Social Choice

Joseph Chuang-Chieh Lin

Dept. CSIE, Tamkang University, Taiwan

Joseph C.-C. Lin (CSIE, TKU, TW)

Fall 2022 1 / 3

Outline

1 Introduction to Social Choice

2 Peer-Grading in MOOCs

- Preliminaries
- Correctness of Recovered Pairwise Rankings

The Setting of Social Choice

Take voting scheme for example.

- A set O of outcomes (i.e., alternatives, candidates, etc.)
- A set A of agents s.t. each of them has a preference ≻ over the outcomes.
- The social choice function: a mapping from the profiles of the preferences to a particular outcome.

Outcomes & preferences

Preferences

- A binary relation \succ such that
 - for every a, b ∈ O, a ≠ b, we have either a ≻ b or b ≻ a but NOT both.
 - for $a, b, c \in O$, if $a \succ b$ and $b \succ c$, then we have $a \succ c$.
- \succeq can be defined similarly.
 - ≺: ¬≻

Agents with preferences

- E.g., five agents (voters).
- Each agent has its preference over four candidates {a, b, c, d}.

Agents with preferences

- E.g., three agents (voters).
- Each agent has its preference over four candidates {a, b, c, d}.

Plurality rule \Rightarrow a

 Plurality rule: each agent can only give score 1 to the most preferred one and 0 to the others.

Plurality rule (contd.)

 Plurality rule: each agent can only give score 1 to the most preferred one and 0 to the others.

Plurality rule (contd.)

• Plurality rule:

Plurality rule (contd.)

• Plurality rule: depending on the tie-breaking rule.

• Condorcet rule:

- a vs. b
- a vs. c
- a vs. d

• Condorcet rule:

• a vs. $b \rightarrow b$

• a vs.
$$c
ightarrow a$$

• a vs.
$$d \rightarrow a$$

• Condorcet rule:

- C VS. a
- c vs. b
- c vs. d

• Condorcet rule:

• c vs. $a \rightarrow a$

•
$$c$$
 vs. $b \rightarrow b$

• c vs. $d \rightarrow c$

• Condorcet rule:

- b vs. a
- b vs. c
- b vs. d

• Condorcet rule:

• b vs. $a \rightarrow b$

•
$$b$$
 vs. $c \rightarrow b$

• b vs. $d \rightarrow b$

- Condorcet rule: **b**
 - b vs. $a \rightarrow b$

•
$$b$$
 vs. $c \rightarrow b$

• b vs. $d \rightarrow b$

Borda rule

• Borda count rule:

Joseph C.-C. Lin (CSIE, TKU, TW)

Borda rule

Borda count rule:

- score of *a*: 1+1+3=5.
- score of *b*: 2 + 3 + 2 = 7.
- score of c: 0 + 2 + 1 = 3.
- score of d: 3 + 0 + 0 = 3.

Borda rule

• Borda count rule: **b**.

- score of *a*: 1+1+3=5.
- score of *b*: 2 + 3 + 2 = 7.
- score of c: 0 + 2 + 1 = 3.
- score of d: 3 + 0 + 0 = 3.

• Who is the winner by Borda counting?

Joseph C.-C. Lin (CSIE, TKU, TW)

• Who is the winner by Borda counting? *a*: 6, *b*: 7, *c*: 2.

- Who is the winner by Borda counting? *a*: 6, *b*: 7, *c*: 2.
- Condorcet principle follows?

- Who is the winner by Borda counting? a: 6, b: 7, c: 2.
- Condorcet principle follows? $a \succ b$, $a \succ c$.

- Who is the winner by Borda counting? a: 6, b: 7, c: 2.
- Condorcet principle follows? $a \succ b$, $a \succ c$.
- Who is the winner under the plurality rule?

- Who is the winner by Borda counting? a: 6, b: 7, c: 2.
- Condorcet principle follows? $a \succ b$, $a \succ c$.
- Who is the winner under the plurality rule? a.

Successive elimination

• Successive elimination with ordering $a \rightarrow b \rightarrow c \rightarrow d$:

Successive elimination

• Successive elimination with ordering $a \rightarrow \not b \rightarrow c \rightarrow d$:

Successive elimination

• Successive elimination with ordering $\not a \rightarrow \not b \rightarrow c \rightarrow d$:

• Successive elimination with ordering $\not a \rightarrow \not b \rightarrow \not c \rightarrow d$:

• Successive elimination with ordering $\not a \rightarrow \not b \rightarrow \not c \rightarrow d$: d

• Successive elimination with ordering $\not a \rightarrow \not b \rightarrow \not c \rightarrow d$: d

• The issue: all of the agents prefer b to d!

