For example,
 - Arm 1: 0/1 reward with mean 3/4.
 - Arm 2: Fixed reward of 1/4.
 - After cN = 2c steps, with constant probability, we have $\hat{\mu}_{1,cN} < \hat{\mu}_{2,cN}$.
 - If this is the case, the algorithm will keep pulling arm 2 and will never change!

$\epsilon\text{-}\mathsf{Greedy}$ Algorithm

$\epsilon\text{-}\mathsf{Greedy}$ Algorithm

For all t = 1, 2, ..., N:

- With probability 1ϵ , pull arm $I_t := \arg \max_{i=1,...,N} \hat{\mu}_{i,t}$.
- With probability ϵ , select an arm uniformly at random (i.e., each with probability 1/N).

$\epsilon\text{-}\mathsf{Greedy}$ Algorithm

$\epsilon\text{-}\mathsf{Greedy}$ Algorithm

For all t = 1, 2, ..., N:

- With probability 1ϵ , pull arm $I_t := \arg \max_{i=1,...,N} \hat{\mu}_{i,t}$.
- With probability ϵ , select an arm uniformly at random (i.e., each with probability 1/N).

• It looks good.

$\epsilon\text{-}\mathsf{Greedy}$ Algorithm

ϵ -Greedy Algorithm

For all t = 1, 2, ..., N:

• With probability $1 - \epsilon$, pull arm $I_t := \arg \max_{i=1,...,N} \hat{\mu}_{i,t}$.

• With probability ϵ , select an arm uniformly at random (i.e., each with probability 1/N).

- It looks good.
- Unfortunately, this algorithm still incurs linear regret.

$\epsilon\text{-}\mathsf{Greedy}$ Algorithm

ϵ -Greedy Algorithm

For all t = 1, 2, ..., N:

• With probability $1 - \epsilon$, pull arm $I_t := \arg \max_{i=1,...,N} \hat{\mu}_{i,t}$.

• With probability ϵ , select an arm uniformly at random (i.e., each with probability 1/N).

- It looks good.
- Unfortunately, this algorithm still incurs linear regret.
- Indeed,
 - Each arm is pulled in average $\epsilon T/N$ times.

イロト イヨト イヨト イヨ

$\epsilon\text{-}\mathsf{Greedy}$ Algorithm

ϵ -Greedy Algorithm

For all t = 1, 2, ..., N:

• With probability $1 - \epsilon$, pull arm $I_t := \arg \max_{i=1,...,N} \hat{\mu}_{i,t}$.

• With probability ϵ , select an arm uniformly at random (i.e., each with probability 1/N).

- It looks good.
- Unfortunately, this algorithm still incurs linear regret.
- Indeed,
 - Each arm is pulled in average $\epsilon T/N$ times.
 - Hence the (expected) regret will be at least $\frac{\epsilon T}{N} \sum_{i:\mu_i < \mu^*} \Delta_i$.

No-Regret Online Learning Multi-Armed Bandit (MAB) Upper Confidence Bound (UCB)

Outline

1 Introduction

- 2 Gradient Descent for Online Convex Optimization (GD)
- 3 Multiplicative Weight Update (MWU)
- 4 Follow The Leader (FTL)
- 5 Follow The Regularized Leader (FTRL)
 - MWU Revisited
 - FTRL with 2-norm regularizer

👩 Multi-Armed Bandit (MAB)

- Greedy Algorithms
- Upper Confidence Bound (UCB)
- Time-Decay ε-Greedy

The upper confidence bound algorithm (UCB)

- At each time step (round), we simply pull the arm with the highest "empirical reward estimate + high-confidence interval size".
- The empirical reward estimate of arm *i* at time *t*:

$$\hat{\mu}_{i,t} = \frac{\sum_{s=1}^{t} I_{s,i} \cdot r_s}{n_{i,t}}$$

 $n_{i,t}$: the number of times arm *i* is played.

