Revenue-Maximizing Auctions

Joseph Chuang-Chieh Lin

Dept. CSIE, Tamkang University, Taiwan

- In previous lectures, we only focus on maximizing the social welfare, while revenue is generated only as a side effect.
 - Though, indeed, there are real-world scenarios that the primary objective is welfare maximization (i.e., government auctions)

In this lecture, we:

- Study mechanisms that are designed to raise as much revenue as possible.
- Characterize the expected revenue-maximizing mechanisms with respect to a prior distribution over agents' valuations.

・ロット (四マ・ハロマー) 田

Outline

The Challenge of Revenue Maximization One Bidder and One Item Bayesian Analysis Multiple Bidders

Characterization of Optimal DSIC Mechanisms

Virtual Valuations Expected Revenue Equals Expected Virtual Welfare Maximizing Expected Virtual Welfare Regular Distributions Optimal Single-Item Auctions

Proof of the Main Lemma (5.1)

э.

ヘロマ ヘロマ ヘビマ ヘロマー

Outline

The Challenge of Revenue Maximization One Bidder and One Item

Bayesian Analysis Multiple Bidders

Characterization of Optimal DSIC Mechanisms

Virtual Valuations

Expected Revenue Equals Expected Virtual Welfare

Maximizing Expected Virtual Welfare

Regular Distributions

Optimal Single-Item Auctions

Proof of the Main Lemma (5.1)

э

ヘロマス ロマス 日マ

A trivial example

- Suppose that there is one item and only one bidder, with private valuation v.
 The direct-revelation DSIC auction: take-it-or-leave-it.
 - With a posted price r ≥ 0, the auction's revenue is either r (if v ≥ r) or 0 (if v < r).</p>
- Maximizing social welfare is trivial:
 - Set r := 0.
 - Independent of v.

э.

ヘロマス 留マス ほどん ほうし

A trivial example

Suppose that there is one item and only one bidder, with private valuation v.
 The direct-revelation DSIC auction: take-it-or-leave-it.

- With a posted price r ≥ 0, the auction's revenue is either r (if v ≥ r) or 0 (if v < r).</p>
- Maximizing social welfare is trivial:
 - Set r := 0.
 - Independent of v.
- How should we set r in order to maximize revenue?
 - Note the difficulty: v is private.

3

・ロット (四) (日) (日)

A trivial example

- Suppose that there is one item and only one bidder, with private valuation v.
 The direct-revelation DSIC auction: take-it-or-leave-it.
 - With a posted price r ≥ 0, the auction's revenue is either r (if v ≥ r) or 0 (if v < r).</p>
- Maximizing social welfare is trivial:
 - Set r := 0.
 - Independent of v.
- ▶ How should we set *r* in order to maximize revenue?
 - Note the difficulty: v is private.
 - Let's consider another point of view: Bayesian analysis.

= nar

イロン 人間 とくほ とくほ とう

Outline

The Challenge of Revenue Maximization **Bayesian Analysis**

Proof of the Main Lemma (5.1)

э

ヘロマス ロマス 日マ

Bayesian Environment

Bayesian Environment

- ▶ A single-parameter environment. Assume that there is a constant M such that $x_i \leq M$ for every i and feasible solution $(x_1, \ldots, x_n) \in X$.
- ▶ Independent distributions F_1, \ldots, F_n with positive and continuous density functions f_1, \ldots, f_n . Assume that the private valuation v_i of participant *i* is drawn from F_i .
 - ► Also, assume that the support of every distribution F_i belongs to [0, v_{max}] for some v_{max} < ∞.</p>
- * The mechanism designer knows the distributions F_1, \ldots, F_n .
- \star The realizations v_1, \ldots, v_n of agents' valuations are still private.

The goal now

- Among all DSIC mechanisms, the optimal mechanism is the one having the highest expected revenue (assuming truthful bids).
 - ▶ The expectation is w.r.t. $F_1 \times F_2 \times \cdots \times F_n$ over valuation profiles.
- The expected revenue of a posted price r is then

$$r\cdot(1-F(r)),$$

where r represents the revenue of a sale while (1 - F(r)) represents the probability of a sale.

Solve for the best posted price $r^* \Rightarrow$ a monopoly price.