- Successive elimination with ordering $a \rightarrow b \rightarrow c \rightarrow d$: d
- Successive elimination with ordering $a \rightarrow c \rightarrow b \rightarrow d$:

- Successive elimination with ordering $a \rightarrow b \rightarrow c \rightarrow d$: d
- Successive elimination with ordering $a \rightarrow c \rightarrow b \rightarrow d$: **b**

Successive elimination (sensitive to the agenda order)

- Successive elimination with ordering $a \rightarrow b \rightarrow c \rightarrow d$: d
- Successive elimination with ordering $a \rightarrow c \rightarrow b \rightarrow d$: **b**
- Successive elimination with ordering $b \rightarrow c \rightarrow a \rightarrow d$:

Successive elimination (sensitive to the agenda order)

- Successive elimination with ordering $a \rightarrow b \rightarrow c \rightarrow d$: d
- Successive elimination with ordering $a \rightarrow c \rightarrow b \rightarrow d$: **b**
- Successive elimination with ordering $b \rightarrow c \rightarrow a \rightarrow d$: a

- Let's say we have 1,000 agents each of which has a preference over three candidates *A*, *B*, *C*.
 - 499 agents for $A \succ B \succ C$.
 - 3 agents for $B \succ C \succ A$.
 - 498 agents for $C \succ B \succ A$.
- Who is the Condorcet winner?

- Let's say we have 1,000 agents each of which has a preference over three candidates *A*, *B*, *C*.
 - 499 agents for $A \succ B \succ C$.
 - 3 agents for $B \succ C \succ A$.
 - 498 agents for $C \succ B \succ A$.
- Who is the Condorcet winner? B.

- Let's say we have 1,000 agents each of which has a preference over three candidates *A*, *B*, *C*.
 - 499 agents for $A \succ B \succ C$.
 - 3 agents for $B \succ C \succ A$.
 - 498 agents for $C \succ B \succ A$.
- Who is the Condorcet winner? B.
- Who is the winner under the plurality rule?

- Let's say we have 1,000 agents each of which has a preference over three candidates *A*, *B*, *C*.
 - 499 agents for $A \succ B \succ C$.
 - 3 agents for $B \succ C \succ A$.
 - 498 agents for $C \succ B \succ A$.
- Who is the Condorcet winner? B.
- Who is the winner under the plurality rule? A.

Exercise

On Borda Count & Condorcet

We have five voters with the following preferences (ordering) over the outcomes A, B, C, and D.

- $B \succ C \succ A \succ D$.
- $B \succ D \succ C \succ A$.
- $D \succ C \succ A \succ B$.
- $A \succ D \succ B \succ C$.
- $A \succ D \succ C \succ B$.

Who is the winner by the Borda Count rule? Who is the Condorcet winner?

Let's consider a practical application in MOOCs.

Joseph C.-C. Lin (CSIE, TKU, TW)

- MOOCs: Massive Online Open Courses
 - e.g., Coursera, EdX.

- MOOCs: Massive Online Open Courses
 - e.g., Coursera, EdX.
- Outscourcing the grading task to the students.

- MOOCs: Massive Online Open Courses
 - e.g., Coursera, EdX.
- Outscourcing the grading task to the students.
- They may have incentives to assign LOW scores to everybody else.

- MOOCs: Massive Online Open Courses
 - e.g., Coursera, EdX.
- Outscourcing the grading task to the students.
- They may have incentives to assign LOW scores to everybody else.
 Ask each student to grade a SMALL number of her peers' assignments.

- MOOCs: Massive Online Open Courses
 - e.g., Coursera, EdX.
- Outscourcing the grading task to the students.
- They may have incentives to assign LOW scores to everybody else.
 - \triangleright Ask each student to grade a SMALL number of her peers' assignments.
 - Then merge individual rankings into a global one.

Terminologies

- \mathcal{A} : universe of *n* elements (students).
- (*n*, *k*)-grading scheme:

a collection \mathcal{B} of size-k subsets (bundles) of \mathcal{A} , such that each element of \mathcal{A} belongs to exactly k subsets of \mathcal{B} .

