Assignment 3

Due date： 23 April 2024

TA：盧禹丞 E814

1．If $\mathbf{b}, \mathbf{x} \in \mathbb{R}^{n}$ and $\mathbf{b} \neq \mathbf{0}$ ，then prove or disprove that $T(\mathbf{x})=\mathbf{x}+\mathbf{b}$ is a matrix transformation on \mathbb{R}^{n} ．

2．If $A^{n+1}=\mathbf{0}$ ，then prove that $(I-A)^{-1}=I+A+A^{2}+\cdots+A^{n}$ ．．
3．Find the standard matrix A for the linear transformation $T: \mathbb{R}^{3} \mapsto \mathbb{R}^{3}$ for which

$$
T\left(\left[\begin{array}{c}
-2 \\
3 \\
-4
\end{array}\right]\right)=\left[\begin{array}{c}
5 \\
3 \\
14
\end{array}\right], T\left(\left[\begin{array}{c}
3 \\
-2 \\
3
\end{array}\right]\right)=\left[\begin{array}{c}
-4 \\
6 \\
-14
\end{array}\right] \text { and } T\left(\left[\begin{array}{c}
-4 \\
-5 \\
5
\end{array}\right]\right)=\left[\begin{array}{c}
-6 \\
-40 \\
-2
\end{array}\right] .
$$

4．Given that $A=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & a_{9}\end{array}\right]$ and $\operatorname{det}(A)=10$ ．Please compute the determinants for the following matrices．
a． $\operatorname{det}(-3 A)$
b． $\operatorname{det}\left(\left(2 A^{-1}\right)^{\top}\right)$
c． $\operatorname{det}\left(\left[\begin{array}{lll}a_{3} & a_{1} & a_{2} \\ a_{6} & a_{4} & a_{5} \\ a_{9} & a_{7} & a_{8}\end{array}\right]\right)$