The goal now

- Among all DSIC mechanisms, the optimal mechanism is the one having the highest expected revenue (assuming truthful bids).
 - ▶ The expectation is w.r.t. $F_1 \times F_2 \times \cdots \times F_n$ over valuation profiles.
- The expected revenue of a posted price r is then

$$r\cdot(1-F(r)),$$

where r represents the revenue of a sale while (1 - F(r)) represents the probability of a sale.

- Solve for the best posted price $r^* \Rightarrow$ a monopoly price.
- For example, if F is the uniform distribution on [0, 1], so that F(x) = x on [0, 1], then the monopoly price is ¹/₂, achieving an expected revenue of ¹/₄.

Outline

The Challenge of Revenue Maximization

One Bidder and One Iter Bayesian Analysis Multiple Bidders

Characterization of Optimal DSIC Mechanisms

Virtual Valuations Expected Revenue Equals Expected Virtual Welf Maximizing Expected Virtual Welfare Regular Distributions Optimal Single-Item Auctions

Proof of the Main Lemma (5.1)

Э

ヘロマス ロマス 日マ

Single-Item Auction with Two Bidders

Exercise 2 (5%)

Consider a single-item auction with two bidders with valuations drawn independently from the uniform distribution on [0, 1].

- a. Prove that the expected revenue obtained by a second-price auction (with no reserve) is $\frac{1}{3}$.
- b. Prove that the expected revenue obtained by a second-price auction with reserve $\frac{1}{2}$ is $\frac{5}{12}$.

3

イロン イロン イヨン

Outline

The Challenge of Revenue Maximization

One Bidder and One Iterr Bayesian Analysis Multiple Bidders

Characterization of Optimal DSIC Mechanisms

Virtual Valuations Expected Revenue Equals Expected Virtual Welfare Maximizing Expected Virtual Welfare Regular Distributions Optimal Single-Item Auctions

Proof of the Main Lemma (5.1)

э.

イロン イボン イヨン イヨン

Goal

An explicit description of an optimal (i.e., expected revenue-maximizing) DSIC mechanism for every single-parameter environment and distributions F₁,..., F_n.

Recall

Every DSIC mechanism is equivalent to a direct-revelation DSIC mechanism.

The Revelation Principle

Theorem (Revelation Principle for DSIC Mechanisms)

For every mechanism M where every participant always has a dominant strategy, there is an equivalent direct-revelation DSIC mechanism M'.

• We use a simulation argument to construct M' as follows.

= nar

・ロット (雪) (日) (日)

Recall

- Every DSIC mechanism is equivalent to a direct-revelation DSIC mechanism.
- Hence we can pay our attention to such mechanisms.
- Assume truthful bids for the rest of our discussions.
 - $\blacktriangleright b = v$.

= nar

・ロット (四) (日) (日)

Expected revenue of a DSIC mechanism (x, p)

▶ The expected revenue of a DSIC mechanism (*x*, *p*) is

$$\mathbf{E}_{\mathbf{v}\sim \mathbf{F}}\left[\sum_{i=1}^n p_i(\mathbf{v})\right],$$

where the expectation is w.r.t. $\boldsymbol{F} = F_1 \times \cdots \times F_n$ over agents' valuations.

Expected revenue of a DSIC mechanism (x, p)

> The expected revenue of a DSIC mechanism (x, p) is

$$\mathbf{E}_{\mathbf{v}\sim \mathbf{F}}\left[\sum_{i=1}^{n}p_{i}(\mathbf{v})
ight],$$

where the expectation is w.r.t. $\boldsymbol{F} = F_1 \times \cdots \times F_n$ over agents' valuations.

- It's unclear how to maximize this expression...
- Later we will consider an alternative formula which only references the allocation rule of a mechanism.

Outline

The Challenge of Revenue Maximization

One Bidder and One Item Bayesian Analysis Multiple Bidders

Characterization of Optimal DSIC Mechanisms Virtual Valuations

Expected Revenue Equals Expected Virtual Welfare Maximizing Expected Virtual Welfare Regular Distributions Optimal Single-Item Auctions

Proof of the Main Lemma (5.1)

э.

