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▶ In previous lectures, we only focus on maximizing the social welfare, while
revenue is generated only as a side effect.
▶ Though, indeed, there are real-world scenarios that the primary objective is

welfare maximization (i.e., government auctions)

▶ In this lecture, we:
▶ Study mechanisms that are designed to raise as much revenue as possible.
▶ Characterize the expected revenue-maximizing mechanisms with respect to a

prior distribution over agents’ valuations.
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The Challenge of Revenue Maximization One Bidder and One Item

A trivial example

▶ Suppose that there is one item and only one bidder, with private valuation v .
▶ The direct-revelation DSIC auction: take-it-or-leave-it.

▶ With a posted price r ≥ 0, the auction’s revenue is either r (if v ≥ r) or 0 (if
v < r).

▶ Maximizing social welfare is trivial:
▶ Set r := 0.
▶ Independent of v .

▶ How should we set r in order to maximize revenue?
▶ Note the difficulty: v is private.
▶ Let’s consider another point of view: Bayesian analysis.
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The Challenge of Revenue Maximization Bayesian Analysis

Bayesian Environment

Bayesian Environment

▶ A single-parameter environment. Assume that there is a constant M such
that xi ≤ M for every i and feasible solution (x1, . . . , xn) ∈ X .

▶ Independent distributions F1, . . . ,Fn with positive and continuous density
functions f1, . . . , fn. Assume that the private valuation vi of participant i is
drawn from Fi .
▶ Also, assume that the support of every distribution Fi belongs to [0, vmax] for

some vmax < ∞.

⋆ The mechanism designer knows the distributions F1, . . . ,Fn.

⋆ The realizations v1, . . . , vn of agents’ valuations are still private.
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The Challenge of Revenue Maximization Bayesian Analysis

The goal now

▶ Among all DSIC mechanisms, the optimal mechanism is the one having the
highest expected revenue (assuming truthful bids).
▶ The expectation is w.r.t. F1 × F2 × · · · × Fn over valuation profiles.

▶ The expected revenue of a posted price r is then

r · (1− F (r)),

where r represents the revenue of a sale while (1− F (r)) represents the
probability of a sale.

▶ Solve for the best posted price r∗ ⇒ a monopoly price.

▶ For example, if F is the uniform distribution on [0, 1], so that F (x) = x on
[0, 1], then the monopoly price is 1

2 , achieving an expected revenue of 1
4 .
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The Challenge of Revenue Maximization Multiple Bidders

Single-Item Auction with Two Bidders

Exercise 2 (5%)

Consider a single-item auction with two bidders with valuations drawn
independently from the uniform distribution on [0, 1].

a. Prove that the expected revenue obtained by a second-price auction (with no
reserve) is 1

3 .

b. Prove that the expected revenue obtained by a second-price auction with
reserve 1

2 is 5
12 .
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Characterization of Optimal DSIC Mechanisms

Goal

▶ An explicit description of an optimal (i.e., expected revenue-maximizing)
DSIC mechanism for every single-parameter environment and distributions
F1, . . . ,Fn.
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Characterization of Optimal DSIC Mechanisms

Recall
▶ Every DSIC mechanism is equivalent to a direct-revelation DSIC mechanism.

▶ Hence we can pay our attention to such mechanisms.

▶ Assume truthful bids for the rest of our discussions.
▶ b = v .
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Characterization of Optimal DSIC Mechanisms

Expected revenue of a DSIC mechanism (x ,p)

▶ The expected revenue of a DSIC mechanism (x ,p) is

Ev∼F

[
n∑

i=1

pi (v)

]
,

where the expectation is w.r.t. F = F1 × · · · × Fn over agents’ valuations.

▶ It’s unclear how to maximize this expression...

▶ Later we will consider an alternative formula which only references the
allocation rule of a mechanism.
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Characterization of Optimal DSIC Mechanisms Virtual Valuations

Virtual Valuations

Virtual Valuation

For an agent i with valuation distribution Fi and valuation vi (drawn from Fi ), her
virtual valuation is define as

φ(vi ) = vi −
1− Fi (vi )

fi (vi )
.

▶ For example, if Fi is the uniform distribution on [0, 1].

