Final Exam of Linear Algebra (Makeup)

Chuang-Chieh Lin
10:00 - 12:00, 15 June 2021; Online
Note: Please upload your answer sheet with your signature to iClass before 12:00 24 June 2021.

Part I: True (T) or False (F) (30\%; each for 3\%)

1. For a vector $\mathbf{v} \in R^{n}$ and any scalar $k,\|k \mathbf{v}\|=k \cdot\|\mathbf{v}\|$.
2. For any $n \times n$ matrix A and any $n \times n$ matrix B, we have $\operatorname{det}(A B)=\operatorname{det}(B A)$.
3. Let A be an $n \times n$ matrix, if $A \mathbf{x}=\mathbf{b}$ is consistent for every $n \times 1$ matrix \mathbf{b}, then A is invertible.
4. Given $\mathbf{u}=(3,0,2), \mathbf{v}=(0,1,-1), \mathbf{w}=(-3,1,0)$, then $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent.
5. If $S \neq \emptyset$ is a linearly independent set of vectors in a vector space V, then $S \cup\{v\}$ is linear independent for any $v \in V$.
6. Elementary row operations do not change the column space of a matrix.
7. Given $\mathbf{u}=(1,0,2), \mathbf{v}=(0,1,1), \mathbf{w}=(-3,1,0)$, and $\mathbf{x}=(1,-1,1)$, then $\{\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}\}$ is an independent set in R^{3}.
8. Elementary row operations do not change the rank of a matrix.
9. Given $\mathbf{u}=(2,-1,3), \mathbf{v}=(-7,-2,0)$, and $\mathbf{w}=(-6,3,-9)$, then $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ spans R^{3}.
10. Elementary row operations may change the dimension of a matrix's column space.

Part II: Single-Answer Multiple Choice. (60\%; each for 5\%)

1. Given two planes $x+2 y-2 z=3$ and $2 x+4 y-4 z=5$, the distance between these two planes is :
(a). 0 ;
(b). $\frac{1}{6}$;
(c). $\frac{7}{6}$;
(d). 1.
2. Let $\mathbf{u}, \mathbf{v} \in R^{4}, \mathbf{u}=(2,3,1,-4), \mathbf{v}=(-1,2,0,1)$, what is $\cos \theta$ for which θ is the angle between \mathbf{u} and \mathbf{v} ?
(a). 1;
(b). $\sqrt{3} / 2$;
(c). -1 ;
(d). 0.
3. According to the orthogonal projection of a vector \mathbf{v} on another vector \mathbf{w}, the LENGTH of the vector component of \mathbf{v} projected on \mathbf{w} (that is, along with \mathbf{w}) is:
(a). $\frac{\mathbf{w} \cdot \mathbf{v}}{\|\mathbf{v}\|}$;
(b). $\frac{\mathrm{v} \cdot \mathrm{w}}{\|\mathrm{w}\|^{2}} \mathbf{w}$;
(c). $\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|}$;
(d). $\mathbf{v}-\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|^{2}} \mathbf{w}$.
4. Let $A=\left[\begin{array}{cc}k-3 & -1 \\ -2 & k-2\end{array}\right]$. Choose one of the values of k below for which A is invertible.
(a). 4;
(b). -1 ;
(c). 1;
(d). None of the above.
5. If $A, B \in R^{3 \times 3}, \operatorname{det}(A)=2$, and $\operatorname{det}(B)=-1$, then $\operatorname{det}\left(\begin{array}{cc}2 I_{3} & B \\ O & A B^{2}\end{array}\right)=$
(a). 16 ;
(b). -2 ;
(c). -16 ;
(d). 1
6. Let A be an $n \times n$ square matrix. then if $\operatorname{det}\left(R_{1,2}^{(-2)} A\right)=\lambda \cdot \operatorname{det}(A)$ where $R_{1,2}^{(-2)}$ is an elementary matrix which corresponds to replacing row 2 of A by the sum of row 1 multiplied by -2 and row 2 , then λ equals:
(a). -2 ;
(b). k;
(c). 1.
(d). -1 .