イロン イロン イヨン イヨン

Virtual Valuations

Virtual Valuation

For an agent *i* with valuation distribution F_i and valuation v_i (drawn from F_i), her virtual valuation is define as

$$arphi(\mathbf{v}_i) = \mathbf{v}_i - rac{1 - \mathcal{F}_i(\mathbf{v}_i)}{f_i(\mathbf{v}_i)}.$$

For example, if F_i is the uniform distribution on [0, 1].

Virtual Valuations

Virtual Valuation

For an agent *i* with valuation distribution F_i and valuation v_i (drawn from F_i), her virtual valuation is define as

$$arphi(\mathbf{v}_i) = \mathbf{v}_i - rac{1 - \mathcal{F}_i(\mathbf{v}_i)}{f_i(\mathbf{v}_i)}.$$

For example, if F_i is the uniform distribution on [0, 1].

•
$$F_i(z) = z$$
 for $z \in [0, 1]$.

$$f_i(z) = 1.$$

 $\varphi_i(z) = z - \frac{1-z}{1} = 2z - 1 \text{ on } [0, 1].$

- It is always at most the corresponding valuation.
- ▶ It could be *negative*.

3

ヘロマス 留マス ほどん ほうし

What do virtual valuations mean?

$$arphi(\mathbf{v}_i) = \mathbf{v}_i - rac{1 - F_i(\mathbf{v}_i)}{f_i(\mathbf{v}_i)}$$

- One possible interpretation:
 - v_i: what you'd like to charge
 - $\frac{1-F_i(v_i)}{f_i(v_i)}$: inevitable revenue loss caused by not knowing v_i in advance.

3

イロン イロン イヨン イヨン

What do virtual valuations mean?

$$arphi(\mathbf{v}_i) = \mathbf{v}_i - rac{1 - F_i(\mathbf{v}_i)}{f_i(\mathbf{v}_i)}$$

- One possible interpretation:
 - v_i: what you'd like to charge
 - $\frac{1-F_i(v_i)}{f_i(v_i)}$: inevitable revenue loss caused by not knowing v_i in advance.

Second interpretation:

• $\varphi(v_i)$: the slope of a revenue curve at v_i .

・ロン ・ロン ・ロン ・ロン ・ロ

Outline

The Challenge of Revenue Maximization

One Bidder and One Item Bayesian Analysis Multiple Bidders

Characterization of Optimal DSIC Mechanisms

Virtual Valuations

Expected Revenue Equals Expected Virtual Welfare

Maximizing Expected Virtual Welfare Regular Distributions Optimal Single-Item Auctions

Proof of the Main Lemma (5.1)

э.

ヘロン 人口 とくほう 人口 と

The Crucial Lemma (the proof is postponed)

Lemma (5.1 in the Textbook)

For every single-parameter environment with valuation distributions F_1, \ldots, F_n , every DSIC mechanism (\mathbf{x}, \mathbf{p}) , every agent *i*, and every value \mathbf{v}_{-i} of the valuations of the other agents,

$$\mathbf{E}_{\mathbf{v}_i \sim F_i}[p_i(\mathbf{v})] = \mathbf{E}_{\mathbf{v}_i \sim F_i}[\varphi_i(\mathbf{v}_i) \cdot \mathbf{x}_i(\mathbf{v})].$$

> Note: the identity holds in expectation over v_i , and not pointwise.

The Crucial Lemma (the proof is postponed)

Lemma (5.1 in the Textbook)

For every single-parameter environment with valuation distributions F_1, \ldots, F_n , every DSIC mechanism (\mathbf{x}, \mathbf{p}) , every agent *i*, and every value \mathbf{v}_{-i} of the valuations of the other agents,

$$\mathbf{E}_{\mathbf{v}_i \sim F_i}[\mathbf{p}_i(\mathbf{v})] = \mathbf{E}_{\mathbf{v}_i \sim F_i}[\varphi_i(\mathbf{v}_i) \cdot \mathbf{x}_i(\mathbf{v})].$$

Note: the identity holds in expectation over v_i, and not pointwise.
 \$\varphi_i(v_i)\$ could be negative for some i.

