Final Exam of Linear Algebra

Chuang-Chieh Lin

15:10 – 17:00, 11 June 2024

Part I: True (T) or False (F) (30%; each for 3%)

- 1. For a vector $\mathbf{v} \in \mathbb{R}^n$ and any scalar k, $||k\mathbf{v}|| = k \cdot ||\mathbf{v}||$.
- 2. Let *A* be an $n \times n$ matrix, if $A\mathbf{x} = \mathbf{b}$ is consistent for every $n \times 1$ matrix \mathbf{b} , then *A* is invertible.
- 3. If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\} \subseteq V$ is a linearly independent set in a vector space V, then $\{\mathbf{u}, \mathbf{v}\}$ is also linearly independent.
- 4. Given $\mathbf{u} = (2, -1, 3)$, $\mathbf{v} = (-4, 2, -6)$, and $\mathbf{w} = (-3, -2, 1)$, then $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ spans \mathbb{R}^3 .
- 5. If *A* is an $n \times n$ invertible matrix, then $adj(A^{\top}) = adj(A)^{\top}$.
- 6. The basis of a vector space is unique.
- 7. If {**u**, **v**, **w**} spans a vector space, then {**u**, **v**, **w**, **u**-**v**} also spans the same vector space.
- 8. { $x^2 + x, -3x^2 2, -5x^2 2x$ } is linearly independent.
- 9. For any two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, $||\mathrm{proj}_{\mathbf{v}} \mathbf{u}|| \le ||\mathbf{u}||$.
- 10. For any two subspaces $S_1, S_2 \subseteq V$ of a vector space $V, S_1 \cup S_2$ is a subspace of V.

Part II: Filling Questions. (80%; each for 5%)

- 1. Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^4$, $\mathbf{u} = (2, 3, 1, -4)$, $\mathbf{v} = (-1, 2, 0, 1)$, what is $\cos \theta$ for which θ is the angle between \mathbf{u} and \mathbf{v} ?
- 2. Given $\mathbf{u} = (3, 0, 2)$, $\mathbf{v} = (0, 1, 1)$, and $\mathbf{w} = (-3, 1, 0)$, represent (0, 3, 4) as a linear combination of \mathbf{u} , \mathbf{v} and \mathbf{w} . If this is impossible, answer **NO**.
- 3. If **a** and **b** are orthogonal vectors, then for every nonzero vector **u**, we have $proj_{\mathbf{a}}(proj_{\mathbf{b}}(\mathbf{u})) =$ _____

4. If
$$A, B \in \mathbb{R}^{3 \times 3}$$
, $\det(A) = 2$, and $\det(B) = 1$, then $\det \begin{pmatrix} 2I_3 & B \\ O & AB^2 \end{pmatrix} =$ _____

- 5. Let $A = \begin{bmatrix} k-3 & -1 \\ -2 & k-2 \end{bmatrix}$. What's the value(s) of *k* for which *A* is invertible?
- 6. Let *A* be an $n \times n$ square matrix. then if $det(\lambda A) = k^n det(A)$, then the value of $\lambda =$ _____
- 7. Compute a basis of the null space of *A*, where $A = \begin{bmatrix} 1 & -1 & 3 \\ 5 & -4 & -4 \\ 7 & -6 & 2 \end{bmatrix}$.
- 8. Consider the bases $\beta = {\mathbf{u}_1, \mathbf{u}_2}$ and $\beta' = {\mathbf{u}'_1, \mathbf{u}'_2}$ for \mathbb{R}^2 , where

$$\mathbf{u}_1 = \begin{bmatrix} 2\\2 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 4\\-1 \end{bmatrix}, \mathbf{u}_1' = \begin{bmatrix} 1\\3 \end{bmatrix}, \mathbf{u}_2' = \begin{bmatrix} -1\\-1 \end{bmatrix},$$

then compute the transition matrix $[I]^{\beta}_{\beta'}$ from β' to β .

9. Let $S \subseteq V$ be a subspace of a vector space V and $V - \operatorname{span}(S) = \emptyset$. If $\dim(S) = n - 1$, then $\dim(V) =$ _____

10. Given a matrix
$$A = \begin{bmatrix} 1 & 3 & 1 & 2 & 5 \\ 2 & 6 & 3 & 4 & 10 \\ 1 & 6 & 2 & 2 & 5 \\ -2 & -7 & 5 & -3 & 7 \\ -3 & -9 & 7 & -6 & 10 \end{bmatrix}$$
. Compute the determinant of A .

- 11. Compute the distance between the point (0, 0, 0) and the plane x + 2y 2z + 9 = 0.
- 12. Let $\mathbf{u} = (2, -2, -4)$, $\mathbf{v} = (5, -4, -7)$, $\mathbf{w} = (-3, 1, 0)$, $\mathbf{x} = (-4, 3, h)$, what is the value of h such that \mathbf{x} is in span({ $\mathbf{u}, \mathbf{v}, \mathbf{w}$ })?

13.
$$\begin{vmatrix} ka_{11} & ka_{12} & ka_{13} \\ -k^2a_{21} & -k^2a_{22} & -k^2a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \Box \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
. Then, $\Box = ___$.

- 14. Given $S = \{e^x, e^{x^2}, e^{x^3}\}$, if W(x) is the Wronskian of *S*, then W(0) =_____.
- 15. If *A* is an $n \times n$ invertible matrix, let *B* be the adjoint matrix of *A*, then $AB = \Box I_n$

16. Compute nullity(*A*) =
$$\Box$$
 (i.e., dimension of null(*A*)), where $A = \begin{bmatrix} 1 & 3 & 1 & 2 \\ 2 & 6 & 3 & 4 \\ 1 & 6 & 2 & 2 \end{bmatrix}$.