▶ Fi (z) = z for z ∈ [0, 1].
▶ fi (z) = 1.
▶ φi (z) = z − 1−z

1 = 2z − 1 on [0, 1].

▶ It is always at most the corresponding valuation.

▶ It could be negative.
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Characterization of Optimal DSIC Mechanisms Virtual Valuations

What do virtual valuations mean?

φ(vi ) = vi −
1− Fi (vi )

fi (vi )
.

▶ One possible interpretation:
▶ vi : what you’d like to charge
▶ 1−Fi (vi )

fi (vi )
: inevitable revenue loss caused by not knowing vi in advance.

▶ Second interpretation:
▶ φ(vi ): the slope of a revenue curve at vi .
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Characterization of Optimal DSIC Mechanisms Expected Revenue Equals Expected Virtual Welfare

The Crucial Lemma (the proof is postponed)

Lemma (5.1 in the Textbook)

For every single-parameter environment with valuation distributions F1, . . . ,Fn,
every DSIC mechanism (x ,p), every agent i , and every value v−i of the valuations
of the other agents,

Evi∼Fi
[pi (v)] = Evi∼Fi

[φi (vi ) · xi (v)].

▶ Note: the identity holds in expectation over vi , and not pointwise.

▶ φi (vi ) could be negative for some i .
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Characterization of Optimal DSIC Mechanisms Expected Revenue Equals Expected Virtual Welfare

The Main Theorem

Theorem (5.2 in the Textbook)

For every single-parameter environment with valuation distributions F1, . . . ,Fn
and every DSIC mechanism (x ,p),

Ev∼F

[
n∑

i=1

pi (v)

]
= Ev∼F

[
n∑

i=1

φi (vi ) · xi (v)

]
.

▶ That is, the expected revenue equals the expected virtual welfare!.
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Characterization of Optimal DSIC Mechanisms Expected Revenue Equals Expected Virtual Welfare

Proof of Theorem 5.2
▶ Taking the expectation, with respect to v−i ∼ F−i , of both sides of the

equation in Lemma 5.1: (i.e., Evi∼Fi
[pi (v)] = Evi∼Fi

[φi (vi ) · xi (v)])1

Ev∼F [pi (v)] = Ev∼F [φi (vi ) · xi (v)].

▶ Applying the linearity of expectation twice:

Ev∼F

[
n∑

i=1

pi (v)

]
=

n∑
i=1

Ev∼F [pi (v)]

=
n∑

i=1

Ev∼F [φi (vi ) · xi (v)]

= Ev∼F

[
n∑

i=1

φi (vi ) · xi (vi )

]
.

1Consider vi ∼ Fi and for any v−i of the other agents.
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Characterization of Optimal DSIC Mechanisms Maximizing Expected Virtual Welfare

Maximization concerning only the allocation rule

▶ Theorem 5.2 says that: even though we only care about “payments”, we can
still focus on an optimization problem concerning only the allocation rule of
the mechanism.

▶ So, how should we choose the allocation rule x to maximize

Ev∼F

[
n∑

i=1

φi (vi ) · xi (vi )

]
?

▶ An obvious approach: maximize pointwise:
▶ For each v , choose x(v) to maximize the virtual welfare obtained on input v ,

subject to feasibility of the allocation.

Joseph C.-C. Lin CSIE, TKU, TW 23 / 42



Characterization of Optimal DSIC Mechanisms Maximizing Expected Virtual Welfare

Maximization concerning only the allocation rule

▶ Theorem 5.2 says that: even though we only care about “payments”, we can
still focus on an optimization problem concerning only the allocation rule of
the mechanism.

▶ So, how should we choose the allocation rule x to maximize

Ev∼F

[
n∑

i=1

φi (vi ) · xi (vi )

]
?

▶ An obvious approach: maximize pointwise:
▶ For each v , choose x(v) to maximize the virtual welfare obtained on input v ,

subject to feasibility of the allocation.

Joseph C.-C. Lin CSIE, TKU, TW 23 / 42



Characterization of Optimal DSIC Mechanisms Maximizing Expected Virtual Welfare

Well, not so obvious...

▶ For example, consider a single-item auction, where the feasible constraint is∑n
i=1 xi (v) ≤ 1 for every v .

▶ What’s the virtual welfare-maximizing rule?