The Main Theorem

Theorem (5.2 in the Textbook)

For every single-parameter environment with valuation distributions F_1, \ldots, F_n and every DSIC mechanism (\mathbf{x}, \mathbf{p}) ,

$$\mathbf{E}_{\boldsymbol{v}\sim\boldsymbol{F}}\left[\sum_{i=1}^{n}p_{i}(\boldsymbol{v})\right]=\mathbf{E}_{\boldsymbol{v}\sim\boldsymbol{F}}\left[\sum_{i=1}^{n}\varphi_{i}(\boldsymbol{v}_{i})\cdot\boldsymbol{x}_{i}(\boldsymbol{v})\right]$$

That is, the expected revenue equals the expected virtual welfare!.

Proof of Theorem 5.2

► Taking the expectation, with respect to $\mathbf{v}_{-i} \sim \mathbf{F}_{-i}$, of both sides of the equation in Lemma 5.1: (i.e., $\mathbf{E}_{v_i \sim F_i}[p_i(\mathbf{v})] = \mathbf{E}_{v_i \sim F_i}[\varphi_i(v_i) \cdot x_i(\mathbf{v})])^1$

$$\mathbf{E}_{\boldsymbol{\nu}\sim\boldsymbol{F}}[\boldsymbol{p}_i(\boldsymbol{\nu})] = \mathbf{E}_{\boldsymbol{\nu}\sim\boldsymbol{F}}[\varphi_i(\boldsymbol{\nu}_i)\cdot\boldsymbol{x}_i(\boldsymbol{\nu})].$$

¹Consider $v_i \sim F_i$ and for any v_{-i} of the other agents.

CSIE, TKU, TW

I DOG

メロト メロト メヨト メヨト

Proof of Theorem 5.2

► Taking the expectation, with respect to $\mathbf{v}_{-i} \sim \mathbf{F}_{-i}$, of both sides of the equation in Lemma 5.1: (i.e., $\mathbf{E}_{v_i \sim F_i}[p_i(\mathbf{v})] = \mathbf{E}_{v_i \sim F_i}[\varphi_i(v_i) \cdot x_i(\mathbf{v})])^1$

$$\mathbf{E}_{\boldsymbol{\nu}\sim\boldsymbol{F}}[\boldsymbol{p}_i(\boldsymbol{\nu})] = \mathbf{E}_{\boldsymbol{\nu}\sim\boldsymbol{F}}[\varphi_i(\boldsymbol{\nu}_i)\cdot\boldsymbol{x}_i(\boldsymbol{\nu})].$$

Applying the linearity of expectation twice:

$$\mathbf{E}_{\mathbf{v}\sim \mathbf{F}} \left[\sum_{i=1}^{n} p_i(\mathbf{v}) \right] = \sum_{i=1}^{n} \mathbf{E}_{\mathbf{v}\sim \mathbf{F}}[p_i(\mathbf{v})]$$

$$= \sum_{i=1}^{n} \mathbf{E}_{\mathbf{v}\sim \mathbf{F}}[\varphi_i(v_i) \cdot x_i(\mathbf{v})]$$

$$= \mathbf{E}_{\mathbf{v}\sim \mathbf{F}} \left[\sum_{i=1}^{n} \varphi_i(v_i) \cdot x_i(v_i) \right]$$

¹Consider $v_i \sim F_i$ and for any \mathbf{v}_{-i} of the other agents.

CSIE, TKU, TW

Outline

The Challenge of Revenue Maximization

One Bidder and One Item Bayesian Analysis Multiple Bidders

Characterization of Optimal DSIC Mechanisms

Virtual Valuations Expected Revenue Equals Expected Virtual Welfar Maximizing Expected Virtual Welfare Regular Distributions Optimal Single-Item Auctions

Proof of the Main Lemma (5.1)

3

Maximization concerning only the allocation rule

Theorem 5.2 says that: even though we only care about "payments", we can still focus on an optimization problem concerning only the allocation rule of the mechanism.

Э

・ロット (四)・ (日)・ (日)・

Maximization concerning only the allocation rule

- Theorem 5.2 says that: even though we only care about "payments", we can still focus on an optimization problem concerning only the allocation rule of the mechanism.
- So, how should we choose the allocation rule x to maximize

$$\mathbf{E}_{\boldsymbol{v}\sim\boldsymbol{F}}\left[\sum_{i=1}^{n}\varphi_{i}(\boldsymbol{v}_{i})\cdot\boldsymbol{x}_{i}(\boldsymbol{v}_{i})\right]?$$

An obvious approach: maximize pointwise:

For each v, choose x(v) to maximize the virtual welfare obtained on input v, subject to feasibility of the allocation.

