Social Choice

Joseph Chuang-Chieh Lin

Dept. CSIE, Tamkang University, Taiwan

Outline

(1) Introduction to Social Choice
(2) Peer-Grading in MOOCs

- Preliminaries
- Correctness of Recovered Pairwise Rankings

The Setting of Social Choice

Take voting scheme for example.

- A set O of outcomes (i.e., alternatives, candidates, etc.)
- A set A of agents s.t. each of them has a preference \succ over the outcomes.
- The social choice function: a mapping from the profiles of the preferences to a particular outcome.

Outcomes \& preferences

Preferences

- A binary relation \succ such that
- for every $a, b \in O, a \neq b$, we have either $a \succ b$ or $b \succ a$ but NOT both.
- for $a, b, c \in O$, if $a \succ b$ and $b \succ c$, then we have $a \succ c$.
- \succeq can be defined similarly.
- 々: ᄀ

Agents with preferences

- E.g., five agents (voters).
- Each agent has its preference over four candidates $\{a, b, c, d\}$.

outcomes : a, b, c, d		b			
preferences	d		a	a	a
	b	c	b	c	b
	a	a	c	b	c
	c	d	d	d	d

Agents with preferences

- E.g., three agents (voters).
- Each agent has its preference over four candidates $\{a, b, c, d\}$.

v_{1}	v_{2}	v_{3}
d	b	a
b	c	b
a	a	c
c	d	d

Plurality rule \Rightarrow a

- Plurality rule: each agent can only give score 1 to the most preferred one and 0 to the others.

Plurality rule (contd.)

v_{1}	v_{2}		
d			
b			
a			
c			
a			
d			
a		\quad	b
:---:			
a			
d			

- Plurality rule: each agent can only give score 1 to the most preferred one and 0 to the others.

Plurality rule (contd.)

v_{1}	v_{2}	v_{3}
d	b	a
b	C	b
a	a	C
C	d	d

- Plurality rule:

Plurality rule (contd.)

v_{1}	v_{2}	v_{3}
d	b	a
b	C	b
a	a	C
C	d	d

- Plurality rule: depending on the tie-breaking rule.

Condorcet rule

v_{1}	v_{2}	v_{3}
d	b	a
b	c	b
a	a	c
c	d	d

- Condorcet rule:
- a vs. b
- a vs. c
- a vs. d

Condorcet rule

v_{1}	v_{2}	v_{3}
d	b	a
b	c	b
a	a	c
c	d	d

- Condorcet rule:
- a vs. $b \rightarrow b$
- a vs. $c \rightarrow a$
- a vs. $d \rightarrow a$

Condorcet rule

v_{1}	v_{2}	v_{3}
d	b	a
b	c	b
a	a	c
c	d	d

- Condorcet rule:
- c VS. a
- c vs. b
- c Vs. d

Condorcet rule

v_{1}	v_{2}	v_{3}
d	b	a
b	c	b
a	a	c
c	d	d

- Condorcet rule:
- c vs. $a \rightarrow a$
- c vs. $b \rightarrow b$
- c vs. $d \rightarrow c$

Condorcet rule

v_{1}	v_{2}	v_{3}
d	b	a
b	c	b
a	a	c
c	d	d

- Condorcet rule:
- b vs. a
- b vs. c
- b vs. d

Condorcet rule

v_{1}	v_{2}	v_{3}
d	b	a
b	c	b
a	a	c
c	d	d

- Condorcet rule:
- b vs. $a \rightarrow b$
- b vs. $c \rightarrow b$
- b vs. $d \rightarrow b$

Condorcet rule

v_{1}	v_{2}	v_{3}
d	b	a
b	c	b
a	a	c
c	d	d

- Condorcet rule: b
- b vs. $a \rightarrow b$
- b vs. $c \rightarrow b$
- b vs. $d \rightarrow b$

Borda rule

v_{1}		v_{2}		v_{3}
d	3	b	3	a
b	2	c	2	b
a	1	a	1	C
C	0	d	0	d

- Borda count rule:

Borda rule

v_{1}		v_{2}		v_{3}
d	3	b	3	a
b	2	C	2	b
a	1	a	1	C
C	0	d	0	d

- Borda count rule:
- score of a : $1+1+3=5$.
- score of $b: 2+3+2=7$.
- score of $c: 0+2+1=3$.
- score of d : $3+0+0=3$.