▶ Award the item to the bidder with the highest virtual valuation?

⋆ Note: virtual valuations can be negative (e.g., consider φi (vi ) = 2vi − 1 for vi
uniformly drawn from [0, 1]).

▶ The virtual welfare is maximized by not awarding the item to anyone.
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Characterization of Optimal DSIC Mechanisms Maximizing Expected Virtual Welfare

An Issue/Key Question

▶ Such a virtual welfare-maximizing allocation rule maximizes the expected
virtual welfare over all allocation rules.

A Key Question

Is the virtual welfare-maximizing allocation rule monotone?

▶ If so, Myerson’s lemma can be applied and the rule can be extended to a
DSIC mechanism, hence the mechanism results in the maximum possible
expected revenue by Theorem 5.2.
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Characterization of Optimal DSIC Mechanisms Regular Distributions

Regularity Comes to the Rescue

Regular Distribution

A distribution F is regular if the corresponding virtual valuation function
v − 1−F (v)

f (v) is non-decreasing.

▶ For example, consider F to be the uniform distribution on [0, 1].

▶ It’s regular since the corresponding φ(v) = 2v − 1 which is nondecreasing
in v .
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Characterization of Optimal DSIC Mechanisms Regular Distributions

Virtual Welfare Maximizer

Assume that Fi is regular for each i .

1. Transform the (truthfully reported) valuation vi of agent i into φi (vi ).

2. Choose the feasible allocation (x1, . . . , xn) that maximizes the virtual welfare∑n
i=1 φi (vi )xi .

3. Charge payments according to Myerson’s payment formula (refer to previous
lectures).
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Characterization of Optimal DSIC Mechanisms Regular Distributions

Virtual Welfare Maximizers Are Optimal

Theorem 5.4

For every single-parameter environment and regular distributions F1, . . . ,Fn, the
corresponding virtual welfare maximizer is a DSIC mechanism with the
maximum-possible expected revenue.

▶ Here revenue-maximizing mechanisms are almost the same as
welfare-maximizing ones.

▶ They differ only in using virtual valuations in place of valuations.
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Characterization of Optimal DSIC Mechanisms Optimal Single-Item Auctions
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Characterization of Optimal DSIC Mechanisms Optimal Single-Item Auctions

Any familiar mechanisms?

▶ Let’s consider single-item auctions.

▶ Assume bidders are i.i.d. with a common valuation distribution F (hence a common
virtual valuation φ).

▶ Assume that F is strictly regular (hence φ).

▶ φ is strictly increasing.

▶ The virtual-welfare-maximizing mechanism awards the item to the bidder with the
highest nonnegative virtual valuation (if any).

▶ That is, the bidder with the highest valuation.

▶ The allocation rule: the same as that of a second-price auction with a reserve price
of φ−1(0).

▶ eBay is (roughly) the optimal auction format!

Joseph C.-C. Lin CSIE, TKU, TW 31 / 42



Characterization of Optimal DSIC Mechanisms Optimal Single-Item Auctions

Any familiar mechanisms?

▶ Let’s consider single-item auctions.

▶ Assume bidders are i.i.d. with a common valuation distribution F (hence a common
virtual valuation φ).

▶ Assume that F is strictly regular (hence φ).

▶ φ is strictly increasing.

▶ The virtual-welfare-maximizing mechanism awards the item to the bidder with the
highest nonnegative virtual valuation (if any).

▶ That is, the bidder with the highest valuation.

▶ The allocation rule: the same as that of a second-price auction with a reserve price
of φ−1(0).

▶ eBay is (roughly) the optimal auction format!

Joseph C.-C. Lin CSIE, TKU, TW 31 / 42



Characterization of Optimal DSIC Mechanisms Optimal Single-Item Auctions

Any familiar mechanisms?

▶ Let’s consider single-item auctions.

▶ Assume bidders are i.i.d. with a common valuation distribution F (hence a common
virtual valuation φ).

▶ Assume that F is strictly regular (hence φ).

▶ φ is strictly increasing.

▶ The virtual-welfare-maximizing mechanism awards the item to the bidder with the
highest nonnegative virtual valuation (if any).

▶ That is, the bidder with the highest valuation.

▶ The allocation rule: the same as that of a second-price auction with a reserve price
of φ−1(0).