For example, consider a single-item auction, where the feasible constraint is $\sum_{i=1}^{n} x_i(\mathbf{v}) \le 1$ for every \mathbf{v} .

= nar

ヘロン 人間 とくほ とくほ とう

- For example, consider a single-item auction, where the feasible constraint is $\sum_{i=1}^{n} x_i(\mathbf{v}) \le 1$ for every \mathbf{v} .
- What's the virtual welfare-maximizing rule?

I DOG

イロン イロン イヨン

- For example, consider a single-item auction, where the feasible constraint is $\sum_{i=1}^{n} x_i(\mathbf{v}) \le 1$ for every \mathbf{v} .
- What's the virtual welfare-maximizing rule?
 - Award the item to the bidder with the highest virtual valuation?

- For example, consider a single-item auction, where the feasible constraint is $\sum_{i=1}^{n} x_i(\mathbf{v}) \le 1$ for every \mathbf{v} .
- What's the virtual welfare-maximizing rule?
 - Award the item to the bidder with the highest virtual valuation?
 - * **Note:** virtual valuations can be negative (e.g., consider $\varphi_i(v_i) = 2v_i 1$ for v_i uniformly drawn from [0, 1]).

- For example, consider a single-item auction, where the feasible constraint is $\sum_{i=1}^{n} x_i(\mathbf{v}) \le 1$ for every \mathbf{v} .
- What's the virtual welfare-maximizing rule?
 - Award the item to the bidder with the highest virtual valuation?
 - * **Note:** virtual valuations can be negative (e.g., consider $\varphi_i(v_i) = 2v_i 1$ for v_i uniformly drawn from [0, 1]).
 - The virtual welfare is maximized by not awarding the item to anyone.

An Issue/Key Question

Such a virtual welfare-maximizing allocation rule maximizes the expected virtual welfare over all allocation rules.

A Key Question

Is the virtual welfare-maximizing allocation rule monotone?

An Issue/Key Question

Such a virtual welfare-maximizing allocation rule maximizes the expected virtual welfare over all allocation rules.

A Key Question

Is the virtual welfare-maximizing allocation rule monotone?

If so, Myerson's lemma can be applied and the rule can be extended to a DSIC mechanism, hence the mechanism results in the maximum possible expected revenue by Theorem 5.2.

Outline

The Challenge of Revenue Maximization

One Bidder and One Item Bayesian Analysis Multiple Bidders

Characterization of Optimal DSIC Mechanisms

Virtual Valuations Expected Revenue Equals Expected Virtual Welfare Maximizing Expected Virtual Welfare

Regular Distributions

Optimal Single-Item Auctions

Proof of the Main Lemma (5.1)

э.

イロン イロン イヨン イヨン

Regularity Comes to the Rescue

Regular Distribution

A distribution *F* is **regular** if the corresponding virtual valuation function $v - \frac{1-F(v)}{f(v)}$ is non-decreasing.

Regularity Comes to the Rescue

Regular Distribution

A distribution *F* is **regular** if the corresponding virtual valuation function $v - \frac{1-F(v)}{f(v)}$ is non-decreasing.

- For example, consider F to be the uniform distribution on [0, 1].
- ▶ It's regular since the corresponding $\varphi(v) = 2v 1$ which is nondecreasing in v.

Virtual Welfare Maximizer

Assume that F_i is regular for each *i*.

- 1. Transform the (truthfully reported) valuation v_i of agent *i* into $\varphi_i(v_i)$.
- 2. Choose the feasible allocation (x_1, \ldots, x_n) that maximizes the virtual welfare $\sum_{i=1}^{n} \varphi_i(v_i) x_i$.
- 3. Charge payments according to Myerson's payment formula (refer to previous lectures).

Virtual Welfare Maximizers Are Optimal

Theorem 5.4

For every single-parameter environment and regular distributions F_1, \ldots, F_n , the corresponding virtual welfare maximizer is a DSIC mechanism with the maximum-possible expected revenue.

