No-Regret Online Learning Algorithms

Joseph Chuang-Chieh Lin

Department of Computer Science & Engineering, National Taiwan Ocean University

Fall 2024

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-160-0) Fall 2024 1/81

← ロ → → ← 何 →

∋⊳⊣ ∍

Credits for the resource

The slides are based on the lectures of Prof. Luca Trevisan: <https://lucatrevisan.github.io/40391/index.html>

the lectures of Prof. Shipra Agrawal: <https://ieor8100.github.io/mab/>

the lectures of Prof. Francesco Orabona: <https://parameterfree.com/lecture-notes-on-online-learning/>

and also Elad Hazan's textbook: Introduction to Online Convex Optimization, 2nd Edition.

化重 经间

Outline

[Introduction](#page-3-0)

- 2 [Gradient Descent for Online Convex Optimization \(GD\)](#page-17-0)
- [Multiplicative Weight Update \(MWU\)](#page-32-0)
- [Follow The Leader \(FTL\)](#page-52-0)
- 5 [Follow The Regularized Leader \(FTRL\)](#page-73-0)
	- **[MWU Revisited](#page-84-0)**
	- [FTRL with 2-norm regularizer](#page-105-0)
- 6 [Multi-Armed Bandit \(MAB\)](#page-124-0)
	- **[Greedy Algorithms](#page-132-0)**
	- [Upper Confidence Bound \(UCB\)](#page-142-0)
	- [Time-Decay](#page-156-0) ϵ -Greedy

Outline

[Introduction](#page-3-0)

- 2 [Gradient Descent for Online Convex Optimization \(GD\)](#page-17-0)
- [Multiplicative Weight Update \(MWU\)](#page-32-0)
- [Follow The Leader \(FTL\)](#page-52-0)
- 5 [Follow The Regularized Leader \(FTRL\)](#page-73-0)
	- **[MWU Revisited](#page-84-0)**
	- **[FTRL with 2-norm regularizer](#page-105-0)**
	- 6 [Multi-Armed Bandit \(MAB\)](#page-124-0)
		- **[Greedy Algorithms](#page-132-0)**
		- [Upper Confidence Bound \(UCB\)](#page-142-0)
		- [Time-Decay](#page-156-0) ϵ -Greedy

Online Convex Optimization

Goal: Design an algorithm such that

- At discrete time steps $t = 1, 2, \ldots$, output $x_t \in \mathcal{K}$, for each t.
	- \bullet K: a convex set of feasible solutions.
- After x_t is generated, a convex cost function $f_t : \mathcal{K} \mapsto \mathbb{R}$ is revealed.
- Then the algorithm suffers the loss $f_t(\mathbf{x}_t)$.

And we want to minimize the cost.

The difficulty

- The cost functions f_t is unknown before t .
- $f_1, f_2, \ldots, f_t, \ldots$ are not necessarily fixed.
	- Can be generated dynamically by an adversary.

What's the regret?

• The offline optimum: After T steps,

$$
\min_{\mathbf{x}\in\mathcal{K}}\sum_{t=1}^T f_t(\mathbf{x}).
$$

• The regret after T steps:

$$
\text{regret}_{\mathcal{T}} = \sum_{t=1}^T f_t(\mathbf{x}_t) - \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^T f_t(\mathbf{x}).
$$

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 7/81

化重新润滑

What's the regret?

• The offline optimum: After T steps,

$$
\min_{\mathbf{x}\in\mathcal{K}}\sum_{t=1}^T f_t(\mathbf{x}).
$$

• The regret after T steps:

$$
\text{regret}_{\mathcal{T}} = \sum_{t=1}^T f_t(\mathbf{x}_t) - \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^T f_t(\mathbf{x}).
$$

• The rescue: regret $\tau \leq o(T)$.

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 7/81

 Ω

What's the regret?

 \bullet The offline optimum: After T steps,

$$
\min_{\mathbf{x}\in\mathcal{K}}\sum_{t=1}^T f_t(\mathbf{x}).
$$

• The regret after T steps:

$$
\text{regret}_{\mathcal{T}} = \sum_{t=1}^T f_t(\mathbf{x}_t) - \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^T f_t(\mathbf{x}).
$$

- The rescue: regret $\tau \leq o(T)$. \Rightarrow **No-Regret** in average when $T\rightarrow\infty$.
	- For example, regret $\frac{1}{T}/T = \frac{\sqrt{T}}{T} \rightarrow 0$ when $T \rightarrow \infty$.

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 7/81

イロト イ御 トイ ヨ トイ ヨ)

Prerequisites (1/5)

Diameter

Let $\mathcal{K} \subseteq \mathbb{R}^d$ be a bounded convex and closed set in Euclidean space. We denote by D an upper bound on the diameter of K :

$$
\forall \textbf{x}, \textbf{y} \in \mathcal{K}, ||\textbf{x} - \textbf{y}|| \leq D.
$$

Convex set

A set K is convex if for any $x, y \in K$, we have

$$
\forall \alpha \in [0,1], \alpha \mathbf{x} + (1-\alpha)\mathbf{y} \in \mathcal{K}.
$$

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 8/81

Prerequisites (2/5)

Convex function

A function $f : \mathcal{K} \mapsto \mathbb{R}$ is convex if for any $x, y \in \mathcal{K}$,

$$
\forall \alpha \in [0,1], f((1-\alpha)\mathbf{x} + \alpha \mathbf{y}) \leq (1-\alpha)f(\mathbf{x}) + \alpha f(\mathbf{y}).
$$

Equivalently, if f is differentiable (i.e., $\nabla f(\mathbf{x})$ exists for all $\mathbf{x} \in \mathcal{K}$), then f is convex if and only if for all $x, y \in \mathcal{K}$,

$$
f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top}(\mathbf{y} - \mathbf{x}).
$$

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 9/81

14 E K 4 E

Prerequisites (3/5)

Theorem [Rockafellar 1970]

Suppose that $f : \mathcal{K} \mapsto \mathbb{R}$ is a convex function and let $x \in \text{int dom}(f)$. If f is differentiable at $\textbf{\textit{x}}$, then for all $\textbf{\textit{y}}\in \mathbb{R}^{d}$,

$$
f(\mathbf{y}) \geq f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle.
$$

[Subgradient](https://en.wikipedia.org/wiki/Subderivative)

For a function $f:\mathbb{R}^d \mapsto \mathbb{R}$, $\bm{g} \in \mathbb{R}^d$ is a subgradient of f at $x \in \mathbb{R}^d$ if for all $\boldsymbol{y} \in \mathbb{R}^d$,

$$
f(\mathbf{y}) \geq f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle.
$$

(□) () (

Prerequisites (4/5)

Projection

The closest point of **y** in a convex set K in terms of norm $|| \cdot ||$:

$$
\Pi_{\mathcal{K}}(\mathbf{y}) := \arg\min_{\mathbf{x} \in \mathcal{K}} ||\mathbf{x} - \mathbf{y}||.
$$

Pythagoras Theorem

Let $\mathcal{K} \subseteq \mathbb{R}^d$ be a convex set, $\bm{y} \in \mathbb{R}^d$ and $\bm{x} = \Pi_\mathcal{K}(\bm{y}).$ Then for any $z \in \mathcal{K}$, we have

$$
||\mathbf{y}-\mathbf{z}||\geq||\mathbf{x}-\mathbf{z}||.
$$

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 11/81

 Ω

Prerequisites (5/5)

Minimum vs. zero gradient

$$
\nabla f(\mathbf{x}) = 0 \text{ iff } \mathbf{x} \in \arg\min_{\mathbf{x} \in \mathbb{R}^d} \{f(\mathbf{x})\}.
$$

Karush-Kuhn-Tucker (KKT) Theorem

Let $\mathcal{K}\subseteq\mathbb{R}^d$ be a convex set, $\bm{x}^*\in$ arg min $_{\bm{x}\in\mathcal{K}}$ $f(\bm{x})$. Then for any $\bm{y}\in\mathcal{K}$ we have

$$
\nabla f(\mathbf{x}^*)^{\top}(\mathbf{y}-\mathbf{x}^*)\geq 0.
$$

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 12/81

Convex losses to linear losses

- We have the convex loss function $f_t(\mathbf{x}_t)$ at time t.
- Say we have subgradients \boldsymbol{g}_t for each $\boldsymbol{\mathsf{x}}_t$.
- $f(\textit{\textbf{x}}_t)-f(\textit{\textbf{u}})\leq \langle \textit{\textbf{g}}, \textit{\textbf{x}}_t-\textit{\textbf{u}} \rangle$ for each $\textit{\textbf{u}} \in \mathbb{R}^d$.

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 13/81

Convex losses to linear losses

- We have the convex loss function $f_t(\mathbf{x}_t)$ at time t.
- Say we have subgradients \boldsymbol{g}_t for each $\boldsymbol{\mathsf{x}}_t$.
- $f(\textit{\textbf{x}}_t)-f(\textit{\textbf{u}})\leq \langle \textit{\textbf{g}}, \textit{\textbf{x}}_t-\textit{\textbf{u}} \rangle$ for each $\textit{\textbf{u}} \in \mathbb{R}^d$.
- Hence, if we define $\tilde{f}_t(\pmb{x}) := \langle \pmb{g}_t, \pmb{x} \rangle$, then for any $\pmb{u} \in \mathbb{R}^d$,

$$
\sum_{t=1}^T f_t(\mathbf{x}_t) - f(\mathbf{u}) \leq \sum_{t=1}^T \langle \mathbf{g}, \mathbf{x_t} - \mathbf{u} \rangle = \sum_{t=1}^T \tilde{f}_t(\mathbf{x}_t) - \tilde{f}(\mathbf{u}).
$$

化重新润滑

Convex losses to linear losses

- We have the convex loss function $f_t(\mathbf{x}_t)$ at time t.
- Say we have subgradients \boldsymbol{g}_t for each $\boldsymbol{\mathsf{x}}_t$.
- $f(\textit{\textbf{x}}_t)-f(\textit{\textbf{u}})\leq \langle \textit{\textbf{g}}, \textit{\textbf{x}}_t-\textit{\textbf{u}} \rangle$ for each $\textit{\textbf{u}} \in \mathbb{R}^d$.
- Hence, if we define $\tilde{f}_t(\pmb{x}) := \langle \pmb{g}_t, \pmb{x} \rangle$, then for any $\pmb{u} \in \mathbb{R}^d$,

$$
\sum_{t=1}^T f_t(\mathbf{x}_t) - f(\mathbf{u}) \leq \sum_{t=1}^T \langle \mathbf{g}, \mathbf{x_t} - \mathbf{u} \rangle = \sum_{t=1}^T \tilde{f}_t(\mathbf{x}_t) - \tilde{f}(\mathbf{u}).
$$

 $OCO \rightarrow OLO$

化重新润滑

Outline

[Introduction](#page-3-0)

- 2 [Gradient Descent for Online Convex Optimization \(GD\)](#page-17-0)
- [Multiplicative Weight Update \(MWU\)](#page-32-0)
- [Follow The Leader \(FTL\)](#page-52-0)
- 5 [Follow The Regularized Leader \(FTRL\)](#page-73-0)
	- **[MWU Revisited](#page-84-0)**
	- **[FTRL with 2-norm regularizer](#page-105-0)**
	- 6 [Multi-Armed Bandit \(MAB\)](#page-124-0)
		- **[Greedy Algorithms](#page-132-0)**
		- [Upper Confidence Bound \(UCB\)](#page-142-0)
		- [Time-Decay](#page-156-0) ϵ -Greedy

K ロ ▶ K 御 ▶ K ミ ▶ K 등

Online Gradient Descent (GD)

- **1 Input:** convex set K, T, $x_1 \in \mathcal{K}$, step size $\{\eta_t\}$.
- 2 for $t \leftarrow 1$ to T do:
	- **1** Play x_t and observe cost $f_t(x_t)$.
	- **2** Update and Project:

$$
\begin{array}{rcl}\n\mathbf{y}_{t+1} & = & \mathbf{x}_t - \eta_t \nabla f_t(\mathbf{x}_t) \\
\mathbf{x}_{t+1} & = & \Pi_{\mathcal{K}}(\mathbf{y}_{t+1})\n\end{array}
$$

← ロ → → ← 何 →

医毛囊 医牙骨

³ end for

GD for online convex optimization is of no-regret

Theorem A

Online gradient descent with step size $\{\eta_t = \frac{D}{G_t}\}$ $\frac{D}{G\sqrt{t}}, t\in [\mathcal{T}]\}$ guarantees the following for all $T > 1$:

$$
\mathrm{regret}_{\mathcal{T}} = \sum_{t=1}^T f_t(\mathbf{x}_t) - \min_{\mathbf{x}^* \in \mathcal{K}} \sum_{t=1}^T f_t(\mathbf{x}^*) \leq \frac{3}{2} \mathsf{GD} \sqrt{\mathcal{T}}.
$$

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 16/81

Proof of Theorem A (1/3)

- Let $x^* \in \argmin_{x \in \mathcal{K}} \sum_{t=1}^T f_t(x)$.
- Since f_t is convex, we have

$$
f_t(\mathbf{x}_t) - f_t(\mathbf{x}^*) \leq (\nabla f_t(\mathbf{x}_t))^{\top}(\mathbf{x}_t - \mathbf{x}^*).
$$