• The bundle graph:

Represent the (n, k)-grading scheme with a bipartite graph.

• \prec_b : a ranking of the element *b* contains (partial order).

The aggregation rule

An aggregation rule:

profile of partial rankings \mapsto complete ranking of all elements.

Borda:

SPRING TEAST 2016 BALLOT				SPRING FEAST 2016 BALLOT				SPRING FEAST 2016 BALLOT			
a	LE BLE D'OR	5		a	LE BLE D'OR	sels 5	5	a	LE BLE D'OR	4	
b	CRYSTAL SPOON	3		b	CRYSTAL SPOON	4	4	b	CRYSTAL SPOON	5	
с	Bei Yuan Restaurant	1		с	Bei Yuan Restaurant 📱	2	2	с	Bei Yuan Restaurant	1	
d	Tasty Steak TASTY	2		d	Tasty Steak	ASTY 1	1	d	Tasty Steak TASTY	3	
e	Capricciosa	4		е	Capricciosa	Comment 3	3	e	Capricciosa	2	
			1								

• a: 14; b: 12; c: 4; d: 6; e: 9.

 $\mathsf{a} \prec \mathsf{b} \prec \mathsf{e} \prec \mathsf{d} \prec \mathsf{c}.$

500

Order-revealing grading scheme

An aggregation rule in peer grading (Borda):

• Alice: 9; Bob: 8; Curry: 5; David: 5; Elvis: 3.

Alice \prec Bob \prec Curry \prec David \prec Elvis.

Order-revealing grading scheme (contd.)

Order-revealing grading scheme (contd.)

The bundle graph

The bundle graph:

The bundle graph

The bundle graph:

• A random *k*-regular graph:

A complete bipartite $K_{n,n} \mapsto$ removing edges $\{v, v\}$, $\forall v \mapsto$

repeat

"draw a perfect matching uniformly at random among all perfect matchings of the remaining graph"

for k times.

The limitation on the order revealing scheme

• The property of revealing the ground truth for certain:

 $\forall x, y \in \mathcal{A}, \exists B \in \mathcal{B} \text{ such that } x, y \in B.$

The limitation on the order revealing scheme

• The property of revealing the ground truth for certain:

 $\forall x, y \in \mathcal{A}, \exists B \in \mathcal{B} \text{ such that } x, y \in B.$

- Suppose NO bundle contains both $x, y \in A$.
- Let \prec, \prec' be two complete rankings.
 - x, y are in the first two positions in \prec, \prec' ;
 - \prec and \prec' differs only in the order of x and y.
- Clearly, partial rankings within the bundles are identical in both cases.
- No way to identify whether \prec or \prec' is the ground truth.

The limitation on the order revealing scheme

• The property of revealing the ground truth for certain:

 $\forall x, y \in \mathcal{A}, \exists B \in \mathcal{B} \text{ such that } x, y \in B.$

- Suppose NO bundle contains both $x, y \in A$.
- Let \prec, \prec' be two complete rankings.
 - x, y are in the first two positions in \prec, \prec' ;
 - \prec and \prec' differs only in the order of x and y.
- Clearly, partial rankings within the bundles are identical in both cases.
- No way to identify whether \prec or \prec' is the ground truth.
- To reveal the ground truth with certainty: $k = \Omega(\sqrt{n})$.

•
$$n \cdot \binom{k}{2} \ge \binom{n}{2}$$
.

Seeking for approximate order-revealing grading schemes

- Use a bundle graph with a very low degree k (independent of n).
- Randomly permute the elements by π : U → A before associating them to the nodes of U of the bundle graph.
- Aiming at $\frac{\text{#correctly recovered pairwise relations}}{\binom{n}{2}}$

Social Choice Peer-Grading in MOOCs Correctness of Recovered Pairwise <u>Rankings</u>

The main result

Theorem (Caragiannis, Krimpas, Voudouris@AAMAS'15)

When

- Borda is applied as the aggregation rule, and
- all the partial rankings are consistent to the ground truth,

then the expected fraction of correctly recovered pairwise relations is $1 - O(1/\sqrt{k}).$

Social Choice Peer-Grading in MOOCs Correctness of Recovered Pairwise Rankings

• What will happen if we assign for each student only two assignments and each assignment is graded by exactly two students?