▶ eBay is (roughly) the optimal auction format!

Joseph C.-C. Lin CSIE, TKU, TW 31 / 42



Characterization of Optimal DSIC Mechanisms Optimal Single-Item Auctions

Theorem (Myerson’s Lemma)

Fix a single-parameter environment.

(i) An allocation rule x is implementable if and only if it is monotone.

(ii) If x is monotone, then there is a unique payment rule for which the direct-revelation
mechanism (x ,p) is DSIC and pi (b) = 0 whenever bi = 0.

(iii) The payment rule in (ii) is given by an explicit formula.
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Proof of the Main Lemma (5.1)
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Proof of the Main Lemma (5.1)

The Crucial Lemma

Lemma 5.1

For every single-parameter environment with valuation distributions F1, . . . ,Fn,
every DSIC mechanism (x ,p), every agent i , and every value v−i of the valuations
of the other agents,

Evi∼Fi
[pi (v)] = Evi∼Fi

[φi (vi ) · xi (v)].

▶ Note: the identity holds in expectation over vi , and not pointwise.
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Proof of the Main Lemma (5.1)

Sketch of the Proof (1/4)

▶ Assume that we have
▶ a DSIC mechanism (x ,p);
▶ the allocation rule: x
▶ the valuation profile: v .

▶ Recall Myerson’s payment formula:

pi (vi , v−i ) =

∫ vi

0
z · x ′i (z , v−i )dz .

for the payment made by agent i .

▶ Assume that xi (z , v−i ) is differentiable.

▶ The same formula holds more generally, including piecewise constant functions,
for a suitable interpretation of x ′i (z , v−i ) and the corresponding integral.
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Proof of the Main Lemma (5.1)

Sketch of the Proof (1/4)

▶ Assume that we have
▶ a DSIC mechanism (x ,p);
▶ the allocation rule: x
▶ the valuation profile: v .

▶ Recall Myerson’s payment formula:

pi (vi , v−i ) =

∫ vi

0
z · x ′i (z , v−i )dz .

for the payment made by agent i .

▶ Assume that xi (z , v−i ) is differentiable.
▶ The payments are fully dictated by the allocation rule.
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Proof of the Main Lemma (5.1)

Sketch of the Proof (2/4)

▶ Fix an agent i . We have

Evi∼Fi
[pi (v)] =

∫ vmax

0
pi (v)fi (vi )dvi

=

∫ vmax

0

[∫ vi

0
z · x ′i (zi , v−i )dz

]
fi (vi )dvi

▶ 1st equality exploits the independence of agents’ valuations.
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Proof of the Main Lemma (5.1)

Sketch of the Proof (3/4)

▶ Reversing the order of integration in∫ vmax

0

[∫ vi

0
z · x ′i (zi , v−i )dz

]
fi (vi )dvi

yields ∫ vmax

0

[∫ vmax

z
fi (vi )dvi

]
z · x ′i (z , v−i )dz

=

∫ vmax

0
(1− Fi (z)) · z · x ′i (z , v−i )dz .
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Proof of the Main Lemma (5.1)

Sketch of the Proof (4/4)

▶ Using integration by parts:∫ vmax

0
(1− Fi (z)) · z︸ ︷︷ ︸

g(z)

· x ′i (z , v−i )︸ ︷︷ ︸
h′(z)

dz .

= (1− Fi (z)) · z · xi (z , v−i )∥vmax
0

−
∫ vmax

0
xi (z , v−i ) · (1− Fi (z)− zfi (z))dz

=

∫ vmax

0

(
z − 1− Fi (z)

fi (z)

)
︸ ︷︷ ︸

φi (z)

xi (z , v−i )fi (z)dz

= Evi∼Fi
[φi (vi ) · xi (v)].
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Exercise 3 (5%)

▶ Consider a virtual valuation φ(vi ) = vi − 1−Fi (vi )
fi (vi )

where F is a strictly
increasing distribution function with a strictly positive density function f on
the interval [0, vmax], with vmax < ∞.

▶ For a single bidder with valuation drawn from F , for q ∈ [0, 1], define
V (q) = F−1(1− q) as the posted price that yields a probability q of a sale.

▶ Define R(q) = q · V (q) as the expected revenue obtained from a single
bidder when the probability of a sale is q.

