Assignment 10 Due date: 11 June 2021 TA: 林宏懌 E817 (Online; iClass due to 23:59)

1. Determine whether the following polynomials span P_2 .

 $\mathbf{p}_1 = 1 - x + 2x^2, \quad \mathbf{p}_2 = 3 + x, \\ \mathbf{p}_3 = 5 - x + 4x^2, \quad \mathbf{p}_4 = -2 - 2x + 2x^2.$

- 2. Let $T_A : \mathbf{R}^2 \mapsto \mathbf{R}^3$ be multiplication by matrix A. Determine whether the vector $\mathbf{u} = (1, 1, 1)$ is in the span of $\{T_A(\mathbf{e}_1), T_A(\mathbf{e}_2)\}$, where $A = \begin{bmatrix} 0 & 2\\ 1 & -2\\ 1 & 0 \end{bmatrix}$.
- 3. Determine whether the following vectors are linearly independent or linearly dependent in P_2 .

$$\mathbf{p}_1 = 2 - x + 4x^2$$
, $\mathbf{p}_2 = 3 + 6x + 2x^2$, $\mathbf{p}_3 = 2 + 10x - 4x^2$

4. Determine whether the following vectors are linearly independent or linearly dependent in P_2 .

$$\mathbf{p}_1 = 1 + 3x + 3x^2$$
, $\mathbf{p}_2 = x + 4x^2$, $\mathbf{p}_3 = 5 + 6x + 3x^2$, $\mathbf{p}_4 = 7 + 2x - x^2$.

5. Use the Wronskian to show that $\mathbf{f}_1 = 1$, $\mathbf{f}_2 = e^x$, $\mathbf{f}_3 = e^{2x}$ are linearly independent vectors in $C^{\infty}(-\infty, \infty)$.