• By the updating rule for x_{t+1} and the Pythagorean theorem, we have

$$
||\mathbf{x}_{t+1}-\mathbf{x}^*||^2=||\Pi_{\mathcal{K}}(\mathbf{x}_t-\eta_t\nabla f_t(\mathbf{x}_t))-\mathbf{x}^*||^2\leq ||\mathbf{x}_t-\eta_t\nabla f_t(\mathbf{x}_t)-\mathbf{x}^*||^2.
$$

← ロ → → ← 何 →

- イ ヨ トー

Proof of Theorem A (2/3)

• Hence

$$
||\mathbf{x}_{t+1} - \mathbf{x}^*||^2 \le ||\mathbf{x}_t - \mathbf{x}^*||^2 + \eta_t^2 ||\nabla f_t(\mathbf{x}_t)||^2 - 2\eta_t (\nabla f_t(\mathbf{x}_t))^{\top} (\mathbf{x}_t - \mathbf{x}^*)
$$

2 $(\nabla f_t(\mathbf{x}_t))^{\top} (\mathbf{x}_t - \mathbf{x}^*) \le \frac{||\mathbf{x}_t - \mathbf{x}^*||^2 - ||\mathbf{x}_{t+1} - \mathbf{x}^*||^2}{\eta_t} + \eta_t G^2.$

Summing above inequality from $t=1$ to T and setting $\eta_t = \frac{D}{G_M}$ $\frac{D}{G\sqrt{t}}$ and 1 $\frac{1}{\eta_0}:=0$ we have :

イロト イ御 トイヨ トイヨ

Proof of Theorem A (3/3)

$$
2\left(\sum_{t=1}^{T} f_t(\mathbf{x}_t) - f_t(\mathbf{x}^*)\right) \leq 2\sum_{t=1}^{T} \nabla f_t(\mathbf{x}_t))^{\top} (\mathbf{x}_t - \mathbf{x}^*)
$$

\n
$$
\leq \sum_{t=1}^{T} \frac{||\mathbf{x}_t - \mathbf{x}^*||^2 - ||\mathbf{x}_{t+1} - \mathbf{x}^*||^2}{\eta_t} + G^2 \sum_{t=1}^{T} \eta_t
$$

\n
$$
\leq \sum_{t=1}^{T} ||\mathbf{x}_t - \mathbf{x}^*||^2 \left(\frac{1}{\eta_t} - \frac{1}{\eta_{t-1}}\right) + G^2 \sum_{t=1}^{T} \eta_t
$$

\n
$$
\leq D^2 \sum_{t=1}^{T} \left(\frac{1}{\eta_t} - \frac{1}{\eta_{t-1}}\right) + G^2 \sum_{t=1}^{T} \eta_t
$$

\n
$$
\leq D^2 \frac{1}{\eta_T} + G^2 \sum_{t=1}^{T} \eta_t
$$

\n
$$
\leq 3DG\sqrt{T}.
$$

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 19/81

 290

The Lower Bound

Theorem B

Let $\mathcal{K}=\{\bm{x}\in\mathbb{R}^d:||\bm{x}||_\infty\leq r\}$ be a convex subset of $\mathbb{R}^d.$ Let A be any algorithm for Online Convex Optimization on K. Then for any $T \geq 1$, there exists a sequence of vectors $\bm{g}_1,\ldots,\bm{g}_{\mathcal{T}}$ with $||\bm{g}_t||_2\leq L$ and $\bm{u}\in\mathcal{K}$ such that the regret of A satisfies

$$
\text{regret}_{\mathcal{T}}(\textbf{\textit{u}}) = \sum_{t=1}^{T} \langle \textbf{\textit{g}}_t, \textbf{\textit{x}}_t \rangle - \sum_{t=1}^{T} \langle \textbf{\textit{g}}_t, \textbf{\textit{u}} \rangle \ge \frac{\sqrt{2}LD\sqrt{T}}{4}
$$

The diameter D of ${\cal K}$ is at most $\sqrt{\sum_{i=1}^d(2r)^2}\leq 2r^2$ √ d.

 $||\mathbf{x}||_{\infty} \leq r \Leftrightarrow |\mathbf{x}(i)| \leq r$ for each $i \in [n]$.

.

K ロ ▶ K 御 ▶ K ミ ▶ K 등

Proof of Theorem B (1/2)

• The approach:

For any random variable z with domain V and any function f ,

 $\sup_{x \in V} f(x) \geq E[f(z)].$

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 21/81

 \leftarrow \leftarrow

Proof of Theorem B (1/2)

• The approach:

For any random variable z with domain V and any function f ,

 $\sup_{x \in V} f(x) \geq E[f(z)].$

• regret $\tau = \max_{u \in \mathcal{K}} \text{regret }_{\tau}(u)$.

 \leftarrow \leftarrow

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 21/81

Proof of Theorem B (1/2)

• The approach:

For any random variable z with domain V and any function f ,

 $\sup_{x \in V} f(x) \geq E[f(z)].$

•
$$
regret_{\tau} = max_{\boldsymbol{u} \in \mathcal{K}}
$$
 $regret_{\tau}(\boldsymbol{u})$.

• Let $v, w \in K$ such that $||v - w|| = D$.

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 21/81

 \leftarrow \leftarrow

Proof of Theorem B (1/2)

• The approach:

For any random variable z with domain V and any function f ,

$$
\sup_{x\in V}f(x)\geq E[f(z)].
$$

•
$$
regret_{\tau} = max_{\boldsymbol{u} \in \mathcal{K}}
$$
 $regret_{\tau}(\boldsymbol{u})$.

- Let $v, w \in \mathcal{K}$ such that $||v w|| = D$.
- Let $z := \frac{v w}{\|v w\|}$

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 21/81

 \leftarrow \leftarrow

Proof of Theorem B (1/2)

• The approach:

For any random variable z with domain V and any function f ,

$$
\sup_{x\in V}f(x)\geq E[f(z)].
$$

•
$$
regret_{\mathcal{T}} = max_{\mathbf{u} \in \mathcal{K}}
$$
 regret $\mathcal{T}(\mathbf{u})$.

- Let $v, w \in K$ such that $||v w|| = D$.
- Let $z := \frac{v w}{\|v w\|} \Rightarrow \langle z, v w \rangle = D.$
- Let $\epsilon_1, \epsilon_2, \ldots, \epsilon_T$ be i.i.d. random variables such that $Pr[\epsilon_t = 1] = Pr[\epsilon_t = -1] = 1/2$ for each t.

Proof of Theorem B (1/2)

• The approach:

For any random variable z with domain V and any function f ,

$$
\sup_{x\in V}f(x)\geq E[f(z)].
$$

•
$$
regret_{\mathcal{T}} = max_{\mathbf{u} \in \mathcal{K}}
$$
 regret $\mathcal{T}(\mathbf{u})$.

• Let $v, w \in K$ such that $||v - w|| = D$.

• Let
$$
z := \frac{v - w}{\|v - w\|} \Rightarrow \langle z, v - w \rangle = D
$$
.

- Let $\epsilon_1, \epsilon_2, \ldots, \epsilon_T$ be i.i.d. random variables such that $Pr[\epsilon_t = 1] = Pr[\epsilon_t = -1] = 1/2$ for each t.
- We choose the losses $g_t = L\epsilon_t z$.

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 21 / 81

Proof of Theorem B (1/2)

• The approach:

For any random variable z with domain V and any function f ,

$$
\sup_{x\in V}f(x)\geq E[f(z)].
$$

•
$$
regret_{\mathcal{T}} = max_{\mathbf{u} \in \mathcal{K}}
$$
 $regret_{\mathcal{T}}(\mathbf{u})$.

• Let $v, w \in K$ such that $||v - w|| = D$.

• Let
$$
z := \frac{v - w}{\|v - w\|} \Rightarrow \langle z, v - w \rangle = D
$$
.

- Let $\epsilon_1, \epsilon_2, \ldots, \epsilon_T$ be i.i.d. random variables such that $Pr[\epsilon_t = 1] = Pr[\epsilon_t = -1] = 1/2$ for each t.
- We choose the losses $g_t = L\epsilon_t z$.
	- The cost at $t: \langle L \epsilon_t z, x_t \rangle$.
	- $||g_t|| = \sqrt{L^2 \epsilon_t^2} \cdot ||z|| \leq L.$

Proof of Theorem B (2/2)

$$
\sup_{\mathbf{g}_1,\dots,\mathbf{g}_T} \text{regret}_{\mathcal{T}} \geq E \left[\sum_{t=1}^T L \epsilon_t \langle \mathbf{z}, \mathbf{x}_t \rangle - \min_{\mathbf{u} \in \mathcal{K}} \sum_{t=1}^T L \epsilon_t \langle \mathbf{z}, \mathbf{u} \rangle \right]
$$
\n
$$
= E \left[-\min_{\mathbf{u} \in \mathcal{K}} \sum_{t=1}^T L \epsilon_t \langle \mathbf{z}, \mathbf{u} \rangle \right] = E \left[\max_{\mathbf{u} \in \mathcal{K}} \sum_{t=1}^T L \epsilon_t \langle \mathbf{z}, \mathbf{u} \rangle \right]
$$
\n
$$
\geq E \left[\max_{\mathbf{u} \in \{ \mathbf{v}, \mathbf{w} \}} \sum_{t=1}^T L \epsilon_t \langle \mathbf{z}, \mathbf{u} \rangle \right]
$$
\n
$$
= E \left[\frac{1}{2} \sum_{t=1}^T L \epsilon_t \langle \mathbf{z}, \mathbf{v} + \mathbf{w} \rangle + \frac{1}{2} \Big| \sum_{t=1}^T L \epsilon_t \langle \mathbf{z}, \mathbf{v} - \mathbf{w} \rangle \Big| \right]
$$
\n
$$
\geq \frac{1}{2} E \left[\Big| \sum_{t=1}^T L \epsilon_t \langle \mathbf{z}, \mathbf{v} - \mathbf{w} \rangle \Big| \right] = \frac{LD}{2} E \left[\Big| \sum_{t=1}^T \epsilon_t \Big| \right]
$$
\n
$$
\geq \frac{\sqrt{2}LD\sqrt{T}}{4}. \quad \text{(by Khintchine inequality)}
$$
\n
$$
\text{Joseph C. C. Lin (CSE, NTOU, TW)} \quad \text{No-Regret Online Learning} \quad \text{Fall 2024} \quad \text{22/81}
$$

 290

Outline

[Introduction](#page-3-0)

2 [Gradient Descent for Online Convex Optimization \(GD\)](#page-17-0)

3 [Multiplicative Weight Update \(MWU\)](#page-32-0)

- [Follow The Leader \(FTL\)](#page-52-0)
- 5 [Follow The Regularized Leader \(FTRL\)](#page-73-0)
	- **[MWU Revisited](#page-84-0)**
	- **[FTRL with 2-norm regularizer](#page-105-0)**
	- 6 [Multi-Armed Bandit \(MAB\)](#page-124-0)
		- **[Greedy Algorithms](#page-132-0)**
		- [Upper Confidence Bound \(UCB\)](#page-142-0)
		- [Time-Decay](#page-156-0) ϵ -Greedy

K ロ ▶ K 御 ▶ K ミ ▶ K 등

Listen to the experts?

- \bullet Let's say we have *n* experts.
- We want to make best use of the advices coming from the experts.

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 24/81

4 0 8

IN

Listen to the experts?

- \bullet Let's say we have *n* experts.
- We want to make best use of the advices coming from the experts.
- The idea: at each time step, decide the probability distribution (i.e., weights) of the experts to follow their advice.

 $\mathbf{x}_t = (\mathbf{x}_t(1), \mathbf{x}_t(2), \dots, \mathbf{x}_t(n))$, where $\mathbf{x}_t(i) \in [0, 1]$ and $\sum_i \mathbf{x}_t(i) = 1$.

Listen to the experts?

- \bullet Let's say we have *n* experts.
- We want to make best use of the advices coming from the experts.
- The idea: at each time step, decide the probability distribution (i.e., weights) of the experts to follow their advice.

 $\mathbf{x}_t = (\mathbf{x}_t(1), \mathbf{x}_t(2), \dots, \mathbf{x}_t(n))$, where $\mathbf{x}_t(i) \in [0, 1]$ and $\sum_i \mathbf{x}_t(i) = 1$.

- The loss of following expert *i* at time *t*: $\ell_t(i)$.
- \bullet The expected loss of the algorithm at time t:

$$
\langle \mathbf{x}_t, \ell_t \rangle = \sum_{i=1}^n \mathbf{x}_t(i) \ell_t(i).
$$

つへへ
The regret of listening to the experts...

$$
\text{regret}_{\mathcal{T}}^* = \sum_{t=1}^{\mathcal{T}} \langle \mathbf{x}_t, \ell_t \rangle - \min_i \sum_{t=1}^{\mathcal{T}} \ell_t(i).
$$

- The set of feasible solutions $K = \Delta \subseteq \mathbb{R}^n$, probability distributions over $\{1,\ldots,n\}$.
- $f_t(\mathbf{x}) = \sum_i \mathbf{x}(i) \ell_t(i)$: linear function.
- \star Assume that $|\ell_t(i)| \leq 1$ for all t and i.