Virtual Welfare Maximizers Are Optimal

Theorem 5.4

For every single-parameter environment and regular distributions F_1, \ldots, F_n , the corresponding virtual welfare maximizer is a DSIC mechanism with the maximum-possible expected revenue.

Here revenue-maximizing mechanisms are almost the same as welfare-maximizing ones.

▶ They differ only in using *virtual* valuations in place of valuations.

Outline

The Challenge of Revenue Maximization

One Bidder and One Item Bayesian Analysis Multiple Bidders

Characterization of Optimal DSIC Mechanisms

Virtual Valuations Expected Revenue Equals Expected Virtual Welfare Maximizing Expected Virtual Welfare Regular Distributions Optimal Single-Item Auctions

Proof of the Main Lemma (5.1)

э.

ヘロン 人口 とくほう 人口 と

Any familiar mechanisms?

Let's consider single-item auctions.

E DQC

イロン イロン イヨン イヨン

Any familiar mechanisms?

- Let's consider single-item auctions.
- Assume bidders are i.i.d. with a common valuation distribution F (hence a common virtual valuation φ).
- Assume that F is strictly regular (hence φ).
 - φ is strictly increasing.
- The virtual-welfare-maximizing mechanism awards the item to the bidder with the highest nonnegative virtual valuation (if any).
 - That is, the bidder with the highest valuation.
- The allocation rule: the same as that of a second-price auction with a reserve price of φ⁻¹(0).

Any familiar mechanisms?

- Let's consider single-item auctions.
- Assume bidders are i.i.d. with a common valuation distribution F (hence a common virtual valuation φ).
- Assume that F is strictly regular (hence φ).
 - φ is strictly increasing.
- The virtual-welfare-maximizing mechanism awards the item to the bidder with the highest nonnegative virtual valuation (if any).
 - That is, the bidder with the highest valuation.
- The allocation rule: the same as that of a second-price auction with a reserve price of φ⁻¹(0).

eBay is (roughly) the optimal auction format!

Theorem (Myerson's Lemma)

Fix a single-parameter environment.

- (i) An allocation rule x is implementable if and only if it is monotone.
- (ii) If \mathbf{x} is monotone, then there is a unique payment rule for which the direct-revelation mechanism (\mathbf{x}, \mathbf{p}) is DSIC and $p_i(\mathbf{b}) = 0$ whenever $b_i = 0$.

(iii) The payment rule in (ii) is given by an explicit formula.

I DOG

Outline

The Challenge of Revenue Maximization

One Bidder and One Item Bayesian Analysis Multiple Bidders

Characterization of Optimal DSIC Mechanisms

Virtual Valuations Expected Revenue Equals Expected Virtual Welf Maximizing Expected Virtual Welfare Regular Distributions Optimal Single-Item Auctions

Proof of the Main Lemma (5.1)

э.

ヘロン 人口 マイロン 人口 マイロン

The Crucial Lemma

Lemma 5.1

For every single-parameter environment with valuation distributions F_1, \ldots, F_n , every DSIC mechanism (\mathbf{x}, \mathbf{p}) , every agent *i*, and every value \mathbf{v}_{-i} of the valuations of the other agents,

$$\mathsf{E}_{\mathsf{v}_i \sim \mathsf{F}_i}[\mathsf{p}_i(\mathsf{v})] = \mathsf{E}_{\mathsf{v}_i \sim \mathsf{F}_i}[\varphi_i(\mathsf{v}_i) \cdot \mathsf{x}_i(\mathsf{v})].$$

Note: the identity holds in expectation over v_i , and not pointwise.

Sketch of the Proof (1/4)

- Assume that we have
 - ► a DSIC mechanism (*x*, *p*);
 - the allocation rule: x
 - the valuation profile: v.

Recall Myerson's payment formula:

$$p_i(v_i, \mathbf{v}_{-i}) = \int_0^{v_i} z \cdot x_i'(z, \mathbf{v}_{-i}) dz.$$

for the payment made by agent i.

• Assume that $x_i(z, \mathbf{v}_{-i})$ is differentiable.

э.

ヘロン 人間 とくほ とくほ とう

Sketch of the Proof (1/4)

- Assume that we have
 - a DSIC mechanism (x, p);
 - the allocation rule: x
 - the valuation profile: v.