7．Solve the linear system（e．g．，using Cramer＇s rule）

$$
\begin{aligned}
4 x+5 y & =2 \\
11 x+y+2 z & =3 \\
x+5 y+2 z & =1
\end{aligned}
$$

（a）．$x=\frac{3}{11}, y=\frac{2}{11}, z=-\frac{1}{11}$ ．
（b）．$x=\frac{-3}{11}, y=\frac{-2}{11}, z=\frac{1}{11}$ ．
（c）．$x=\frac{1}{11}, y=\frac{2}{11}, z=-\frac{3}{11}$ ．
（d）．None of the above．
8．If $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$ are vectors in R^{3} ，then which one of the following inequalities is a valid Cauchy－Schwarz Inequality（科西不等式）？
（a）．$|\mathbf{u} \cdot \mathbf{v}| \geq\|\mathbf{u}\|\|\mathbf{v}\|$ ；
（b）．$|\mathbf{u} \cdot \mathbf{v}| \leq\|\mathbf{u}\|\|\mathbf{v}\|$ ；
（c）．$\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|$ ；
（d）．None of the above．
9．Consider the bases $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ and $B^{\prime}=\left\{\mathbf{u}_{1}^{\prime}, \mathbf{u}_{2}^{\prime}\right\}$ for R^{2} ，where

$$
\mathbf{u}_{1}=\left[\begin{array}{l}
2 \\
2
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}
4 \\
-1
\end{array}\right], \mathbf{u}_{1}^{\prime}=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \mathbf{u}_{2}^{\prime}=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]
$$

then which one of the following is the transition matrix from B^{\prime} to B ？
（a）．$\left[\begin{array}{rr}0 & -2 \\ -\frac{5}{2} & -\frac{13}{2}\end{array}\right]$
（b）．$\left[\begin{array}{rr}\frac{13}{10} & -\frac{1}{2} \\ -\frac{2}{5} & 0\end{array}\right]$
（c）．$\left[\begin{array}{rr}\frac{10}{13} & \frac{1}{2} \\ \frac{2}{5} & 0\end{array}\right]$
（d）．None of the above．
10．If A is an $m \times n$ matrix and $m \geq n$ ，then which one of the following is CORRECT？
（a）． $\operatorname{rank}(A)>m$ ；
（b）． $\operatorname{rank}(A)>n$ ；
（c）． $\operatorname{rank}(A) \leq n$ ；
（d）． $\operatorname{rank}(A)=m$ ．
11. Which one of the following is a basis of the null space of A, where $A=\left[\begin{array}{rrr}1 & -1 & 3 \\ 5 & -4 & -4 \\ 7 & -6 & 2\end{array}\right]$
(a). $\left\{\left[\begin{array}{c}13 \\ 7 \\ -1\end{array}\right]\right\}$;
(b). $\left\{\left[\begin{array}{c}9 \\ -7 \\ 3\end{array}\right]\right\}$;
(c). $\left\{\left[\begin{array}{c}16 \\ 19 \\ 1\end{array}\right]\right\}$;
(d). None of the above.
12. Given a matrix $A=\left[\begin{array}{rrrrrr}-1 & 2 & 0 & 4 & 5 & -3 \\ 3 & -7 & 2 & 0 & 1 & 4 \\ 2 & -5 & 2 & 4 & 6 & 1 \\ 4 & -9 & 2 & -4 & -4 & 7\end{array}\right]$. Which one of the following is

WRONG?
(a). $\operatorname{rank}(A)=2$;
(b). nullity $(A)=4$;
(c). $\operatorname{dim}(\operatorname{row}(A))+\operatorname{dim}(\operatorname{col}(A))=4$.
(d). None of the above.

Part III: Fill-In the Boxes (\square). (30\%; each for 5\%)

1. $\left|\begin{array}{lll}k a_{11} & k a_{12} & k a_{13} \\ k a_{21} & k a_{22} & k a_{23} \\ k a_{31} & k a_{32} & k a_{33}\end{array}\right|=\square\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$.
2. Evaluate $\operatorname{det}(A)=\square$, where $A=\left[\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 0 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 0 & 0 & 0 & 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & 0 & 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$.
3. Given $S=\{\sin 2 x, \cos x, x \sin x\}$, if $W(x)$ is the Wronskian of S, then $W(0)=$
4. If A is an $n \times n$ invertible matrix, let B be the adjoint matrix of A, then $\operatorname{det}(A B)=$
5. Compute $\operatorname{nullity}(A)=\square$ (i.e., dimension of null (A)), where $A=\left[\begin{array}{rrr}1 & -1 & 3 \\ 5 & -4 & -4 \\ 7 & -6 & 2\end{array}\right]$.
6. For any invertible $n \times n$ matrix $A, \operatorname{rank}(A)-\operatorname{nullity}(A)=\square$.