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 25/81

つへへ

The MWU Algorithm

- The spirit: "Hedge".
- Well-known and frequently rediscovered.

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 26 / 81

◆ ロ ▶ → 何

Э× $\langle \cdot \rangle$

The MWU Algorithm

- The spirit: "Hedge".
- Well-known and frequently rediscovered.

Multiplicative Weight Update (MWU)

- Maintain a vector of weights $w_t = (w_t(1), \ldots, w_t(n))$ where $w_1 := (1, 1, \ldots, 1).$
- \bullet Update the weights at time t by

\n- $$
\mathbf{w}_t(i) := \mathbf{w}_{t-1}(i) \cdot e^{-\beta \ell_{t-1}(i)}
$$
.
\n- $\mathbf{x}_t := \frac{\mathbf{w}_t(i)}{\sum_{j=1}^n \mathbf{w}_t(j)}$.
\n

 β : a parameter which will be optimized later.

つひい

← ロ → → ← 何 →

 $\left\{ \begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right\}$

The MWU Algorithm

- The spirit: "Hedge".
- Well-known and frequently rediscovered.

Multiplicative Weight Update (MWU)

• Maintain a vector of weights $w_t = (w_t(1), \ldots, w_t(n))$ where $w_1 := (1, 1, \ldots, 1).$

 \bullet Update the weights at time t by

\n- $$
w_t(i) := w_{t-1}(i) \cdot e^{-\beta \ell_{t-1}(i)}
$$
.
\n- $x_t := \frac{w_t(i)}{\sum_{j=1}^n w_t(j)}$.
\n

β : a parameter which will be optimized later.

The weight of expert *i* at time *t*: $e^{-\beta \sum_{k=1}^{t-1} \ell_k(i)}$.

つひい

K ロ ▶ K 御 ▶ K ミ ▶ K 등

MWU is of no-regret

Theorem 1 (MWU is of no-regret)

Assume that $|\ell_t(i)| \leq 1$ for all t and i. For $\beta \in (0, 1/2)$, the regret of MWU after T steps is bounded as

regret^{*}<sub>$$
\tau
$$</sub> $\leq \beta \sum_{t=1}^T \sum_{i=1}^n \mathbf{x}_t(i) \ell_t^2(i) + \frac{\ln n}{\beta} \leq \beta \tau + \frac{\ln n}{\beta}.$

In particular, if $T > 4$ ln *n*, then

$$
\text{regret}_\mathcal{T}^* \leq 2\sqrt{\mathcal{T}\ln n}
$$

by setting
$$
\beta = \sqrt{\frac{\ln n}{T}}
$$
.

\nJoseph C. C. Lin (CSE, NTOU, TW)

\nNo-Regret Online Learning

\nNa-27/81

\nNa-27/82

\n10.2024

\n27/81

Proof of Theorem 1

Let
$$
W_t := \sum_{i=1}^n \mathbf{w}_t(i)
$$
.

The idea:

- If the algorithm incurs a large loss after T steps, then W_{T+1} is small.
- And, if W_{T+1} is small, then even the best expert performs quite badly.

← ロ → → ← 何 →

不是 下

Proof of Theorem 1

Let
$$
W_t := \sum_{i=1}^n \mathbf{w}_t(i)
$$
.

The idea:

- If the algorithm incurs a large loss after T steps, then W_{T+1} is small.
- And, if W_{T+1} is small, then even the best expert performs quite badly.

Let
$$
L^* := \min_i \sum_{t=1}^T \ell_t(i)
$$
.

← ロ → → ← 何 →

不是 下

The proof (contd.)

Lemma 1 $(W_{\mathcal{T}+1}$ is <code>SMALL</code> \Rightarrow L^* is LARGE)

 $W_{T+1} \geq e^{-\beta L^*}.$

Proof.

Let
$$
j = \arg \min L^* = \arg \min_i \sum_{t=1}^T \ell_t(i)
$$
.

$$
W_{T+1} = \sum_{i=1}^{n} e^{-\beta \sum_{t=1}^{T} \ell_t(i)} \ge e^{-\beta \sum_{t=1}^{T} \ell_t(j)} = e^{-\beta L^*}.
$$

 Ω

П

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 29/81

イロト 不倒 トイ君 トイ君

The proof (contd.)

Lemma 2 (MWU brings large loss \Rightarrow W_{T+1} is SMALL)

$$
W_{\mathcal{T}+1} \leq n \prod_{t=1}^n (1 - \beta \langle \mathbf{x}_t, \boldsymbol{\ell}_t \rangle + \beta^2 \langle \mathbf{x}_t, \boldsymbol{\ell}_t^2 \rangle),
$$

Proof.

Note: $W_1 = n$.

$$
\frac{W_{t+1}}{W_t} = \sum_{i=1}^n \frac{w_{t+1}(i)}{W_t} = \sum_{i=1}^n \frac{w_t(i) \cdot e^{-\beta \ell_t(i)}}{W_t}
$$

The proof (contd.)

Lemma 2 (MWU brings large loss \Rightarrow W_{T+1} is SMALL)

$$
W_{\mathcal{T}+1} \leq n \prod_{t=1}^n (1 - \beta \langle \mathbf{x}_t, \boldsymbol{\ell}_t \rangle + \beta^2 \langle \mathbf{x}_t, \boldsymbol{\ell}_t^2 \rangle),
$$

Proof.

Note: $W_1 = n$.

$$
\frac{W_{t+1}}{W_t} = \sum_{i=1}^n \frac{\mathbf{w}_{t+1}(i)}{W_t} = \sum_{i=1}^n \frac{\mathbf{w}_t(i) \cdot e^{-\beta \ell_t(i)}}{W_t} = \sum_{i=1}^n \mathbf{x}_t(i) \cdot e^{-\beta \ell_t(i)}
$$

$$
\leq \sum_{i=1}^n \mathbf{x}_t(i) \cdot (1 - \beta \ell_t(i) + \beta^2 \ell_t^2(i))
$$

The proof (contd.)

Lemma 2 (MWU brings large loss \Rightarrow W_{T+1} is SMALL)

$$
W_{\mathcal{T}+1} \leq n \prod_{t=1}^n (1 - \beta \langle \mathbf{x}_t, \boldsymbol{\ell}_t \rangle + \beta^2 \langle \mathbf{x}_t, \boldsymbol{\ell}_t^2 \rangle),
$$

Proof.

Note: $W_1 = n$.

$$
\frac{W_{t+1}}{W_t} = \sum_{i=1}^n \frac{\mathbf{w}_{t+1}(i)}{W_t} = \sum_{i=1}^n \frac{\mathbf{w}_t(i) \cdot e^{-\beta \ell_t(i)}}{W_t} = \sum_{i=1}^n \mathbf{x}_t(i) \cdot e^{-\beta \ell_t(i)}
$$
\n
$$
\leq \sum_{i=1}^n \mathbf{x}_t(i) \cdot (1 - \beta \ell_t(i) + \beta^2 \ell_t^2(i))
$$
\n
$$
= 1 - \beta \langle \mathbf{x}_t, \ell_t \rangle + \beta^2 \langle \mathbf{x}_t, \ell_t^2 \rangle
$$

The proof (contd.)

Lemma 2 (MWU brings large loss \Rightarrow W_{T+1} is SMALL)

$$
W_{T+1} \leq n \prod_{t=1}^n (1 - \beta \langle x_t, \ell_t \rangle + \beta^2 \langle x_t, \ell_t^2 \rangle),
$$

Proof.

Note: $W_1 = n$.

$$
\frac{W_{t+1}}{W_t} = \sum_{i=1}^n \frac{\mathbf{w}_{t+1}(i)}{W_t} = \sum_{i=1}^n \frac{\mathbf{w}_t(i) \cdot e^{-\beta \ell_t(i)}}{W_t} = \sum_{i=1}^n \mathbf{x}_t(i) \cdot e^{-\beta \ell_t(i)}
$$
\n
$$
\leq \sum_{i=1}^n \mathbf{x}_t(i) \cdot (1 - \beta \ell_t(i) + \beta^2 \ell_t^2(i))
$$
\n
$$
= 1 - \beta \langle \mathbf{x}_t, \ell_t \rangle + \beta^2 \langle \mathbf{x}_t, \ell_t^2 \rangle \leq e^{-\beta \langle \mathbf{x}_t, \ell_t \rangle + \beta^2 \langle \mathbf{x}_t, \ell_t^2 \rangle}.
$$

The proof (contd.)

Lemma 2 (MWU brings large loss \Rightarrow W_{T+1} is SMALL)

$$
W_{T+1} \leq n \prod_{t=1}^n e^{-\beta \langle x_t, \ell_t \rangle + \beta^2 \langle x_t, \ell_t^2 \rangle}.
$$

Proof.

Note: $W_1 = n$.

$$
\frac{W_{t+1}}{W_t} = \sum_{i=1}^n \frac{\mathbf{w}_{t+1}(i)}{W_t} = \sum_{i=1}^n \frac{\mathbf{w}_t(i) \cdot e^{-\beta \ell_t(i)}}{W_t} = \sum_{i=1}^n \mathbf{x}_t(i) \cdot e^{-\beta \ell_t(i)}
$$
\n
$$
\leq \sum_{i=1}^n \mathbf{x}_t(i) \cdot (1 - \beta \ell_t(i) + \beta^2 \ell_t^2(i))
$$
\n
$$
= 1 - \beta \langle \mathbf{x}_t, \ell_t \rangle + \beta^2 \langle \mathbf{x}_t, \ell_t^2 \rangle \leq e^{-\beta \langle \mathbf{x}_t, \ell_t \rangle + \beta^2 \langle \mathbf{x}_t, \ell_t^2 \rangle}.
$$

The proof (contd.)

Hence

$$
\ln W_{T+1} \leq \ln n - \left(\sum_{i=1}^T \beta \langle \ell_t, \mathbf{x}_t \rangle \right) + \left(\sum_{i=1}^T \beta^2 \langle \ell_t^2, \mathbf{x}_t \rangle \right)
$$

and
$$
\ln W_{T+1} \ge -\beta L^*
$$
.

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 32/81

Kロト K同下

 \rightarrow \equiv \rightarrow 回復 重

The proof (contd.)

Hence

$$
\ln W_{T+1} \leq \ln n - \left(\sum_{i=1}^T \beta \langle \boldsymbol{\ell}_t, \boldsymbol{x}_t \rangle \right) + \left(\sum_{i=1}^T \beta^2 \langle \boldsymbol{\ell}_t^2, \boldsymbol{x}_t \rangle \right)
$$

and $\ln W_{T+1} \geq -\beta L^*$.

Thus,

$$
\left(\sum_{t=1}^T \langle \boldsymbol{\ell}_t, \boldsymbol{x}_t \rangle \right) - L^* \leq \frac{\ln n}{\beta} + \beta \sum_{t=1}^T \langle \boldsymbol{\ell}_t^2, \boldsymbol{x}_t \rangle.
$$

h.

The proof (contd.)

Hence

$$
\ln W_{T+1} \leq \ln n - \left(\sum_{i=1}^T \beta \langle \boldsymbol{\ell}_t, \boldsymbol{x}_t \rangle \right) + \left(\sum_{i=1}^T \beta^2 \langle \boldsymbol{\ell}_t^2, \boldsymbol{x}_t \rangle \right)
$$

and $\ln W_{T+1} \geq -\beta L^*$.

Thus,

$$
\left(\sum_{t=1}^T \langle \ell_t, \mathbf{x}_t \rangle \right) - L^* \le \frac{\ln n}{\beta} + \beta \sum_{t=1}^T \langle \ell_t^2, \mathbf{x}_t \rangle.
$$

Take $\beta = \sqrt{\frac{\ln n}{T}}$, we have regret $\tau \le 2\sqrt{T \ln n}$.

h.

 QQ

Outline

[Introduction](#page-3-0)

- 2 [Gradient Descent for Online Convex Optimization \(GD\)](#page-17-0)
- [Multiplicative Weight Update \(MWU\)](#page-32-0)

4 [Follow The Leader \(FTL\)](#page-52-0)

- 5 [Follow The Regularized Leader \(FTRL\)](#page-73-0)
	- **[MWU Revisited](#page-84-0)**
	- [FTRL with 2-norm regularizer](#page-105-0)
	- 6 [Multi-Armed Bandit \(MAB\)](#page-124-0)
		- **[Greedy Algorithms](#page-132-0)**
		- [Upper Confidence Bound \(UCB\)](#page-142-0)
		- [Time-Decay](#page-156-0) ϵ -Greedy

K ロ ▶ K 御 ▶ K ミ ▶ K 듣

Why so complicated?

• How about just following the one with best performance?

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 34 / 81

← ロ ▶ → 何

Э× $\langle \cdot \rangle$

Why so complicated?

• How about just following the one with best performance? Follow The Leader (FTL) Algorithm.

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 34 / 81

E K. \sim

← ロ → → ← 何 →

Why so complicated?