Borda rule

v_{1}		v_{2}		v_{3}
d	3	b	3	a
b	2	C	2	b
a	1	a	1	C
C	0	d	0	d

- Borda count rule: b.
- score of a : $1+1+3=5$.
- score of $b: 2+3+2=7$.
- score of $c: 0+2+1=3$.
- score of d : $3+0+0=3$.

Inefficiency of Borda Count

Inefficiency of Borda Count

- Who is the winner by Borda counting?

Inefficiency of Borda Count

- Who is the winner by Borda counting? a: 6, b:7, $c: 2$.

Inefficiency of Borda Count

- Who is the winner by Borda counting? a: 6, b:7, $c: 2$.
- Condorcet principle follows?

Inefficiency of Borda Count

- Who is the winner by Borda counting? a: 6, b:7, $c: 2$.
- Condorcet principle follows? $a \succ b, a \succ c$.

Inefficiency of Borda Count

- Who is the winner by Borda counting? a: 6, b:7, $c: 2$.
- Condorcet principle follows? $a \succ b, a \succ c$.
- Who is the winner under the plurality rule?

Inefficiency of Borda Count

- Who is the winner by Borda counting? a: 6, b:7, $c: 2$.
- Condorcet principle follows? $a \succ b, a \succ c$.
- Who is the winner under the plurality rule? a.

Successive elimination

v_{1}	v_{2}	v_{3}
b	a	C
d	b	a
C	d	b
a	C	d

- Successive elimination with ordering $a \rightarrow b \rightarrow c \rightarrow d$:

Successive elimination

v_{1}	v_{2}	v_{3}
b	a	C
d	b	a
C	d	b
a	C	d

- Successive elimination with ordering $a \rightarrow b \rightarrow c \rightarrow d$:

Successive elimination

v_{1}	v_{2}	v_{3}
b	a	C
d	b	a
C	d	b
a	C	d

- Successive elimination with ordering $\nexists \rightarrow b \rightarrow c \rightarrow d$:

Successive elimination

v_{1}	v_{2}	v_{3}
b	a	c
d	b	a
C	d	b
a	C	d

- Successive elimination with ordering $\nexists \rightarrow b \rightarrow \not \subset \rightarrow d$:

Successive elimination

v_{1}	v_{2}	v_{3}
b	a	c
d	b	a
C	d	b
a	C	d

- Successive elimination with ordering $\nexists \rightarrow b \rightarrow \not \subset \rightarrow d$: d

Successive elimination

v_{1}	v_{2}	v_{3}
b	a	c
d	b	a
C	d	b
a	C	d

- Successive elimination with ordering $\nexists \rightarrow b \rightarrow \not \subset \rightarrow d$: d
- The issue: all of the agents prefer b to d !

Successive elimination

v_{1}	v_{2}	v_{3}
b	a	c
d	b	a
C	d	b
a	c	d

- Successive elimination with ordering $a \rightarrow b \rightarrow c \rightarrow d: d$
- Successive elimination with ordering $a \rightarrow c \rightarrow b \rightarrow d$:

Successive elimination

v_{1}	v_{2}	v_{3}
b	a	c
d	b	a
c	d	b
a	C	d

- Successive elimination with ordering $a \rightarrow b \rightarrow c \rightarrow d$: d
- Successive elimination with ordering $a \rightarrow c \rightarrow b \rightarrow d: b$

Successive elimination (sensitive to the agenda order)

v_{1}	v_{2}	v_{3}
b	a	c
d	b	a
c	d	b
a	c	d

- Successive elimination with ordering $a \rightarrow b \rightarrow c \rightarrow d$: d
- Successive elimination with ordering $a \rightarrow c \rightarrow b \rightarrow d: \quad b$
- Successive elimination with ordering $b \rightarrow c \rightarrow a \rightarrow d$:

Successive elimination (sensitive to the agenda order)

v_{1}	v_{2}	v_{3}
b	a	c
d	b	a
c	d	b
a	c	d

- Successive elimination with ordering $a \rightarrow b \rightarrow c \rightarrow d$: d
- Successive elimination with ordering $a \rightarrow c \rightarrow b \rightarrow d: \quad b$
- Successive elimination with ordering $b \rightarrow c \rightarrow a \rightarrow d: a$

Condorcet Winner vs. Plurality

- Let's say we have 1,000 agents each of which has a preference over three candidates A, B, C.
- 499 agents for $A \succ B \succ C$.
- 3 agents for $B \succ C \succ A$.
- 498 agents for $C \succ B \succ A$.
- Who is the Condorcet winner?

