Assignment 5

Due date: 29 May 2024

TA: 盧禹丞 E814

- 1. (20%) If $b \in \mathbb{R}$, then show that $\{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_3 = 5x_4 + b\}$ is a subspace of \mathbb{R}^4 if and only if b = 0.
- 2. (20%) Show that $V=\{(x,y,z)\in\mathbb{R}^3\mid x+y+z=0\}$ is a subspace of \mathbb{R}^3 .
- 3. (20%) Let $T_A: \mathbf{R}^2 \mapsto \mathbf{R}^3$ be multiplication by matrix A. Determine whether the vector $\mathbf{u}=(1,1,1)$ is in the span of $\{T_A(\mathbf{e}_1),T_A(\mathbf{e}_2)\}$, where $A=\begin{bmatrix}0&2\\1&-2\\1&0\end{bmatrix}$.
- 4. (20%) Determine whether the following vectors are linearly independent or linearly dependent in P_2 .

$$\mathbf{p}_1 = 2 - x + 4x^2$$
, $\mathbf{p}_2 = 3 + 6x + 2x^2$, $\mathbf{p}_3 = 2 + 10x - 4x^2$

5. (20%) Use the Wronskian to show that $\mathbf{f}_1=1, \mathbf{f}_2=e^x, \mathbf{f}_3=e^{2x}$ are linearly independent vectors in $C^{\infty}(-\infty,\infty)$.