- How about just following the one with best performance? • Follow The Leader (FTL) Algorithm.
- First, we assume to make no assumptions on $\mathcal K$ and $\{f_t: L \mapsto \mathbb R\}.$
- At time t, we are given previous cost functions f_1, \ldots, f_{t-1} , and then give the solution

$$
\mathbf{x}_t := \arg\min_{\mathbf{x} \in \mathcal{K}} \sum_{k=1}^{t-1} f_k(\mathbf{x}).
$$

Why so complicated?

- How about just following the one with best performance? Follow The Leader (FTL) Algorithm.
- First, we assume to make no assumptions on $\mathcal K$ and $\{f_t: L \mapsto \mathbb R\}.$
- At time t, we are given previous cost functions f_1, \ldots, f_{t-1} , and then give the solution

$$
\mathbf{x}_t := \arg\min_{\mathbf{x} \in \mathcal{K}} \sum_{k=1}^{t-1} f_k(\mathbf{x}).
$$

That is, the best solution for the previous $t - 1$ steps.

Why so complicated?

- How about just following the one with best performance? Follow The Leader (FTL) Algorithm.
- First, we assume to make no assumptions on $\mathcal K$ and $\{f_t: L \mapsto \mathbb R\}.$
- At time t, we are given previous cost functions f_1, \ldots, f_{t-1} , and then give the solution

$$
\mathbf{x}_t := \arg\min_{\mathbf{x} \in \mathcal{K}} \sum_{k=1}^{t-1} f_k(\mathbf{x}).
$$

That is, the best solution for the previous $t - 1$ steps.

• It seems reasonable and makes sense, doesn't it?

つへへ

FTL leads to "overfitting"

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 35/81

K ロ ▶ K 何 ▶

不是 的 \leftarrow \equiv n.

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 35/81

J.

イロト 不倒 トイ君 トイ君

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 35/81

J.

イロト 不倒 トイ君 トイ君

t: 1 2 3 4 5 ...
\nx_t: (0.5, 0.5) (1,0) (0,1) (1,0) (0,1) ...
\n
$$
\ell_t
$$
: (0,0.5) (1,0) (0,1) (1,0) (0,1) ...
\nf_t(x_t): 0.25 1 1 1 1 1 ...
\n $arg min_x \sum_{k=1}^t f_k(x)$: (1,0) (0,1) (1,0) (0,1) (1,0) ...

```
optimum loss: \approx T/2.
FTL's loss: \approx T.
regret: \approx T/2 (linear).
```


Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 35 / 81

化磨光化磨

← ロ → → ← 何 →

Analysis of FTL

Theorem 2 (Analysis of FTL)

For any sequence of cost functions f_1, \ldots, f_t and any number of time steps T , the FTL algorithm satisfies

$$
\mathsf{regret}_{\mathcal{T}} \leq \sum_{t=1}^{\mathcal{T}} (f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1})).
$$

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 36 / 81

◆ ロ ▶ → 何

Э×

Analysis of FTL

Theorem 2 (Analysis of FTL)

For any sequence of cost functions f_1, \ldots, f_t and any number of time steps T , the FTL algorithm satisfies

$$
\mathsf{regret}_{\mathcal{T}} \leq \sum_{t=1}^{\mathcal{T}} (f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1})).
$$

Implication: If $f_t(\cdot)$ is Lipschitz w.r.t. to some distance function $|| \cdot ||$, then x_t and x_{t+1} are close \Rightarrow $||f_t(x_t) - f_t(x_{t+1})||$ can't be too large. **Modify FTL**: x_t 's shouldn't change too much from step by step.

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 36 / 81

Proof of Theorem 2

Recall that

$$
\text{regret}_{\mathcal{T}} = \sum_{t=1}^T f_t(\mathbf{x}_t) - \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^T f_t(\mathbf{x})
$$

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 37 / 81

イロト イ御 トイミト イヨ

Proof of Theorem 2

Recall that

$$
\operatorname{regret}_{\mathcal{T}} = \sum_{t=1}^T f_t(\mathbf{x}_t) - \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^T f_t(\mathbf{x}) \leq \sum_{t=1}^T (f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1})).
$$

The theorem $\Leftrightarrow \sum_{t=1}^{T} f_t(\mathbf{x}_{t+1}) \leq \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} f_t(\mathbf{x}).$

Proof of Theorem 2

Recall that

$$
\text{regret}_{\mathcal{T}} = \sum_{t=1}^T f_t(\mathbf{x}_t) - \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^T f_t(\mathbf{x}) \leq \sum_{t=1}^T (f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1})).
$$

The theorem $\Leftrightarrow \sum_{t=1}^{T} f_t(\mathbf{x}_{t+1}) \leq \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} f_t(\mathbf{x}).$

Prove by induction. $T = 1$: The definition of x_2 .

Proof of Theorem 2

Recall that

$$
\text{regret}_{\mathcal{T}} = \sum_{t=1}^{\mathcal{T}} f_t(\mathbf{x}_t) - \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{\mathcal{T}} f_t(\mathbf{x}) \leq \sum_{t=1}^{\mathcal{T}} (f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1})).
$$

The theorem $\Leftrightarrow \sum_{t=1}^{T} f_t(\mathbf{x}_{t+1}) \leq \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} f_t(\mathbf{x}).$

Prove by induction. $T = 1$: The definition of x_2 .

Assume that it holds up to T . Then:

Proof of Theorem 2

Recall that

$$
\text{regret}_{\mathcal{T}} = \sum_{t=1}^{\mathcal{T}} f_t(\mathbf{x}_t) - \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{\mathcal{T}} f_t(\mathbf{x}) \leq \sum_{t=1}^{\mathcal{T}} (f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1})).
$$

The theorem $\Leftrightarrow \sum_{t=1}^{T} f_t(\mathbf{x}_{t+1}) \leq \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} f_t(\mathbf{x}).$

Prove by induction. $T = 1$: The definition of x_2 . Assume that it holds up to T . Then:

$$
\sum_{t=1}^{T+1} f_t(\mathbf{x}_{t+1}) = \sum_{t=1}^{T} f_t(\mathbf{x}_{t+1}) + f_{T+1}(\mathbf{x}_{T+2}) \le \sum_{t=1}^{T+1} f_t(\mathbf{x}_{T+2}) = \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T+1} f_t(\mathbf{x}),
$$

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 37 / 81

 \leftarrow \leftarrow
[No-Regret Online Learning](#page-0-0) [Follow The Leader \(FTL\)](#page-52-0)

Proof of Theorem 2

Recall that

$$
\text{regret}_{\mathcal{T}} = \sum_{t=1}^{\mathcal{T}} f_t(\mathbf{x}_t) - \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{\mathcal{T}} f_t(\mathbf{x}) \leq \sum_{t=1}^{\mathcal{T}} (f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1})).
$$

The theorem $\Leftrightarrow \sum_{t=1}^{T} f_t(\mathbf{x}_{t+1}) \leq \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} f_t(\mathbf{x}).$

Prove by induction. $T = 1$: The definition of x_2 . Assume that it holds up to T . Then:

$$
\sum_{t=1}^{T+1} f_t(\mathbf{x}_{t+1}) = \sum_{t=1}^{T} f_t(\mathbf{x}_{t+1}) + f_{T+1}(\mathbf{x}_{T+2}) \leq \sum_{t=1}^{T+1} f_t(\mathbf{x}_{T+2}) = \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T+1} f_t(\mathbf{x}),
$$

where

$$
\sum_{t=1}^T f_t(\mathbf{x}_{t+1}) \leq \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^T f_t(\mathbf{x}) \leq \sum_{t=1}^T f_t(\mathbf{x}_{\mathcal{T}+2}).
$$

Outline

[Introduction](#page-3-0)

- 2 [Gradient Descent for Online Convex Optimization \(GD\)](#page-17-0)
- [Multiplicative Weight Update \(MWU\)](#page-32-0)
- [Follow The Leader \(FTL\)](#page-52-0)

5 [Follow The Regularized Leader \(FTRL\)](#page-73-0)

- **[MWU Revisited](#page-84-0)**
- [FTRL with 2-norm regularizer](#page-105-0)
- 6 [Multi-Armed Bandit \(MAB\)](#page-124-0)
	- **[Greedy Algorithms](#page-132-0)**
	- [Upper Confidence Bound \(UCB\)](#page-142-0)
	- [Time-Decay](#page-156-0) ϵ -Greedy

K ロ ▶ K 御 ▶ K ミ ▶ K 등

Introducing REGULARIZATION

You might have already been using regularization for quite a long time.

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 39 / 81

← ロ → → ← 何 →

不是 的 \mathcal{A}

Introducing REGULARIZATION

from keras import regularizers model.add(Dense(64, input_dim=64, kernel_regularizer=regularizers.12(0.01)

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 40 / 81

化重新润滑

← ロ → → ← 何 →

Introducing REGULARIZATION

```
# L1 data (only 5 informative features)
X 1, Y 1 = datasets.make classification(n samples=n samples,
                                              n features=n features, n informative=5,
                                              random state=1)
# L2 data: non sparse, but less features
y 2 = np.sign(.5 - rnd.rand(n samples))
X 2 = rnd.randn(n samples, n features // 5) + y 2[:, np.newaxis]
X_2 \leftarrow 5 * rnd.randn(n_samples, n_features // 5)
\text{clf\_sets} = [(\underline{\text{LinearSVC}}(\underline{\text{penalty}})^{-1}] \text{ 1}, \text{loss} = \text{Squared\_hinge'}, dual=False,
                          tol=1e-3),np.logspace(-2.3, -1.3, 10), X_1, y_1),
             (LinearSVC(penalty='12', loss='squared hinge', dual=True),
               np.logspace(-4.5, -2, 10), X_2, y_2)]
```


Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 40 / 81

The regularizer

At each step, we compute the solution

$$
\mathbf{x}_t := \arg\min_{\mathbf{x} \in \mathcal{K}} \left(R(\mathbf{x}) + \sum_{k=1}^{t-1} f_k(\mathbf{x}) \right).
$$

This is called Follow the Regularized Leader (FTRL). In short,

$$
FTRL = FTL + Regularizer.
$$

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 41/81

4 ロ ▶ (母

不是 的 \equiv

 \mathcal{A}

Analysis of FTRL

Theorem 3 (Analysis of FTRL)

For

- every sequence of cost function ${f_t(\cdot)}_{t>1}$ and
- every regularizer function $R(\cdot)$,

for every x , the regret with respect to x after T steps of the FTRL algorithm is bounded as

$$
\text{regret}_{\mathcal{T}}(\mathbf{x}) \leq \left(\sum_{t=1}^T f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1})\right) + R(\mathbf{x}) - R(\mathbf{x}_1),
$$

where regret $_{\mathcal{T}}(\textbf{x}) := \sum_{t=1}^{\mathcal{T}} (f_t(\textbf{x}_t) - f_t(\textbf{x})).$

つひひ

化重新润滑

← ロ → → ← 何 →

Proof of Theorem 3

Consider a mental experiment:

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 43/81

K ロ ▶ K 何 ▶

Э×

 \mathcal{A}

41

Proof of Theorem 3

• Consider a *mental* experiment:

- We run the FTL algorithm for $T + 1$ steps.
- The sequence of cost functions: R, f_1, f_2, \ldots, f_T .

 \bullet Use x_1 as the first solution.

• The solutions: $x_1, x_1, x_2, \ldots, x_T$.

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 43/81

← ロ → → ← 何 →

∋ » \leftarrow \equiv

Proof of Theorem 3

• Consider a *mental* experiment:

- We run the FTL algorithm for $T + 1$ steps.
- The sequence of cost functions: R, f_1, f_2, \ldots, f_T .
	- \bullet Use x_1 as the first solution.
- The solutions: $x_1, x_1, x_2, \ldots, x_T$.

• The regret:

$$
R(\mathbf{x}_1) - R(\mathbf{x}) + \sum_{t=1}^T (f_t(\mathbf{x}_t) - f_t(\mathbf{x}))
$$

 Ω

Proof of Theorem 3

• Consider a *mental* experiment:

- We run the FTL algorithm for $T + 1$ steps.
- The sequence of cost functions: R, f_1, f_2, \ldots, f_T .
	- \bullet Use x_1 as the first solution.
- The solutions: $x_1, x_1, x_2, \ldots, x_T$.

• The regret:

$$
R(\mathbf{x}_1) - R(\mathbf{x}) + \sum_{t=1}^{T} (f_t(\mathbf{x}_t) - f_t(\mathbf{x})) \leq R(\mathbf{x}_1) - R(\mathbf{x}_1) + \sum_{t=1}^{T} (f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1}))
$$

minimizer of $R(\cdot)$

 Ω

Proof of Theorem 3

• Consider a *mental* experiment:

- We run the FTL algorithm for $T + 1$ steps.
- The sequence of cost functions: R, f_1, f_2, \ldots, f_T .
	- \bullet Use x_1 as the first solution.
- The solutions: $x_1, x_1, x_2, \ldots, x_T$.