Condorcet Winner vs. Plurality

- Let's say we have 1,000 agents each of which has a preference over three candidates A, B, C.
- 499 agents for $A \succ B \succ C$.
- 3 agents for $B \succ C \succ A$.
- 498 agents for $C \succ B \succ A$.
- Who is the Condorcet winner? B.

Condorcet Winner vs. Plurality

- Let's say we have 1,000 agents each of which has a preference over three candidates A, B, C.
- 499 agents for $A \succ B \succ C$.
- 3 agents for $B \succ C \succ A$.
- 498 agents for $C \succ B \succ A$.
- Who is the Condorcet winner? B.
- Who is the winner under the plurality rule?

Condorcet Winner vs. Plurality

- Let's say we have 1,000 agents each of which has a preference over three candidates A, B, C.
- 499 agents for $A \succ B \succ C$.
- 3 agents for $B \succ C \succ A$.
- 498 agents for $C \succ B \succ A$.
- Who is the Condorcet winner? B.
- Who is the winner under the plurality rule? A.

Exercise

On Borda Count \& Condorcet

We have five voters with the following preferences (ordering) over the outcomes A, B, C, and D.

- $B \succ C \succ A \succ D$.
- $B \succ D \succ C \succ A$.
- $D \succ C \succ A \succ B$.
- $A \succ D \succ B \succ C$.
- $A \succ D \succ C \succ B$.

Who is the winner by the Borda Count rule?
Who is the Condorcet winner?

Let's consider a practical application in MOOCs.

MOOCs

- MOOCs: Massive Online Open Courses
- e.g., Coursera, EdX.

MOOCs

- MOOCs: Massive Online Open Courses
- e.g., Coursera, EdX.
- Outscourcing the grading task to the students.

MOOCs

- MOOCs: Massive Online Open Courses
- e.g., Coursera, EdX.
- Outscourcing the grading task to the students.
- They may have incentives to assign LOW scores to everybody else.

MOOCs

- MOOCs: Massive Online Open Courses
- e.g., Coursera, EdX.
- Outscourcing the grading task to the students.
- They may have incentives to assign LOW scores to everybody else.
\triangleright Ask each student to grade a SMALL number of her peers' assignments.

MOOCs

- MOOCs: Massive Online Open Courses
- e.g., Coursera, EdX.
- Outscourcing the grading task to the students.
- They may have incentives to assign LOW scores to everybody else.
\triangleright Ask each student to grade a SMALL number of her peers' assignments.
- Then merge individual rankings into a global one.

Preliminaries

Terminologies

- \mathcal{A} : universe of n elements (students).
- (n, k)-grading scheme:
a collection \mathcal{B} of size- k subsets (bundles) of \mathcal{A}, such that each element of \mathcal{A} belongs to exactly k subsets of \mathcal{B}.
- The bundle graph:

Represent the (n, k)-grading scheme with a bipartite graph.

- \prec_{b} : a ranking of the element b contains (partial order).

Preliminaries

The aggregation rule

An aggregation rule:

 profile of partial rankings \mapsto complete ranking of all elements.- Borda:

SPRONG FEAST 2016 BALLOT

a	LE BLE D'OR		5
b	CRYSTAL SPOON	$0=x+\frac{1}{T}+1$	4
c	Bei Yuan Restaurant	$\sqrt{\square \pi} \frac{1}{7}$	2
d	Tasty Steak	TASTY	1
e	Capricciosa	Cancme	3

```
SDRONG FEAST 2O16 BALLOT
```

a	LE BLE D'OR		4
b	CRYSTAL SPOON	certital	5
c	Bei Yuan Restaurant	$\sqrt{6}$	1
d	Tasty Steak	TASTY	3
e	Capricciosa	C-mantin	2