▶ The function R(q), for q ∈ [0, 1], is the revenue curve of F . Note that
R(0) = R(1) = 0.

⋆ Please prove that the slope of the revenue curve at q (i.e., R ′(q)) is precisely
φ(vi ).
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Hint

Theorem [Derivative of an Inverse Function]

Given an invertible function f (x), the derivative of its inverse function f −1(x)
evaluated at x = a is

[f −1]′(a) =
1

f ′[f −1(a)]
.

▶ Let y = f −1(x) so x = f (y).

▶ Differentiate both sides w.r.t. x :

1 = f ′(y) · dy
dx

.

▶ Thus, dy
dx = 1

f ′(y) ⇒ [f −1]′(x) = 1
f ′[f −1(x)] .

Joseph C.-C. Lin CSIE, TKU, TW 42 / 42

https://www.sfu.ca\/math-coursenotes\/Math%20157%20Course%20Notes\/sec_DerivativesofInverse.html


Hint

Theorem [Derivative of an Inverse Function]

Given an invertible function f (x), the derivative of its inverse function f −1(x)
evaluated at x = a is

[f −1]′(a) =
1

f ′[f −1(a)]
.

▶ Let y = f −1(x) so x = f (y).

▶ Differentiate both sides w.r.t. x :

1 = f ′(y) · dy
dx

.

▶ Thus, dy
dx = 1

f ′(y) ⇒ [f −1]′(x) = 1
f ′[f −1(x)] .

Joseph C.-C. Lin CSIE, TKU, TW 42 / 42

https://www.sfu.ca\/math-coursenotes\/Math%20157%20Course%20Notes\/sec_DerivativesofInverse.html


Hint

Theorem [Derivative of an Inverse Function]

Given an invertible function f (x), the derivative of its inverse function f −1(x)
evaluated at x = a is

[f −1]′(a) =
1

f ′[f −1(a)]
.

▶ Let y = f −1(x) so x = f (y).

▶ Differentiate both sides w.r.t. x :

1 = f ′(y) · dy
dx

.

▶ Thus, dy
dx = 1

f ′(y) ⇒ [f −1]′(x) = 1
f ′[f −1(x)] .

Joseph C.-C. Lin CSIE, TKU, TW 42 / 42

https://www.sfu.ca\/math-coursenotes\/Math%20157%20Course%20Notes\/sec_DerivativesofInverse.html


Hint

Theorem [Derivative of an Inverse Function]

Given an invertible function f (x), the derivative of its inverse function f −1(x)
evaluated at x = a is

[f −1]′(a) =
1

f ′[f −1(a)]
.

▶ Let y = f −1(x) so x = f (y).

▶ Differentiate both sides w.r.t. x :

1 = f ′(y) · dy
dx

.

▶ Thus, dy
dx = 1

f ′(y)

⇒ [f −1]′(x) = 1
f ′[f −1(x)] .

Joseph C.-C. Lin CSIE, TKU, TW 42 / 42

https://www.sfu.ca\/math-coursenotes\/Math%20157%20Course%20Notes\/sec_DerivativesofInverse.html


Hint

Theorem [Derivative of an Inverse Function]

Given an invertible function f (x), the derivative of its inverse function f −1(x)
evaluated at x = a is

[f −1]′(a) =
1

f ′[f −1(a)]
.

▶ Let y = f −1(x) so x = f (y).

▶ Differentiate both sides w.r.t. x :

1 = f ′(y) · dy
dx

.

▶ Thus, dy
dx = 1

f ′(y) ⇒ [f −1]′(x) = 1
f ′[f −1(x)] .

Joseph C.-C. Lin CSIE, TKU, TW 42 / 42

https://www.sfu.ca\/math-coursenotes\/Math%20157%20Course%20Notes\/sec_DerivativesofInverse.html

	The Challenge of Revenue Maximization
	One Bidder and One Item
	Bayesian Analysis
	Multiple Bidders

	Characterization of Optimal DSIC Mechanisms
	Virtual Valuations
	Expected Revenue Equals Expected Virtual Welfare
	Maximizing Expected Virtual Welfare
	Regular Distributions
	Optimal Single-Item Auctions

	Proof of the Main Lemma (5.1)
	