• The regret:

$$
R(\mathbf{x}_1) - R(\mathbf{x}) + \sum_{t=1}^{T} (f_t(\mathbf{x}_t) - f_t(\mathbf{x})) \leq R(\mathbf{x}_1) - R(\mathbf{x}_1) + \sum_{t=1}^{T} (f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1}))
$$

output of FTRL at $t + 1$

Outline

[Introduction](#page-3-0)

- 2 [Gradient Descent for Online Convex Optimization \(GD\)](#page-17-0)
- [Multiplicative Weight Update \(MWU\)](#page-32-0)
- [Follow The Leader \(FTL\)](#page-52-0)
- 5 [Follow The Regularized Leader \(FTRL\)](#page-73-0)
	- **[MWU Revisited](#page-84-0)**
	- **[FTRL with 2-norm regularizer](#page-105-0)**
- 6 [Multi-Armed Bandit \(MAB\)](#page-124-0)
	- **[Greedy Algorithms](#page-132-0)**
	- [Upper Confidence Bound \(UCB\)](#page-142-0)
	- [Time-Decay](#page-156-0) ϵ -Greedy

Using negative-entropy regularization

We have seen an example that FTL tends to put all probability mass on one expert (it's bad!)

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 45/81

← ロ → → ← 何 →

Using negative-entropy regularization

- We have seen an example that FTL tends to put all probability mass on one expert (it's bad!)
- **Idea:** penalize over "concentralized" distributions.
	- *negative*-entropy: a good measure of how centralized a distribution is.

4 ロ ▶ (母

メミメ メ毛

Using negative-entropy regularization

- We have seen an example that FTL tends to put all probability mass on one expert (it's bad!)
- **Idea:** penalize over "concentralized" distributions.
	- *negative*-entropy: a good measure of how centralized a distribution is.

$$
R(\mathbf{x}) := c \cdot \sum_{i=1}^n \mathbf{x}(i) \ln \mathbf{x}(i).
$$

4 0 8

(Brix Kr Br

Using negative-entropy regularization

- We have seen an example that FTL tends to put all probability mass on one expert (it's bad!)
- **Idea:** penalize over "concentralized" distributions.
	- *negative*-entropy: a good measure of how centralized a distribution is.

$$
R(\mathbf{x}) := c \cdot \sum_{i=1}^n \mathbf{x}(i) \ln \mathbf{x}(i).
$$

• So our FTRL gives

$$
\mathbf{x}_t = \arg\min_{\mathbf{x} \in \Delta} \left(\sum_{k=1}^{t-1} \langle \ell_k, \mathbf{x} \rangle + c \cdot \sum_{i=1}^n \mathbf{x}(i) \ln \mathbf{x}(i) \right).
$$

÷

Using negative entropy regularization

$$
\mathbf{x}_t = \arg\min_{\mathbf{x} \in \Delta} \left(\sum_{k=1}^{t-1} \langle \ell_k, \mathbf{x} \rangle + c \cdot \sum_{i=1}^n \mathbf{x}(i) \ln \mathbf{x}(i) \right).
$$

- The constraint $\mathbf{x} \in \Delta \Rightarrow \sum_i \mathbf{x}_i = 1$.
- So we use Lagrange multiplier to solve

$$
\mathcal{L} = \left(\sum_{k=1}^{t-1} \langle \ell_k, \mathbf{x} \rangle \right) + c \cdot \left(\sum_{i=1}^n \mathbf{x}(i) \ln \mathbf{x}(i)\right) + \lambda \cdot (\langle \mathbf{x}, \mathbf{1} \rangle - 1).
$$

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 46/81

3 E K 3 E

← ロ → → ← 何 →

Using negative entropy regularization

$$
\mathbf{x}_t = \arg\min_{\mathbf{x} \in \Delta} \left(\sum_{k=1}^{t-1} \langle \ell_k, \mathbf{x} \rangle + c \cdot \sum_{i=1}^n \mathbf{x}(i) \ln \mathbf{x}(i) \right).
$$

- The constraint $\mathbf{x} \in \Delta \Rightarrow \sum_i \mathbf{x}_i = 1$.
- So we use Lagrange multiplier to solve

$$
\mathcal{L} = \left(\sum_{k=1}^{t-1} \langle \ell_k, \mathbf{x} \rangle \right) + c \cdot \left(\sum_{i=1}^n \mathbf{x}(i) \ln \mathbf{x}(i)\right) + \lambda \cdot (\langle \mathbf{x}, \mathbf{1} \rangle - 1).
$$

The partial derivative $\frac{\partial \mathcal{L}}{\partial \mathbf{x}(i)}$:

$$
\left(\sum_{k=1}^{t-1} \ell_k(i)\right) + c \cdot (1 + \ln x_i) + \lambda
$$

Rediscover MWU?

$$
\frac{\partial \mathcal{L}}{\partial \mathbf{x}(i)} = 0 \quad \Rightarrow \quad \mathbf{x}(i) = \exp\left(-1 - \frac{\lambda}{c} - \frac{1}{c} \sum_{k=1}^{t-1} \ell_k(i)\right)
$$

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 47/81

h.

イロト 不倒 トイ君 トイ君

Rediscover MWU?

$$
\frac{\partial \mathcal{L}}{\partial \mathbf{x}(i)} = 0 \quad \Rightarrow \quad \mathbf{x}(i) = \exp\left(-1 - \frac{\lambda}{c} - \frac{1}{c} \sum_{k=1}^{t-1} \ell_k(i)\right)
$$

Take the value of λ to make the solution a probability distribution. Thus,

 4 (D \rightarrow 4 \overline{m} \rightarrow 4 \overline{m} \rightarrow 4 \overline{m}

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 47/81

Rediscover MWU?

$$
\frac{\partial \mathcal{L}}{\partial \mathbf{x}(i)} = 0 \quad \Rightarrow \quad \mathbf{x}(i) = \exp\left(-1 - \frac{\lambda}{c} - \frac{1}{c} \sum_{k=1}^{t-1} \ell_k(i)\right)
$$

Take the value of λ to make the solution a probability distribution. Thus,

$$
\mathbf{x}(i) = \frac{\exp\left(-\frac{1}{c}\sum_{k=1}^{t-1}\ell_k(i)\right)}{\sum_j \exp\left(-\frac{1}{c}\sum_{k=1}^{t-1}\ell_k(j)\right)}.
$$

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 47/81

Rediscover MWU?

$$
\frac{\partial \mathcal{L}}{\partial \mathbf{x}(i)} = 0 \quad \Rightarrow \quad \mathbf{x}(i) = \exp\left(-1 - \frac{\lambda}{c} - \frac{1}{c} \sum_{k=1}^{t-1} \ell_k(i)\right)
$$

Take the value of λ to make the solution a probability distribution. Thus,

$$
\mathbf{x}(i) = \frac{\exp\left(-\frac{1}{c}\sum_{k=1}^{t-1}\ell_k(i)\right)}{\sum_j \exp\left(-\frac{1}{c}\sum_{k=1}^{t-1}\ell_k(j)\right)}.
$$

Exactly the solution of MWU if we take $c = 1/\beta!$

イロト イ御 トイ ヨ トイ語

Rediscover MWU?

$$
\frac{\partial \mathcal{L}}{\partial \mathbf{x}(i)} = 0 \quad \Rightarrow \quad \mathbf{x}(i) = \exp\left(-1 - \frac{\lambda}{c} - \frac{1}{c} \sum_{k=1}^{t-1} \ell_k(i)\right)
$$

Take the value of λ to make the solution a probability distribution. Thus,

$$
\mathbf{x}(i) = \frac{\exp\left(-\frac{1}{c}\sum_{k=1}^{t-1}\ell_k(i)\right)}{\sum_j \exp\left(-\frac{1}{c}\sum_{k=1}^{t-1}\ell_k(j)\right)}.
$$

Exactly the solution of MWU if we take $c = 1/\beta!$

Now it remains to bound the deviation of each step.

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 47/81

Regret of $FTRL + Negative-Entropy Regularization$

.

• At each step,

$$
f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1}) = \langle \ell_t, \mathbf{x}_t - \mathbf{x}_{t+1} \rangle
$$

- Let's go back to use the notation of MWU.
	- $w_1(i) = 1$ (initialization).

$$
\bullet \ \mathbf{w}_{t+1}(i) = \mathbf{w}_t(i) \cdot e^{-\ell_t(i)/c}
$$

14 E K 4 E

← ロ → → ← 何 →

Regret of $FTRL + Negative-Entropy Regularization$

• At each step,

$$
f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1}) = \langle \ell_t, \mathbf{x}_t - \mathbf{x}_{t+1} \rangle
$$

Let's go back to use the notation of MWU.

\n- $$
w_1(i) = 1
$$
 (initialization).
\n- $w_{t+1}(i) = w_t(i) \cdot e^{-\ell_t(i)/c}$.
\n

• So,
$$
x_t = \frac{w_t(i)}{\sum_j w_t(j)}.
$$

• Then,

$$
\mathbf{x}_{t+1}(i) = \frac{\mathbf{w}_{t+1}(i)}{\sum_j \mathbf{w}_{t+1}(j)} = \frac{\mathbf{w}_t(i)e^{-\ell_t(i)/c}}{\sum_j \mathbf{w}_{t+1}(j)} \geq \frac{\mathbf{w}_t(i)e^{-\ell_t(i)/c}}{\sum_j \mathbf{w}_t(j)}
$$

\n
$$
\geq \mathbf{x}_t(i) \cdot e^{-1/c} \geq (1 - 1/c)\mathbf{x}_t(i).
$$

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 48 / 81

← ロ → → ← 何 →

 $A \equiv 3$

Regret of $FTRL + Negative-Entropy Regularization$

• At each step,

$$
f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1}) = \langle \ell_t, \mathbf{x}_t - \mathbf{x}_{t+1} \rangle
$$

Let's go back to use the notation of MWU.

\n- $$
w_1(i) = 1
$$
 (initialization).
\n- $w_{t+1}(i) = w_t(i) \cdot e^{-\ell_t(i)/c}$.
\n

• So,
$$
x_t = \frac{w_t(i)}{\sum_j w_t(j)}.
$$

o Then.

$$
\mathbf{x}_{t+1}(i) = \frac{\mathbf{w}_{t+1}(i)}{\sum_j \mathbf{w}_{t+1}(j)} = \frac{\mathbf{w}_t(i)e^{-\ell_t(i)/c}}{\sum_j \mathbf{w}_{t+1}(j)} \geq \frac{\mathbf{w}_t(i)e^{-\ell_t(i)/c}}{\sum_j \mathbf{w}_t(j)}
$$

\n
$$
\geq \mathbf{x}_t(i) \cdot e^{-1/c} \geq (1 - 1/c)\mathbf{x}_t(i).
$$

∵ weights are non-increasing

つひへ

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 48 / 81

← ロ → → ← 何 →

化重 经间

Regret of $FTRL + Negative-Entropy Regularization$

• At each step,

$$
f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1}) = \langle \ell_t, \mathbf{x}_t - \mathbf{x}_{t+1} \rangle
$$

Let's go back to use the notation of MWU.

\n- $$
w_1(i) = 1
$$
 (initialization).
\n- $w_{t+1}(i) = w_t(i) \cdot e^{-\ell_t(i)/c}$.
\n

• So,
$$
x_t = \frac{w_t(i)}{\sum_j w_t(j)}.
$$

o Then.

$$
\mathbf{x}_{t+1}(i) = \frac{\mathbf{w}_{t+1}(i)}{\sum_j \mathbf{w}_{t+1}(j)} = \frac{\mathbf{w}_t(i)e^{-\ell_t(i)/c}}{\sum_j \mathbf{w}_{t+1}(j)} \geq \frac{\mathbf{w}_t(i)e^{-\ell_t(i)/c}}{\sum_j \mathbf{w}_t(j)}
$$

$$
\geq \mathbf{x}_t(i) \cdot e^{-1/c} \geq (1 - 1/c)\mathbf{x}_t(i).
$$

assume $0 \leq \ell_t(i) \leq 1$

K ロ ト K 何 ト K ヨ ト K ヨ

 Ω

Regret of $FTRL + Negative-Entropy Regularization$

• At each step,

$$
f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1}) = \langle \ell_t, \mathbf{x}_t - \mathbf{x}_{t+1} \rangle \leq \sum_i \ell_t(i) \cdot \frac{1}{c} \mathbf{x}_t(i) \leq \frac{1}{c}.
$$

.

Let's go back to use the notation of MWU.

