Assignment 2

Due date： 29 March 2024

TA：盧禹丞 E814

1．Let A be an $n \times n$ symmetric matrix．Show that $2 A^{2}-3 A+2 I$ is symmetric．
2．Suppose that $A=\left[\begin{array}{rrrr}1 & 2 & \cdots & n \\ 2 & 4 & \cdots & 2 n \\ \vdots & \vdots & \ddots & \vdots \\ n & 2 n & \cdots & n^{2}\end{array}\right]$ ．Please Compute $\operatorname{tr}\left(A^{\top} A\right)$ ．
3．If A, B ，and $A^{-1}+B^{-1}$ are invertible $n \times n$ matrices，show that $A^{2} B+A B^{2}$ is invertible．

4．Consider $\mathbf{x}=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]^{\top} \in \mathbb{R}^{3}$ and $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ ，compute $\operatorname{tr}\left(A \mathbf{x x}^{\top}\right)$ ．

5．Compute A^{8} where $A=\left[\begin{array}{rr}1 & -3 \\ 1 & 1\end{array}\right]$ ．