Recall Myerson's payment formula:

$$p_i(v_i, \mathbf{v}_{-i}) = \int_0^{v_i} z \cdot x_i'(z, \mathbf{v}_{-i}) dz.$$

for the payment made by agent i.

• Assume that $x_i(z, \mathbf{v}_{-i})$ is differentiable.

The same formula holds more generally, including piecewise constant functions, for a suitable interpretation of $x'_i(z, \mathbf{v}_{-i})$ and the corresponding integral.

イロン 不同 とくほう イヨン

Sketch of the Proof (1/4)

- Assume that we have
 - a DSIC mechanism (x, p);
 - the allocation rule: x
 - the valuation profile: v.

Recall Myerson's payment formula:

$$p_i(v_i, \mathbf{v}_{-i}) = \int_0^{v_i} z \cdot x_i'(z, \mathbf{v}_{-i}) dz.$$

for the payment made by agent i.

- Assume that $x_i(z, \mathbf{v}_{-i})$ is differentiable.
 - The payments are fully dictated by the allocation rule.

э.

ヘロマ ヘロマ ヘビマ ヘロマー

Sketch of the Proof (2/4)

Fix an agent *i*. We have

$$\begin{aligned} \mathbf{E}_{\mathbf{v}_i \sim F_i}[p_i(\mathbf{v})] &= \int_0^{\mathbf{v}_{\max}} p_i(\mathbf{v}) f_i(\mathbf{v}_i) d\mathbf{v}_i \\ &= \int_0^{\mathbf{v}_{\max}} \left[\int_0^{\mathbf{v}_i} z \cdot x_i'(z_i, \mathbf{v}_{-i}) dz \right] f_i(\mathbf{v}_i) d\mathbf{v}_i \end{aligned}$$

1st equality exploits the independence of agents' valuations.

Reference

Sketch of the Proof (3/4)

Reversing the order of integration in

$$\int_0^{v_{\max}} \left[\int_0^{v_i} z \cdot x_i'(z_i, \boldsymbol{v}_{-i}) dz \right] f_i(v_i) dv_i$$

yields

$$\int_{0}^{v_{\max}} \left[\int_{z}^{v_{\max}} f_i(v_i) dv_i \right] z \cdot x_i'(z, \mathbf{v}_{-i}) dz$$

=
$$\int_{0}^{v_{\max}} (1 - F_i(z)) \cdot z \cdot x_i'(z, \mathbf{v}_{-i}) dz.$$

Joseph C.-C. Lin

Sketch of the Proof (4/4)

Using integration by parts:

$$\int_0^{v_{\max}} \underbrace{(1-F_i(z))\cdot z}_{g(z)} \cdot \underbrace{x_i'(z, \mathbf{v}_{-i})}_{h'(z)} dz.$$

E DQC

イロン イロン イヨン イヨン

Sketch of the Proof (4/4)

Using integration by parts:

$$\int_{0}^{v_{\max}} \underbrace{(1 - F_{i}(z)) \cdot z}_{g(z)} \cdot \underbrace{x_{i}'(z, \mathbf{v}_{-i})}_{h'(z)} dz.$$

$$= (1 - F_{i}(z)) \cdot z \cdot x_{i}(z, \mathbf{v}_{-i}) \|_{0}^{v_{\max}}$$

$$- \int_{0}^{v_{\max}} x_{i}(z, \mathbf{v}_{-i}) \cdot (1 - F_{i}(z) - zf_{i}(z)) dz$$

= 990

メロン メロン メヨン・

Sketch of the Proof (4/4)

Using integration by parts:

$$\int_{0}^{V_{\max}} \underbrace{(1 - F_i(z)) \cdot z}_{g(z)} \cdot \underbrace{x'_i(z, \mathbf{v}_{-i})}_{h'(z)} dz.$$

$$= (1 - F_i(z)) \cdot z \cdot x_i(z, \mathbf{v}_{-i}) ||_{0}^{v_{\max}}$$

$$- \int_{0}^{V_{\max}} x_i(z, \mathbf{v}_{-i}) \cdot (1 - F_i(z) - zf_i(z)) dz$$

$$= \int_{0}^{V_{\max}} \underbrace{\left(z - \frac{1 - F_i(z)}{f_i(z)}\right)}_{\varphi_i(z)} x_i(z, \mathbf{v}_{-i}) f_i(z) dz$$