\n- $$
w_1(i) = 1
$$
 (initialization).
\n- $w_{t+1}(i) = w_t(i) \cdot e^{-\ell_t(i)/c}$
\n

• So,
$$
x_t = \frac{w_t(i)}{\sum_j w_t(j)}.
$$

• Then,

$$
\mathbf{x}_{t+1}(i) = \frac{\mathbf{w}_{t+1}(i)}{\sum_j \mathbf{w}_{t+1}(j)} = \frac{\mathbf{w}_t(i)e^{-\ell_t(i)/c}}{\sum_j \mathbf{w}_{t+1}(j)} \geq \frac{\mathbf{w}_t(i)e^{-\ell_t(i)/c}}{\sum_j \mathbf{w}_t(j)}
$$

\n
$$
\geq \mathbf{x}_t(i) \cdot e^{-1/c} \geq (1 - 1/c)\mathbf{x}_t(i).
$$

← ロ → → ← 何 →

 $A \equiv 3$

Regret of $FTRL + Negative-Entropy Regularization$

• By Theorem 3, for any x ,

$$
\text{regret}_{\mathcal{T}}(\mathbf{x}) \leq \sum_{t=1}^{\mathcal{T}} \left(f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1}) \right) + R(\mathbf{x}) - R(\mathbf{x}_1) \leq \frac{\mathcal{T}}{c} + c \ln n.
$$

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 49/81

← ロ → → ← 何 →

化重 的 -41 ≔

Regret of $FTRL + Negative-Entropy Regularization$

• By Theorem 3, for any x ,

$$
\text{regret}_{\mathcal{T}}(\mathbf{x}) \leq \sum_{t=1}^{\mathcal{T}} \left(f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1}) \right) + R(\mathbf{x}) - R(\mathbf{x}_1) \leq \frac{\mathcal{T}}{c} + c \ln n.
$$

∵ max entropy for uniform distribution

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 49/81

← ロ → → ← 何 →

化重新润滑

Regret of $FTRL + Negative-Entropy Regularization$

• By Theorem 3, for any x ,

$$
\text{regret}_{\mathcal{T}}(\mathbf{x}) \leq \sum_{t=1}^{\mathcal{T}} \left(f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1}) \right) + R(\mathbf{x}) - R(\mathbf{x}_1) \leq \frac{\mathcal{T}}{c} + c \ln n.
$$

Again, we have regret $_{\mathcal{T}}\leq2$ √ $\overline{T \ln n}$ by choosing $c = \sqrt{\frac{T}{\ln n}}$ $\frac{1}{\ln n}$.

イロト イ御 トイ ヨ トイ語

Regret of $FTRL + Negative-Entropy Regularization$

• By Theorem 3, for any x ,

$$
\text{regret}_{\mathcal{T}}(\mathbf{x}) \leq \sum_{t=1}^{\mathcal{T}} \left(f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1}) \right) + R(\mathbf{x}) - R(\mathbf{x}_1) \leq \frac{\mathcal{T}}{c} + c \ln n.
$$

Again, we have regret $_{\mathcal{T}}\leq2$ √ $\overline{T \ln n}$ by choosing $c = \sqrt{\frac{T}{\ln n}}$ $\frac{1}{\ln n}$.

Note the slight difference b/w regret and regret^{*}.

イロト イ御 トイヨ トイヨ

[No-Regret Online Learning](#page-0-0) [Follow The Regularized Leader \(FTRL\)](#page-73-0) [FTRL with 2-norm regularizer](#page-105-0)

Outline

[Introduction](#page-3-0)

- 2 [Gradient Descent for Online Convex Optimization \(GD\)](#page-17-0)
- [Multiplicative Weight Update \(MWU\)](#page-32-0)
- [Follow The Leader \(FTL\)](#page-52-0)
- 5 [Follow The Regularized Leader \(FTRL\)](#page-73-0)
	- **[MWU Revisited](#page-84-0)**
	- **•** [FTRL with 2-norm regularizer](#page-105-0)
- 6 [Multi-Armed Bandit \(MAB\)](#page-124-0)
	- **[Greedy Algorithms](#page-132-0)**
	- [Upper Confidence Bound \(UCB\)](#page-142-0)
	- [Time-Decay](#page-156-0) ϵ -Greedy

[No-Regret Online Learning](#page-0-0) [Follow The Regularized Leader \(FTRL\)](#page-73-0) [FTRL with 2-norm regularizer](#page-105-0)

L2 Regularization

- Let's try to apply the FTRL to the case that the regularizer is of L2 norm!
- Consider also linear cost functions but $K = \mathbb{R}^n$ first.
- What kind of problem we might encounter?

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 51/81

4 0 8

Э×

[No-Regret Online Learning](#page-0-0) [Follow The Regularized Leader \(FTRL\)](#page-73-0) [FTRL with 2-norm regularizer](#page-105-0)

L2 Regularization

- Let's try to apply the FTRL to the case that the regularizer is of L2 norm!
- Consider also linear cost functions but $K = \mathbb{R}^n$ first.
- What kind of problem we might encounter?
- The offline optimum could be $-\infty$.
- FTL will also tend to find a solution of "big" size, too.

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 51/81

◆ ロ ▶ → 何

3 (금) - 3 금
L2 Regularization

- Let's try to apply the FTRL to the case that the regularizer is of L2 norm!
- Consider also linear cost functions but $K = \mathbb{R}^n$ first.
- What kind of problem we might encounter?
- The offline optimum could be $-\infty$.
- FTL will also tend to find a solution of "big" size, too.
- To fight this tendency, it makes sense to use a regularizer which penalizes the size of a solution.

$R(x) := c ||x||^2$.

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 51/81

つひい

イロト イ押ト イヨト イヨ

The regularizer of 2-norm tells us...

- $x_1 = 0$.
- $\mathbf{x}_{t+1} = \arg \min_{\mathbf{x} \in \mathbb{R}^n} c||\mathbf{x}||^2 + \sum_{k=1}^t \langle \ell_k, \mathbf{x} \rangle$.
- Compute the gradient:

$$
2c\mathbf{x} + \sum_{k=1}^{t} \ell_k = 0
$$

$$
\Rightarrow \mathbf{x} = -\frac{1}{2c} \sum_{k=1}^{t} \ell_k.
$$

Hence,
$$
\mathbf{x}_1 = \mathbf{0}, \mathbf{x}_{t+1} = \mathbf{x}_t - \frac{1}{2c} \boldsymbol{\ell}_t
$$
.

 Ω

メミメ メ毛

← ロ → → ← 何 →

The regularizer of 2-norm tells us...

- $x_1 = 0$.
- $\mathbf{x}_{t+1} = \arg \min_{\mathbf{x} \in \mathbb{R}^n} c||\mathbf{x}||^2 + \sum_{k=1}^t \langle \ell_k, \mathbf{x} \rangle$. convex
- Compute the gradient:

$$
2c\mathbf{x} + \sum_{k=1}^{t} \ell_k = 0
$$

$$
\Rightarrow \mathbf{x} = -\frac{1}{2c} \sum_{k=1}^{t} \ell_k.
$$

Hence,
$$
\mathbf{x}_1 = \mathbf{0}, \mathbf{x}_{t+1} = \mathbf{x}_t - \frac{1}{2c} \boldsymbol{\ell}_t
$$
.

3 (금) - 3 금

 Ω

← ロ → → ← 何 →

The regularizer of 2-norm tells us...

- $x_1 = 0$.
- $\mathbf{x}_{t+1} = \arg \min_{\mathbf{x} \in \mathbb{R}^n} c||\mathbf{x}||^2 + \sum_{k=1}^t \langle \ell_k, \mathbf{x} \rangle$.
- Compute the gradient:

$$
2c\mathbf{x} + \sum_{k=1}^{t} \ell_k = 0
$$

$$
\Rightarrow \mathbf{x} = -\frac{1}{2c} \sum_{k=1}^{t} \ell_k.
$$

Hence, $\mathbf{x}_1 = \mathbf{0}, \mathbf{x}_{t+1} = \mathbf{x}_t - \frac{1}{2d}$ $\frac{1}{2c}$ ℓ_t .

 Ω

 4 ロ } 4 何 } 4 ヨ } 4 ∃

The regularizer of 2-norm tells us...

- $x_1 = 0$.
- $\mathbf{x}_{t+1} = \arg \min_{\mathbf{x} \in \mathbb{R}^n} c||\mathbf{x}||^2 + \sum_{k=1}^t \langle \ell_k, \mathbf{x} \rangle$.
- Compute the gradient:

$$
2c\mathbf{x} + \sum_{k=1}^{t} \ell_k = 0
$$

\n
$$
\Rightarrow \mathbf{x} = -\frac{1}{2c} \sum_{k=1}^{t} \ell_k.
$$

Hence, $\mathbf{x}_1 = \mathbf{0}, \mathbf{x}_{t+1} = \mathbf{x}_t - \frac{1}{2d}$ $\frac{1}{2c}$ ℓ_t . \rightarrow penalize the experts that performed badly in the past!

つひい

イロト イ押ト イヨト イヨ

The regret of FTRL with 2-norm regularization

• First, we have

$$
f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1}) = \langle \boldsymbol{\ell}_t, \mathbf{x}_t - \mathbf{x}_{t+1} \rangle = \langle \boldsymbol{\ell}_t, \frac{1}{2c} \boldsymbol{\ell}_t \rangle = \frac{1}{2c} ||\boldsymbol{\ell}_t||^2.
$$

 \bullet So, with respect to a solution x ,

regret_T(**x**)
$$
\leq R(\mathbf{x}) - R(\mathbf{x}_1) + \sum_{t=1}^{T} f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1})
$$

$$
= c||\mathbf{x}||^2 + \frac{1}{2c} \sum_{t=1}^{T} ||\ell_t||^2.
$$

Suppose that $||\ell_t|| \leq L$ for each t and $||\textbf{x}|| \leq D.$ Then by optimizing $\mathcal{c} = \sqrt{\frac{7}{2 D^2 L^2}}$, we have

$$
\text{regret}_{\mathcal{T}}(\mathbf{x}) \leq DL\sqrt{2T}.
$$

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 53 / 81

Dealing with constraints

- Let's deal with the constraint that K is an arbitrary convex set instead of \mathbb{R}^n .
- Using the same regularizer, we have our FTRL which gives

$$
\mathbf{x}_1 = \arg\min_{\mathbf{x} \in \mathcal{K}} c||\mathbf{x}||^2,
$$

$$
\mathbf{x}_{t+1} = \arg\min_{\mathbf{x} \in \mathcal{K}} c||\mathbf{x}||^2 + \sum_{k=1}^t \langle \ell_t, \mathbf{x} \rangle.
$$

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 54 / 81

◆ ロ ▶ → 何

Dealing with constraints

- Let's deal with the constraint that K is an arbitrary convex set instead of \mathbb{R}^n .
- Using the same regularizer, we have our FTRL which gives

$$
\mathbf{x}_1 = \arg\min_{\mathbf{x} \in \mathcal{K}} c||\mathbf{x}||^2,
$$

$$
\mathbf{x}_{t+1} = \arg\min_{\mathbf{x} \in \mathcal{K}} c||\mathbf{x}||^2 + \sum_{k=1}^t \langle \ell_t, \mathbf{x} \rangle.
$$

• The idea: First solve the unconstrained optimization and then project the solution on K.

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 54 / 81

← ロ → → ← 何 →

化重制润滑

Unconstrained optimization $+$ projection

$$
\mathbf{y}_{t+1} = \arg \min_{\mathbf{y} \in \mathbb{R}^n} c||\mathbf{y}||^2 + \sum_{k=1}^t \langle \ell_t, \mathbf{y} \rangle.
$$

$$
\mathbf{x}'_{t+1} = \Pi_{\mathcal{K}}(\mathbf{y}_{t+1}) = \arg \min_{\mathbf{x} \in \mathcal{K}} ||\mathbf{x} - \mathbf{y}_{t+1}||.
$$

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 55/81

← ロ ▶ → 何

Unconstrained optimization $+$ projection

$$
\mathbf{y}_{t+1} = \arg \min_{\mathbf{y} \in \mathbb{R}^n} c||\mathbf{y}||^2 + \sum_{k=1}^t \langle \ell_t, \mathbf{y} \rangle.
$$

$$
\mathbf{x}'_{t+1} = \Pi_{\mathcal{K}}(\mathbf{y}_{t+1}) = \arg \min_{\mathbf{x} \in \mathcal{K}} ||\mathbf{x} - \mathbf{y}_{t+1}||.
$$

Claim: $x'_{t+1} = x_{t+1}$.