- $I_{s,i}$: 1 if the choice of arm is *i* at time *s* and 0 otherwise.
- Reward estimate + confidence interval:

$$\mathsf{UCB}_{i,t} := \hat{\mu}_{i,t} + \sqrt{\frac{\ln t}{n_{i,t}}}.$$

Joseph C. C. Lin (CSE, NTOU, TW)

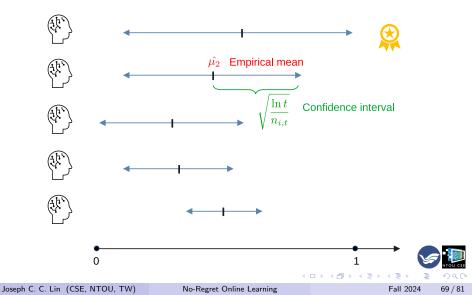
Algorithm UCB

UCB Algorithm

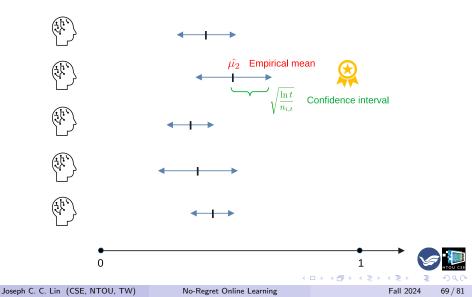
N arms, T rounds such that $T \ge N$. For t = 1, ..., N, play arm t. For t = N + 1, ..., T, play arm $A_t = \arg \max_{i \in \{1,...,N\}} UCB_{i,t-1}$.

Joseph C. C. Lin (CSE, NTOU, TW)

Algorithm UCB



Algorithm UCB (after more time steps...)



From the Chernoff bound (proof skipped)

For each arm i at time t, we have

$$|\hat{\mu}_{i,t} - \mu_i| < \sqrt{\frac{\ln t}{n_{i,t}}}$$

with probability $\geq 1 - 2/t^2$.

Immediately, we know that

• with prob.
$$\geq 1-2/t^2$$
, UCB_{*i*,*t*} := $\hat{\mu}_{i,t} + \sqrt{\frac{\ln t}{n_{i,t}}} > \mu_i$.

• with prob.
$$\geq 1 - 2/t^2$$
, $\hat{\mu}_{i,t} < \mu_i + \frac{\Delta_i}{2}$ when $n_{i,t} \geq \frac{4 \ln t}{\Delta_i^2}$

From the Chernoff bound (proof skipped)

For each arm i at time t, we have

$$|\hat{\mu}_{i,t} - \mu_i| < \sqrt{\frac{\ln t}{n_{i,t}}}$$

with probability $\geq 1 - 2/t^2$.

To understand why, please take my Randomized Algorithms course. :) Immediately, we know that

• with prob.
$$\geq 1 - 2/t^2$$
, UCB_{*i*,*t*} := $\hat{\mu}_{i,t} + \sqrt{\frac{\ln t}{n_{i,t}}} > \mu_i$.

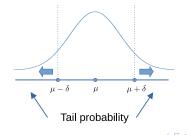
• with prob.
$$\geq 1 - 2/t^2$$
, $\hat{\mu}_{i,t} < \mu_i + \frac{\Delta_i}{2}$ when $n_{i,t} \geq \frac{4 \ln t}{\Delta_i^2}$

Appendix: Tail probability by the Chernoff/Hoeffding bound

The Chernoff/Hoeffding bound

For independent and identically distributed (i.i.d.) samples $x_1, \ldots, x_n \in [0, 1]$ with $\mathbb{E}[x_i] = \mu$, we have

$$\Pr\left[\left|\frac{\sum_{i=1}^{n} x_i}{n} - \mu\right| \ge \delta\right] \le 2e^{-2n\delta^2}$$



Joseph C. C. Lin (CSE, NTOU, TW)