Sketch of the Proof (4/4)

Using integration by parts:

$$\int_{0}^{\mathbf{v}_{\max}} \underbrace{(1 - F_{i}(z)) \cdot z}_{g(z)} \cdot \underbrace{x_{i}'(z, \mathbf{v}_{-i})}_{h'(z)} dz.$$

$$= (1 - F_{i}(z)) \cdot z \cdot x_{i}(z, \mathbf{v}_{-i}) ||_{0}^{\mathbf{v}_{\max}}$$

$$- \int_{0}^{\mathbf{v}_{\max}} x_{i}(z, \mathbf{v}_{-i}) \cdot (1 - F_{i}(z) - zf_{i}(z)) dz$$

$$= \int_{0}^{\mathbf{v}_{\max}} \underbrace{\left(z - \frac{1 - F_{i}(z)}{f_{i}(z)}\right)}_{\varphi_{i}(z)} x_{i}(z, \mathbf{v}_{-i}) f_{i}(z) dz$$

$$= \mathbf{E}_{\mathbf{v}_{i} \sim F_{i}}[\varphi_{i}(\mathbf{v}_{i}) \cdot x_{i}(\mathbf{v})].$$

Exercise 3 (5%)

- Consider a virtual valuation φ(v_i) = v_i − ^{1−F_i(v_i)}/_{f_i(v_i)} where F is a strictly increasing distribution function with a strictly positive density function f on the interval [0, v_{max}], with v_{max} < ∞.</p>
- For a single bidder with valuation drawn from F, for q ∈ [0, 1], define V(q) = F⁻¹(1 − q) as the posted price that yields a probability q of a sale.
- Define R(q) = q · V(q) as the expected revenue obtained from a single bidder when the probability of a sale is q.
- ▶ The function R(q), for $q \in [0, 1]$, is the revenue curve of F. Note that R(0) = R(1) = 0.
- * Please prove that the slope of the revenue curve at q (i.e., R'(q)) is precisely $\varphi(v_i)$.

Theorem [Derivative of an Inverse Function]

Given an invertible function f(x), the derivative of its inverse function $f^{-1}(x)$ evaluated at x = a is

$$[f^{-1}]'(a) = rac{1}{f'[f^{-1}(a)]}.$$

Theorem [Derivative of an Inverse Function]

Given an invertible function f(x), the derivative of its inverse function $f^{-1}(x)$ evaluated at x = a is

$$[f^{-1}]'(a) = rac{1}{f'[f^{-1}(a)]}.$$

• Let
$$y = f^{-1}(x)$$
 so $x = f(y)$.

Theorem [Derivative of an Inverse Function]

Given an invertible function f(x), the derivative of its inverse function $f^{-1}(x)$ evaluated at x = a is

$$[f^{-1}]'(a) = rac{1}{f'[f^{-1}(a)]}.$$

• Let
$$y = f^{-1}(x)$$
 so $x = f(y)$.

Differentiate both sides w.r.t. x:

$$1=f'(y)\cdot\frac{dy}{dx}.$$

Theorem [Derivative of an Inverse Function]

Given an invertible function f(x), the derivative of its inverse function $f^{-1}(x)$ evaluated at x = a is

$$[f^{-1}]'(a) = rac{1}{f'[f^{-1}(a)]}.$$

• Let
$$y = f^{-1}(x)$$
 so $x = f(y)$.

Differentiate both sides w.r.t. x:

$$1=f'(y)\cdot\frac{dy}{dx}.$$

• Thus,
$$\frac{dy}{dx} = \frac{1}{f'(y)}$$

Theorem [Derivative of an Inverse Function]

Given an invertible function f(x), the derivative of its inverse function $f^{-1}(x)$ evaluated at x = a is

$$[f^{-1}]'(a) = rac{1}{f'[f^{-1}(a)]}.$$

• Let
$$y = f^{-1}(x)$$
 so $x = f(y)$.

Differentiate both sides w.r.t. x:

$$1=f'(y)\cdot\frac{dy}{dx}.$$

• Thus,
$$\frac{dy}{dx} = \frac{1}{f'(y)} \Rightarrow [f^{-1}]'(x) = \frac{1}{f'[f^{-1}(x)]}$$
.