 \leftarrow \leftarrow

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 55/81

Proof of the claim: $x'_{t+1} = x_{t+1}$

- First, we already have that $\textbf{y}_{t+1} = \frac{1}{2 \epsilon}$ $\frac{1}{2c} \sum_{k=1}^t \ell_t$.
- Then,

$$
\mathbf{x}'_{t+1} = \arg\min_{\mathbf{x}\in\mathcal{K}} ||\mathbf{x} - \mathbf{y}_{t+1}|| = \arg\min_{\mathbf{x}\in\mathcal{K}} ||\mathbf{x} - \mathbf{y}_{t+1}||^2
$$

$$
= \arg\min_{\mathbf{x}\in\mathcal{K}} ||\mathbf{x}||^2 - 2\langle \mathbf{x}, \mathbf{y}_{t+1} \rangle + ||\mathbf{y}_{t+1}||^2
$$

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 56 / 81

 \leftarrow \leftarrow

Proof of the claim: $x'_{t+1} = x_{t+1}$

- First, we already have that $\textbf{y}_{t+1} = \frac{1}{2 \epsilon}$ $\frac{1}{2c} \sum_{k=1}^t \ell_t$.
- Then,

$$
\mathbf{x}'_{t+1} = \arg \min_{\mathbf{x} \in \mathcal{K}} ||\mathbf{x} - \mathbf{y}_{t+1}|| = \arg \min_{\mathbf{x} \in \mathcal{K}} ||\mathbf{x} - \mathbf{y}_{t+1}||^2
$$

\n
$$
= \arg \min_{\mathbf{x} \in \mathcal{K}} ||\mathbf{x}||^2 - 2\langle \mathbf{x}, \mathbf{y}_{t+1} \rangle + ||\mathbf{y}_{t+1}||^2
$$

\n
$$
= \arg \min_{\mathbf{x} \in \mathcal{K}} ||\mathbf{x}||^2 - 2\langle \mathbf{x}, \mathbf{y}_{t+1} \rangle
$$

\n
$$
= \arg \min_{\mathbf{x} \in \mathcal{K}} ||\mathbf{x}||^2 - 2\langle \mathbf{x}, -\frac{1}{2c} \sum_{k=1}^t \ell_t \rangle
$$

\n
$$
= \arg \min_{\mathbf{x} \in \mathcal{K}} c||\mathbf{x}||^2 + \langle \mathbf{x}, \sum_{k=1}^t \ell_t \rangle
$$

\n
$$
= \mathbf{x}_{t+1}.
$$

 Ω

 \leftarrow \leftarrow

To bound the regret

$$
f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1}) = \langle \ell_t, \mathbf{x}_t - \mathbf{x}_{t+1} \rangle \leq ||\ell_t|| \cdot ||\mathbf{x}_t - \mathbf{x}_{t+1}||
$$

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 57/81

K ロ ▶ K 倒 ▶

Þ \leftarrow \equiv

×. \rightarrow

To bound the regret

To bound the regret

$$
f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1}) = \langle \ell_t, \mathbf{x}_t - \mathbf{x}_{t+1} \rangle \le ||\ell_t|| \cdot ||\mathbf{x}_t - \mathbf{x}_{t+1}||
$$

\n
$$
\le ||\ell_t|| \cdot ||\mathbf{y}_t - \mathbf{y}_{t+1}||
$$

\n
$$
\le \frac{1}{2c} ||\ell_t||^2.
$$

So, assume max $_{\mathbf{x}\in\mathcal{K}}\left|\left|\mathbf{x}\right|\right|\leq D$ and $||\boldsymbol{\ell}_t||\leq L$ for all t , we have

regret_T
$$
\leq c||\mathbf{x}^*||^2 - c||\mathbf{x}_1||^2 + \frac{1}{2c}\sum_{t=1}^T ||\ell_t||^2
$$

 $\leq cD^2 + \frac{1}{2c}TL^2$

E K \mathcal{A} ÷

K ロ ▶ K 何 ▶

To bound the regret

$$
f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1}) = \langle \ell_t, \mathbf{x}_t - \mathbf{x}_{t+1} \rangle \le ||\ell_t|| \cdot ||\mathbf{x}_t - \mathbf{x}_{t+1}||
$$

\n
$$
\le ||\ell_t|| \cdot ||\mathbf{y}_t - \mathbf{y}_{t+1}||
$$

\n
$$
\le \frac{1}{2c} ||\ell_t||^2.
$$

So, assume max $_{\mathbf{x}\in\mathcal{K}}\left|\left|\mathbf{x}\right|\right|\leq D$ and $||\boldsymbol{\ell}_t||\leq L$ for all t , we have

regret_T
$$
\leq c||\mathbf{x}^*||^2 - c||\mathbf{x}_1||^2 + \frac{1}{2c}\sum_{t=1}^T ||\ell_t||^2
$$

 $\leq cD^2 + \frac{1}{2c}TL^2 \leq DL\sqrt{2T}.$

← ロ → → ← 何 →

不是 的

- イーヨー

Outline

[Introduction](#page-3-0)

- 2 [Gradient Descent for Online Convex Optimization \(GD\)](#page-17-0)
- [Multiplicative Weight Update \(MWU\)](#page-32-0)
- [Follow The Leader \(FTL\)](#page-52-0)
- 5 [Follow The Regularized Leader \(FTRL\)](#page-73-0)
	- **[MWU Revisited](#page-84-0)**
	- **[FTRL with 2-norm regularizer](#page-105-0)**

6 [Multi-Armed Bandit \(MAB\)](#page-124-0)

- **[Greedy Algorithms](#page-132-0)**
- [Upper Confidence Bound \(UCB\)](#page-142-0)
- [Time-Decay](#page-156-0) ϵ -Greedy

[No-Regret Online Learning](#page-0-0) [Multi-Armed Bandit \(MAB\)](#page-124-0)

Multi-Armed Bandit

Fig.: Image credit: Microsoft Research

 \sim

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 60/81

4 0 8 1

The setting

- We can see N arms as N experts.
- Arms give are independent.
- We can only pull an arm and observe the reward of it.
	- It's NOT possible to observe the reward of pulling the other arms...
- Each arm *i* has its own reward $r_i \in [0,1]$.

∢ □ ▶ ⊣ *←* □

B K

The setting

- We can see N arms as N experts.
- Arms give are independent.
- We can only pull an arm and observe the reward of it.
	- It's NOT possible to observe the reward of pulling the other arms...
- Each arm *i* has its own reward $r_i \in [0,1]$.
	- μ_i : the mean of reward of arm i
		- $\hat{\mu}_i$: the empirical mean of reward of arm *i*
	- μ^* : the mean of reward of the BEST arm.

$$
\bullet \ \Delta_i : \mu^* - \mu_i.
$$

- Index of the best arm: $I^* := \arg \max_{i \in \{1, ..., N\}} \mu_i$.
- The associated highest expected reward: $\mu^* = \mu_{I^*}.$

(ロ) (_何) (ヨ) (ヨ

Let I_t be the arm played by the algorithm at time t. The regret of the algorithm in T rounds is

$$
\text{regret}_{\mathcal{T}} = \sum_{t=1}^{\mathcal{T}} (\mu^* - \mu_{l_t})
$$

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 62 / 81

4 ロ ▶ (母

Let I_t be the arm played by the algorithm at time t. The regret of the algorithm in T rounds is

regret_T =
$$
\sum_{t=1}^{T} (\mu^* - \mu_{I_t}) = \sum_{i=1}^{N} \sum_{t: I_t = i} (\mu^* - \mu_i)
$$

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 62 / 81

4 ロ ▶ (母

Let I_t be the arm played by the algorithm at time t. The regret of the algorithm in T rounds is

regret_T =
$$
\sum_{t=1}^{T} (\mu^* - \mu_{l_t}) = \sum_{i=1}^{N} \sum_{t:l_t=i} (\mu^* - \mu_i)
$$

= $\sum_{i=1}^{N} n_{i,T} \Delta_i$

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 62 / 81

4 ロ ▶ (母

Let I_t be the arm played by the algorithm at time t. The regret of the algorithm in T rounds is

$$
\begin{array}{rcl}\n\text{regret}_{\mathcal{T}} & = & \sum_{t=1}^{\mathcal{T}} (\mu^* - \mu_{l_t}) = \sum_{i=1}^N \sum_{t:l_t=i} (\mu^* - \mu_i) \\
& = & \sum_{i=1}^N n_{i,\mathcal{T}} \Delta_i \\
& = & \sum_{i:\mu_i < \mu^*} n_{i,\mathcal{T}} \Delta_i.\n\end{array}
$$

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 62 / 81

◆ ロ ▶ → 何

Э×

 Ω

Outline

[Introduction](#page-3-0)

- 2 [Gradient Descent for Online Convex Optimization \(GD\)](#page-17-0)
- [Multiplicative Weight Update \(MWU\)](#page-32-0)
- [Follow The Leader \(FTL\)](#page-52-0)
- 5 [Follow The Regularized Leader \(FTRL\)](#page-73-0)
	- **[MWU Revisited](#page-84-0)**
	- **[FTRL with 2-norm regularizer](#page-105-0)**

6 [Multi-Armed Bandit \(MAB\)](#page-124-0)

- **[Greedy Algorithms](#page-132-0)**
- [Upper Confidence Bound \(UCB\)](#page-142-0)
- [Time-Decay](#page-156-0) ϵ -Greedy

A Na¨ıve Greedy Algorithm

Greedy Algorithm

1 For $t \le cN$, select a random arm with probability $1/N$ and pull it.

- $\bullet\,$ For $t>cN$, pull the arm $\,l_t:=\mathsf{arg\,max}_{i=1,...,N}\,\hat{\mu}_{i,t}.$
- \bullet Here c is a constant.

3 E K 3 E

← ロ → → ← 何 →

A Na¨ıve Greedy Algorithm

Greedy Algorithm

1 For $t \leq cN$, select a random arm with probability $1/N$ and pull it.

- $\bullet\,$ For $t>cN$, pull the arm $\,l_t:=\mathsf{arg\,max}_{i=1,...,N}\,\hat{\mu}_{i,t}.$
- **•** Here c is a constant.
- This algorithm is of linear regret, hence is not a no-regret algorithm.

14 E K 4 E

← ロ → → ← 何 →

A Na¨ıve Greedy Algorithm

Greedy Algorithm

1 For $t \leq cN$, select a random arm with probability $1/N$ and pull it.

 $\bullet\,$ For $t>cN$, pull the arm $\,l_t:=\mathsf{arg\,max}_{i=1,...,N}\,\hat{\mu}_{i,t}.$

- \bullet Here c is a constant.
- This algorithm is of linear regret, hence is not a no-regret algorithm.
- For example,
	- Arm 1: $0/1$ reward with mean $3/4$.
	- Arm 2: Fixed reward of $1/4$.
	- After $cN = 2c$ steps, with constant probability, we have $\hat{\mu}_{1,cN} < \hat{\mu}_{2,cN}$.

A Na¨ıve Greedy Algorithm

Greedy Algorithm

1 For $t \leq cN$, select a random arm with probability $1/N$ and pull it.

 $\bullet\,$ For $t>cN$, pull the arm $\,l_t:=\mathsf{arg\,max}_{i=1,...,N}\,\hat{\mu}_{i,t}.$

- \bullet Here c is a constant.
- This algorithm is of linear regret, hence is not a no-regret algorithm.
- For example,
	- Arm 1: $0/1$ reward with mean $3/4$.
	- Arm 2: Fixed reward of $1/4$.
	- After $cN = 2c$ steps, with constant probability, we have $\hat{\mu}_{1,cN} < \hat{\mu}_{2,cN}$.
	- If this is the case, the algorithm will keep pulling arm 2 and will never change!

つひい

ϵ -Greedy Algorithm

ϵ -Greedy Algorithm

For all $t = 1, 2, ..., N$:

- With probability $1-\epsilon$, pull arm $l_t := \mathsf{arg\,max}_{i=1,...,N} \hat{\mu}_{i,t}.$
- \bullet With probability ϵ , select an arm uniformly at random (i.e., each with probability $1/N$).

イロト イ押ト イヨト イヨ

ϵ -Greedy Algorithm

ϵ -Greedy Algorithm

For all $t = 1, 2, ..., N$:

- With probability $1-\epsilon$, pull arm $l_t := \mathsf{arg\,max}_{i=1,...,N} \hat{\mu}_{i,t}.$
- With probability ϵ , select an arm uniformly at random (i.e., each with probability $1/N$).

• It looks good.

イロト イ押ト イヨト イヨ

ϵ -Greedy Algorithm

ϵ -Greedy Algorithm

For all $t = 1, 2, ..., N$:

- With probability $1-\epsilon$, pull arm $l_t := \mathsf{arg\,max}_{i=1,...,N} \hat{\mu}_{i,t}.$
- \bullet With probability ϵ , select an arm uniformly at random (i.e., each with probability $1/N$).
- It looks good.
- Unfortunately, this algorithm still incurs linear regret.

ϵ -Greedy Algorithm

ϵ -Greedy Algorithm

For all $t = 1, 2, ..., N$:

With probability $1-\epsilon$, pull arm $l_t := \mathsf{arg\,max}_{i=1,...,N} \hat{\mu}_{i,t}.$

 \bullet With probability ϵ , select an arm uniformly at random (i.e., each with probability $1/N$).

- It looks good.
- Unfortunately, this algorithm still incurs linear regret.
- Indeed.
	- Each arm is pulled in average $\epsilon T/N$ times.

つひい

ϵ -Greedy Algorithm

ϵ -Greedy Algorithm

For all $t = 1, 2, ..., N$:

With probability $1-\epsilon$, pull arm $l_t := \mathsf{arg\,max}_{i=1,...,N} \hat{\mu}_{i,t}.$

 \bullet With probability ϵ , select an arm uniformly at random (i.e., each with probability $1/N$).