No-Regret Online Learning

Fall 2024 71 / 81

Very unlikely to play a suboptimal arm

Lemma 3

At any time step t, if a suboptimal arm i (i.e., $\mu_i < \mu^*$) has been played for $n_{i,t} \ge \frac{4 \ln t}{\Delta_i^2}$ times, then $UCB_{i,t} < UCB_{I^*,t}$ with probability $\ge 1 - 4/t^2$. Therefore, for any t,

$$\Pr\left[I_{t+1,i}=1 \ \middle| \ n_{i,t} \geq \frac{4\ln t}{\Delta_i^2}\right] \leq \frac{4}{t^2}.$$

Joseph C. C. Lin (CSE, NTOU, TW)

< ロト < 同ト < ヨト < ヨ

Proof of Lemma 3

With probability $< 2/t^2 + 2/t^2$ (union bound) that

$$UCB_{i,t} = \hat{\mu}_{i,t} + \sqrt{\frac{\ln t}{n_{i,t}}} \leq \hat{\mu}_{i,t} + \frac{\Delta_i}{2}$$
$$< \left(\mu_i + \frac{\Delta_i}{2}\right) + \frac{\Delta_i}{2}$$
$$= \mu^* < UCB_{i^*,t}$$

does NOT hold.

Joseph C. C. Lin (CSE, NTOU, TW)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Playing suboptimal arms for very limited number of times

Lemma 4

For any arm *i* with $\mu_i < \mu^*$,

$$\mathbb{E}[n_{i,T}] \leq \frac{4 \ln T}{\Delta_i^2} + 8.$$

$$\mathbb{E}[n_{i,T}] = 1 + \mathbb{E}\left[\sum_{t=N}^{T} \mathbb{1}\left\{I_{t+1,i} = 1\right\}\right]$$
$$= 1 + \mathbb{E}\left[\sum_{t=N}^{T} \mathbb{1}\left\{I_{t+1,i} = 1, n_{i,t} < \frac{4\ln t}{\Delta_i^2}\right\}\right]$$
$$+ \mathbb{E}\left[\sum_{t=N}^{T} \mathbb{1}\left\{I_{t+1,i} = 1, n_{i,t} \ge \frac{4\ln t}{\Delta_i^2}\right\}\right]$$

Joseph C. C. Lin (CSE, NTOU, TW)

No-Regret Online Learning

Fall 2024 74 / 81

Proof of Lemma 4 (contd.)

$$\mathbb{E}[n_{i,T}] \leq \frac{4\ln T}{\Delta_i^2} + \mathbb{E}\left[\sum_{t=N}^T \mathbb{1}\left\{I_{t+1,i} = 1, n_{i,t} \geq \frac{4\ln t}{\Delta_i^2}\right\}\right]$$
$$= \frac{4\ln T}{\Delta_i^2} + \sum_{t=N}^T \Pr\left[I_{t+1,i} = 1, n_{i,t} \geq \frac{4\ln t}{\Delta_i^2}\right]$$
$$= \frac{4\ln T}{\Delta_i^2} + \sum_{t=N}^T \Pr\left[I_{t+1,i} = 1 \mid n_{i,t} \geq \frac{4\ln t}{\Delta_i^2}\right] \cdot \Pr\left[n_{i,t} \geq \frac{4\ln t}{\Delta_i^2}\right]$$
$$\leq \frac{4\ln T}{\Delta_i^2} + \sum_{t=N}^T \frac{4}{t^2}$$
$$\leq \frac{4\ln T}{\Delta_i^2} + 8.$$

Joseph C. C. Lin (CSE, NTOU, TW)

Fall 2024 75 / 81

< □ > < 同 > < 回 > < Ξ > < Ξ

The regret bound for the UCB algorithm

Theorem 4

For all $T \ge N$, the (expected) regret by the UCB algorithm in round T is $\mathbb{E}[\operatorname{regret}_T] \le 5\sqrt{NT \ln T} + 8N.$

Joseph C. C. Lin (CSE, NTOU, TW)

Proof of Theorem 4

• Divide the arms into two groups:

Group ONE (G_1): "almost optimal arms" with $\Delta_i < \sqrt{\frac{N}{T}} \ln T$.