- a: 14; b: 12; c: 4; d: 6; e: 9 .

$$
a \prec b \prec e \prec d \prec c .
$$

Order-revealing grading scheme

An aggregation rule in peer grading (Borda):

- Alice: 9; Bob: 8; Curry: 5; David: 5; Elvis: 3.

$$
\text { Alice } \prec \text { Bob } \prec \text { Curry } \prec \text { David } \prec \text { Elvis. }
$$

Assumption (perfect grading)

Each student grades the assignments in her bundle consistently to the ground truth.

Preliminaries

Order-revealing grading scheme (contd.)

- Alice: 9; Bob: 8; Curry: 8; David: 5; Elvis: 4; Frank: 6; Green: 5; Henry: 3.

$$
\text { Alice } \prec \text { Bob } \prec \text { Curry } \prec \text { Frank } \prec \text { David } \prec \text { Green } \prec \text { Elvis } \prec \text { Henry. }
$$

Preliminaries

Order-revealing grading scheme (contd.)

- Alice: 9; Bob: 8; Curry: 8; David: 5; Elvis: 4; Frank: 6; Green: 5; Henry: 3.

$$
\text { Alice } \prec \text { Bob } \prec \text { Curry } \prec \text { Frank } \prec \text { David } \prec \text { Green } \prec \text { Elvis } \prec \text { Henry. }
$$

Preliminaries

The bundle graph

The bundle graph:

Preliminaries

The bundle graph

The bundle graph:

- A random k-regular graph:

A complete bipartite $K_{n, n} \mapsto$ removing edges $\{v, v\}, \forall v \mapsto$
repeat
"draw a perfect matching uniformly at random among all perfect matchings of the remaining graph"
for k times.

The limitation on the order revealing scheme

- The property of revealing the ground truth for certain:

$$
\forall x, y \in \mathcal{A}, \exists B \in \mathcal{B} \text { such that } x, y \in B
$$

Preliminaries

The limitation on the order revealing scheme

- The property of revealing the ground truth for certain:

$$
\forall x, y \in \mathcal{A}, \exists B \in \mathcal{B} \text { such that } x, y \in B
$$

- Suppose NO bundle contains both $x, y \in \mathcal{A}$.
- Let \prec, \prec^{\prime} be two complete rankings.
- x, y are in the first two positions in \prec, \prec^{\prime};
- \prec and \prec^{\prime} differs only in the order of x and y.
- Clearly, partial rankings within the bundles are identical in both cases.
- No way to identify whether \prec or \prec^{\prime} is the ground truth.

Preliminaries

The limitation on the order revealing scheme

- The property of revealing the ground truth for certain:

$$
\forall x, y \in \mathcal{A}, \exists B \in \mathcal{B} \text { such that } x, y \in B
$$

- Suppose NO bundle contains both $x, y \in \mathcal{A}$.
- Let \prec, \prec^{\prime} be two complete rankings.
- x, y are in the first two positions in \prec, \prec^{\prime};
- \prec and \prec^{\prime} differs only in the order of x and y.
- Clearly, partial rankings within the bundles are identical in both cases.
- No way to identify whether \prec or \prec^{\prime} is the ground truth.
- To reveal the ground truth with certainty: $k=\Omega(\sqrt{n})$.
- $n \cdot\binom{k}{2} \geq\binom{ n}{2}$.

Seeking for approximate order-revealing grading schemes

- Use a bundle graph with a very low degree k (independent of n).
- Randomly permute the elements by $\pi: U \mapsto \mathcal{A}$ before associating them to the nodes of U of the bundle graph.
- Aiming at $\frac{\text { \#correctly recovered pairwise relations }}{\binom{n}{2}}$.

The main result

Theorem (Caragiannis, Krimpas, Voudouris@AAMAS'15)

When

- Borda is applied as the aggregation rule, and
- all the partial rankings are consistent to the ground truth, then the expected fraction of correctly recovered pairwise relations is $1-O(1 / \sqrt{k})$.

Question

- What will happen if we assign for each student only two assignments and each assignment is graded by exactly two students?