- It looks good.
- Unfortunately, this algorithm still incurs linear regret.
- Indeed.
	- Each arm is pulled in average $\epsilon T/N$ times.
	- Hence the (expected) regret will be at least $\frac{\epsilon\mathcal{T}}{N}\sum_{i:\mu_i<\mu^*}\Delta_i.$

[No-Regret Online Learning](#page-0-0) [Multi-Armed Bandit \(MAB\)](#page-124-0) [Upper Confidence Bound \(UCB\)](#page-142-0)

Outline

[Introduction](#page-3-0)

- 2 [Gradient Descent for Online Convex Optimization \(GD\)](#page-17-0)
- [Multiplicative Weight Update \(MWU\)](#page-32-0)
- [Follow The Leader \(FTL\)](#page-52-0)
- 5 [Follow The Regularized Leader \(FTRL\)](#page-73-0)
	- **[MWU Revisited](#page-84-0)**
	- **[FTRL with 2-norm regularizer](#page-105-0)**

6 [Multi-Armed Bandit \(MAB\)](#page-124-0)

- **[Greedy Algorithms](#page-132-0)**
- [Upper Confidence Bound \(UCB\)](#page-142-0)
- [Time-Decay](#page-156-0) ϵ -Greedy

イロト イ押ト イヨト イヨ

The upper confidence bound algorithm (UCB)

- At each time step (round), we simply pull the arm with the highest "empirical reward estimate $+$ high-confidence interval size".
- \bullet The empirical reward estimate of arm *i* at time *t*:

$$
\hat{\mu}_{i,t} = \frac{\sum_{s=1}^t I_{s,i} \cdot r_s}{n_{i,t}}.
$$

 $n_{i,t}$: the number of times arm i is played.

- $I_{s,i}:$ 1 if the choice of arm is *i* at time *s* and 0 otherwise.
- Reward estimate $+$ confidence interval:

$$
\mathsf{UCB}_{i,t} := \hat{\mu}_{i,t} + \sqrt{\frac{\ln t}{n_{i,t}}}.
$$

← ロ → → ← 何 →

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 67/81

14 E K 4 E
Algorithm UCB

UCB Algorithm

N arms, T rounds such that $T > N$. **1** For $t = 1, \ldots, N$, play arm t. **2** For $t = N + 1, \ldots, T$, play arm $A_t = \arg \max_{i \in \{1,...,N\}} \text{UCB}_{i,t-1}.$

K ロ ▶ K 御 ▶ K 君 ▶ K 君

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 68 / 81

Algorithm UCB

Algorithm UCB (after more time steps...)

From the Chernoff bound (proof skipped)

For each arm i at time t , we have

$$
|\hat{\mu}_{i,t} - \mu_i| < \sqrt{\frac{\ln t}{n_{i,t}}}
$$

with probability $\geq 1-2/t^2$.

Immediately, we know that

$$
\bullet \text{ with prob. } \geq 1-2/t^2, \text{ UCB}_{i,t} := \hat{\mu}_{i,t} + \sqrt{\frac{\ln t}{n_{i,t}}} > \mu_i.
$$

• with prob.
$$
\geq 1 - 2/t^2
$$
, $\hat{\mu}_{i,t} < \mu_i + \frac{\Delta_i}{2}$ when $n_{i,t} \geq \frac{4 \ln t}{\Delta_i^2}$.

つひい

4 0 8

From the Chernoff bound (proof skipped)

For each arm i at time t , we have

$$
|\hat{\mu}_{i,t} - \mu_i| < \sqrt{\frac{\ln t}{n_{i,t}}}
$$

with probability $\geq 1-2/t^2$.

To understand why, please take my Randomized Algorithms course. :) Immediately, we know that

• with prob.
$$
\geq 1 - 2/t^2
$$
, $\mathsf{UCB}_{i,t} := \hat{\mu}_{i,t} + \sqrt{\frac{\ln t}{n_{i,t}}} > \mu_i$.

• with prob.
$$
\geq 1 - 2/t^2
$$
, $\hat{\mu}_{i,t} < \mu_i + \frac{\Delta_i}{2}$ when $n_{i,t} \geq \frac{4 \ln t}{\Delta_i^2}$.

◆ ロ ▶ → 何

Appendix: Tail probability by the Chernoff/Hoeffding bound

The Chernoff/Hoeffding bound

For independent and identically distributed (i.i.d.) samples $x_1, \ldots, x_n \in [0, 1]$ with $\mathbb{E}[x_i] = \mu$, we have

$$
\Pr\left[\left|\frac{\sum_{i=1}^n x_i}{n} - \mu\right| \ge \delta\right] \le 2e^{-2n\delta^2}.
$$

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 71/81

Very unlikely to play a suboptimal arm

Lemma 3

At any time step t , if a suboptimal arm i (i.e., $\mu_i < \mu^*)$ has been played for $n_{i,t} \geq \frac{4 \ln t}{\Delta_i^2}$ times, then $\mathsf{UCB}_{i,t} < \mathsf{UCB}_{I^*,t}$ with probability $\geq 1-4/t^2.$ Therefore, for any t ,

$$
\Pr\left[l_{t+1,i}=1\middle|\,n_{i,t}\geq\frac{4\ln t}{\Delta_i^2}\right]\leq\frac{4}{t^2}.
$$

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 72 / 81

← ロ → → ← 何 →

Proof of Lemma 3

With probability $< 2/t^2 + 2/t^2$ (union bound) that

$$
\begin{aligned} \text{UCB}_{i,t} &= \hat{\mu}_{i,t} + \sqrt{\frac{\ln t}{n_{i,t}}} &\leq \hat{\mu}_{i,t} + \frac{\Delta_i}{2} \\ &< \left(\mu_i + \frac{\Delta_i}{2}\right) + \frac{\Delta_i}{2} \\ &= \mu^* < \text{UCB}_{i^*,t} \end{aligned}
$$

does NOT hold.

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 73 / 81

 4 (D \rightarrow 4 \overline{m} \rightarrow 4 \overline{m} \rightarrow 4 \overline{m}

Playing suboptimal arms for very limited number of times

Lemma 4

For any arm *i* with $\mu_i < \mu^*$,

$$
\mathbb{E}[n_{i,T}] \leq \frac{4 \ln T}{\Delta_i^2} + 8.
$$

$$
\mathbb{E}[n_{i,T}] = 1 + \mathbb{E}\left[\sum_{t=N}^{T} \mathbb{1}\left\{I_{t+1,i} = 1\right\}\right]
$$

$$
= 1 + \mathbb{E}\left[\sum_{t=N}^{T} \mathbb{1}\left\{I_{t+1,i} = 1, n_{i,t} < \frac{4 \ln t}{\Delta_i^2}\right\}\right]
$$

$$
+ \mathbb{E}\left[\sum_{t=N}^{T} \mathbb{1}\left\{I_{t+1,i} = 1, n_{i,t} \geq \frac{4 \ln t}{\Delta_i^2}\right\}\right]
$$

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 74/81

Proof of Lemma 4 (contd.)

$$
\mathbb{E}[n_{i,T}] \leq \frac{4 \ln T}{\Delta_i^2} + \mathbb{E} \left[\sum_{t=N}^T \mathbb{1} \left\{ I_{t+1,i} = 1, n_{i,t} \geq \frac{4 \ln t}{\Delta_i^2} \right\} \right]
$$
\n
$$
= \frac{4 \ln T}{\Delta_i^2} + \sum_{t=N}^T \Pr \left[I_{t+1,i} = 1, n_{i,t} \geq \frac{4 \ln t}{\Delta_i^2} \right]
$$
\n
$$
= \frac{4 \ln T}{\Delta_i^2} + \sum_{t=N}^T \Pr \left[I_{t+1,i} = 1 \middle| n_{i,t} \geq \frac{4 \ln t}{\Delta_i^2} \right] \cdot \Pr \left[n_{i,t} \geq \frac{4 \ln t}{\Delta_i^2} \right]
$$
\n
$$
\leq \frac{4 \ln T}{\Delta_i^2} + \sum_{t=N}^T \frac{4}{t^2}
$$
\n
$$
\leq \frac{4 \ln T}{\Delta_i^2} + 8.
$$

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 75/81

4 ロト 4 倒

Þ

E \rightarrow $\langle \cdot \rangle$

 290

The regret bound for the UCB algorithm

Theorem 4

For all $T \geq N$, the (expected) regret by the UCB algorithm in round T is $\mathbb{E}[\mathsf{regret}_\mathcal{T}] \leq 5\sqrt{2}$ $NT \ln T + 8N$.

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 76/81

3 (금) - 3 금

← ロ → → ← 何 →

Proof of Theorem 4

• Divide the arms into two groups:

 \bullet Group ONE (G_1) : "almost optimal arms" with $\Delta_i<\sqrt{\frac{N}{7}\ln\mathcal{T}}.$? Group TWO (*G*₂): "bad" arms with $\Delta_i \geq \sqrt{\frac{N}{T}}$ In $\mathcal{T}.$

$$
\sum_{i\in G_1} n_{i,T} \Delta_i \leq \left(\sqrt{\frac{N}{T}\ln T}\right)\sum_{i\in G_1} n_{i,T} \leq T\cdot \sqrt{\frac{N}{T}\ln T} = \sqrt{NT\ln T}.
$$

By Lemma 4,

$$
\sum_{i \in G_2} \mathbb{E}[n_{i,T}] \Delta_i \leq \sum_{i \in G_2} \frac{4 \ln T}{\Delta_i} + 8\Delta_i \leq \sum_{i \in G_2} 4\sqrt{\frac{T \ln T}{N}} + 8
$$

$$
\leq 4\sqrt{NT \ln T} + 8N.
$$

つひへ

イロト イ押ト イヨト イヨ

[No-Regret Online Learning](#page-0-0) [Multi-Armed Bandit \(MAB\)](#page-124-0) [Time-Decay](#page-156-0) ϵ -Greedy

Outline

[Introduction](#page-3-0)

- 2 [Gradient Descent for Online Convex Optimization \(GD\)](#page-17-0)
- [Multiplicative Weight Update \(MWU\)](#page-32-0)
- [Follow The Leader \(FTL\)](#page-52-0)
- 5 [Follow The Regularized Leader \(FTRL\)](#page-73-0)
	- **[MWU Revisited](#page-84-0)**
	- **[FTRL with 2-norm regularizer](#page-105-0)**

6 [Multi-Armed Bandit \(MAB\)](#page-124-0)

- **[Greedy Algorithms](#page-132-0)**
- [Upper Confidence Bound \(UCB\)](#page-142-0)
- [Time-Decay](#page-156-0) ϵ -Greedy

K ロ ▶ K 御 ▶ K ミ ▶ K 등

Time Decaying ϵ -Greedy Algorithm

What if the horizon T is known in advance when we run ϵ -Greedy?

Time-Decaying ϵ -Greedy Algorithm

For all $t=1,2,\ldots,N$, set $\epsilon:=N^{1/3}/T^{1/3}$.

- With probability $1-\epsilon$, pull arm $l_t := \mathsf{arg\,max}_{i=1,...,N} \hat{\mu}_{i,t}.$
- With probability ϵ , select an arm uniformly at random (i.e., each with probability $1/N$).

イロト イ押ト イヨト イヨ

Time Decaying ϵ -Greedy Algorithm

What if the horizon T is known in advance when we run ϵ -Greedy?

Time-Decaying ϵ -Greedy Algorithm

For all $t=1,2,\ldots,N$, set $\epsilon:=N^{1/3}/T^{1/3}$.

- With probability $1-\epsilon$, pull arm $l_t := \mathsf{arg\,max}_{i=1,...,N} \hat{\mu}_{i,t}.$
- With probability ϵ , select an arm uniformly at random (i.e., each with probability $1/N$).

Claim

Time-Decaying ϵ -Greedy Algorithm gets roughly $\mathit{O}(N^{1/3} \, T^{2/3})$ regret.

K ロ ▶ K 御 ▶ K ミ ▶ K 등

[No-Regret Online Learning](#page-0-0) [Multi-Armed Bandit \(MAB\)](#page-124-0) [Time-Decay](#page-156-0) ϵ -Greedy

Sketch of proving the claim

- The expected regret $E[R(T)] = \sum_{t=1}^{T} E[\mu^* \mu_{T_t}].$
- Using the greedy choice that $\hat{\mu}_{I_t} \geq \hat{\mu}_{I^*}$, we have

$$
E[R(T)] \leq \sum_{t=1}^{T} (1 - \epsilon) E[(\mu_{I^*} - \hat{\mu}_{I^*} + \hat{\mu}_{I_t} - \mu_{I_t}) | \text{ greedy choice of } I_t] + \epsilon T
$$

\n
$$
\leq \sum_{t=1}^{T} \left(\sqrt{\frac{\ln T}{n_{I^*,t}}} + \sqrt{\frac{\ln T}{n_{I_t,t}}} \right) + \frac{1}{T} \cdot 1 \cdot T + \epsilon T \quad \text{(Chernoff)}
$$

\n
$$
\approx \leq \sum_{t=1}^{T} \left(\sqrt{\frac{\ln T}{\epsilon t/N}} + \sqrt{\frac{\ln T}{\epsilon t/N}} \right) + \epsilon T + 1
$$

\n
$$
\leq \sqrt{\frac{N}{\epsilon}} \sqrt{T \log T} + \epsilon T + 1 = O(N^{1/3} T^{2/3} \sqrt{\log T}).
$$

◆ ロ ▶ → 何

Э×

[No-Regret Online Learning](#page-0-0)

Thank you.

Joseph C. C. Lin (CSE, NTOU, TW) [No-Regret Online Learning](#page-0-0) Fall 2024 81/81

J.

 4 ロ } 4 何 } 4 ヨ } 4 ∃