2 Group TWO (G_2): "bad" arms with $\Delta_i \ge \sqrt{\frac{N}{T} \ln T}$.

$$\sum_{i \in G_1} n_{i,T} \Delta_i \leq \left(\sqrt{\frac{N}{T} \ln T} \right) \sum_{i \in G_1} n_{i,T} \leq T \cdot \sqrt{\frac{N}{T} \ln T} = \sqrt{NT \ln T}.$$

By Lemma 4,

$$\sum_{i \in G_2} \mathbb{E}[n_{i,T}] \Delta_i \leq \sum_{i \in G_2} \frac{4 \ln T}{\Delta_i} + 8\Delta_i \leq \sum_{i \in G_2} 4 \sqrt{\frac{T \ln T}{N}} + 8 \leq 4 \sqrt{NT \ln T} + 8N.$$

Outline

1 Introduction

- 2 Gradient Descent for Online Convex Optimization (GD)
- 3 Multiplicative Weight Update (MWU)
- 4 Follow The Leader (FTL)
- 5 Follow The Regularized Leader (FTRL)
 - MWU Revisited
 - FTRL with 2-norm regularizer

Multi-Armed Bandit (MAB)

- Greedy Algorithms
- Upper Confidence Bound (UCB)
- Time-Decay e-Greedy

Time Decaying ϵ -Greedy Algorithm

What if the horizon T is known in advance when we run ϵ -Greedy?

Time-Decaying ϵ -Greedy Algorithm

For all t = 1, 2, ..., N, set $\epsilon := N^{1/3} / T^{1/3}$:

- With probability 1ϵ , pull arm $I_t := \arg \max_{i=1,...,N} \hat{\mu}_{i,t}$.
- With probability ϵ , select an arm uniformly at random (i.e., each with probability 1/N).

Time Decaying ϵ -Greedy Algorithm

What if the horizon T is known in advance when we run ϵ -Greedy?

Time-Decaying ϵ -Greedy Algorithm

For all t = 1, 2, ..., N, set $\epsilon := N^{1/3} / T^{1/3}$:

- With probability 1ϵ , pull arm $I_t := \arg \max_{i=1,...,N} \hat{\mu}_{i,t}$.
- With probability ϵ , select an arm uniformly at random (i.e., each with probability 1/N).

Claim

Time-Decaying ϵ -Greedy Algorithm gets roughly $O(N^{1/3}T^{2/3})$ regret.

イロト イヨト イヨト イヨ

Sketch of proving the claim

- The expected regret $E[R(T)] = \sum_{t=1}^{T} E[\mu^* \mu_{T_t}]$.
- $\bullet\,$ Using the greedy choice that $\hat{\mu}_{I_t} \geq \hat{\mu}_{I^*},$ we have

$$\begin{split} \mathsf{E}[R(T)] &\leq \sum_{t=1}^{T} (1-\epsilon) \mathsf{E}[(\mu_{I^*} - \hat{\mu}_{I^*} + \hat{\mu}_{I_t} - \mu_{I_t}) \mid \text{greedy choice of } I_t] + \epsilon T \\ &\leq \sum_{t=1}^{T} \left(\sqrt{\frac{\ln T}{n_{I^*,t}}} + \sqrt{\frac{\ln T}{n_{I_t,t}}} \right) + \frac{1}{T} \cdot 1 \cdot T + \epsilon T \quad \text{(Chernoff)} \\ &\approx \leq \sum_{t=1}^{T} \left(\sqrt{\frac{\ln T}{\epsilon t/N}} + \sqrt{\frac{\ln T}{\epsilon t/N}} \right) + \epsilon T + 1 \\ &\leq \sqrt{\frac{N}{\epsilon}} \sqrt{T \log T} + \epsilon T + 1 = O(N^{1/3} T^{2/3} \sqrt{\log T}). \end{split}$$

< □ > < /□ >

- 4 ∃ ▶

No-Regret Online Learning

Thank you.

Joseph C. C. Lin (CSE, NTOU, TW)

No-Regret Online Learning

Fall 2024 81 / 81

イロト イヨト イヨト イヨト