Midterm Exam of Linear Algebra
 Chuang-Chieh Lin

10:10-12:00, 20 April 2021; Room E413
Note: Cell phones and any calculator are forbidden.
Part I: True (T) or False (F) (60\%; each for 6\%)

1. The plane $x+4 y-2 z=9$ is a subspace of R^{3}.
2. $\{0\}$ is a subspace of a vector space V.
3. $T(x, y)=(|x|, y)$ is a linear transformation.
4. It is possible for a system of linear equations to have exactly two solutions.
5. If A is an invertible symmetric matrix, then A^{-1} is symmetric.
6. Any symmetric matrix is invertible.
7. The product of invertible matrices is invertible.
8. For any two n-by-n matrices A and $B,(A+B)^{2}=A^{2}+2 A B+B^{2}$.
9. If B and C are both inverses of an n-by- n matrix A, then $B=C$.
10. If $B=R_{2}^{(1 / 2)} R_{12}^{(5)} R_{34} A$ where $R_{2}^{(1 / 2)}, R_{12}^{(5)}, R_{34}$ are three elementary matrices, then $A=R_{34} R_{12}^{(-5)} R_{2}^{(1 / 2)} B$.

Part II: Calculations. (60\%; each for 12\%)

1. Solve the system with variables x_{1}, x_{2}, x_{3} :

$$
\left[\begin{array}{cccc}
-1 & -2 & 3 & 1 \\
1 & 1 & 2 & 8 \\
3 & -7 & 4 & 10
\end{array}\right]
$$

2. Compute A^{20} where $A=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$
3. Compute the inverse of $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8\end{array}\right]$.
4. Let $A=\left[\begin{array}{ll}1 & 0 \\ 2 & 3\end{array}\right]$. Find elementary matrices E_{1} and E_{2} such that $A=E_{1} E_{2}$.
5. Find the standard matrix for the linear transformation $T: \mathbf{R}^{2} \mapsto \mathbf{R}^{2}$ for which

$$
T\left(\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
-5 \\
5
\end{array}\right] \text { and } T\left(\left[\begin{array}{c}
2 \\
-1
\end{array}\right]\right)=\left[\begin{array}{c}
7 \\
-6
\end{array}\right] .
$$

