Midterm Exam of Linear Algebra

15:10 – 17:00, 16 April 2024; Room E401 Note: Cell phones and any calculator are forbidden.

Part I: True (T) or False (F) (40%; each for 4%)

- 1. A homogeneous system of linear equations can have infinitely many solutions.
- 2. If *A* and *B* are invertible of the same size, then *AB* is invertible and $(AB)^{-1} = A^{-1}B^{-1}$.
- 3. If *A* is an invertible symmetric matrix, then A^{-1} is symmetric.
- 4. The product of elementary matrices is always invertible.
- 5. For every matrix $A \in \mathbb{R}^{n \times m}$ and $n, m \in \mathbb{N}$, we have $\operatorname{tr}(A^{\top}A) = \operatorname{tr}(AA^{\top})$.
- 6. For any invertible and symmetric $n \times n$ matrix A, we have A^n is invertible and $(A^n)^{-1} = (A^{\top})^{-n}$.
- 7. If $B = R_2^{(2)} R_{12}^{(3)} A$ where $R_2^{(2)}, R_{12}^{(3)}$ are two elementary matrices, then $A = R_{21}^{(-3)} R_2^{(1/2)} B$.
- 8. For $A \in \mathbb{R}^{2 \times 2}$, $T(A) = A A^{\top}$ is a linear transformation.
- 9. If $\mathbf{b}, \mathbf{x} \in \mathbb{R}^n$ and $\mathbf{b} \neq \mathbf{0}$, then $T(\mathbf{x}) = \mathbf{x} + \mathbf{b}$ is a matrix transformation on \mathbb{R}^n .
- 10. If $A^{n+1} = \mathbf{0}$, then $(I A)^{-1} = I + A + A^2 + \dots + A^n$.

Part II: Calculations. (80%; each for 8%; ONLY THE ANSWERS ARE REQUIRED)

- 1. Solve the system with variables x_1, x_2, x_3, x_4 : $\begin{bmatrix} 1 & 2 & 3 & 4 & 10 \\ 2 & 3 & 4 & 5 & 14 \\ 3 & 4 & 5 & 6 & 18 \\ 4 & 5 & 6 & 7 & 22 \end{bmatrix}$
- 2. Compute A^{10} where $A = \begin{bmatrix} 2 & 1 \\ 1 & -2 \end{bmatrix}$

3. Compute the inverse of
$$A = \begin{bmatrix} 0 & 2 & 3 \\ 3 & 1 & 1 \\ 10 & 3 & 4 \end{bmatrix}$$

- 4. Let $A = \begin{bmatrix} -2 & 0 \\ 6 & 1 \end{bmatrix}$. Find elementary matrices E_1 , E_2 and E_3 such that $A = E_1 E_2 E_3$.
- 5. Find the standard matrix *A* for the linear transformation $T : \mathbb{R}^3 \mapsto \mathbb{R}^3$ for which

$$T\left(\begin{bmatrix} -2\\3\\-4\end{bmatrix}\right) = \begin{bmatrix} 5\\3\\14\end{bmatrix}, T\left(\begin{bmatrix} 3\\-2\\3\end{bmatrix}\right) = \begin{bmatrix} -4\\6\\-14\end{bmatrix} \text{ and } T\left(\begin{bmatrix} -4\\-5\\5\end{bmatrix}\right) = \begin{bmatrix} -6\\-40\\-2\end{bmatrix}$$

6. Compute
$$\begin{bmatrix} 1 & 0 & 0 & -3\\0 & 1 & 3 & 0\\0 & 0 & 1 & 0\\0 & 0 & 0 & 1\end{bmatrix}^{2024}$$

7. Find the inverse of
$$\begin{bmatrix} \cos(-\theta) & \sin(-\theta)\\\sin(\theta) & \cos(\theta)\end{bmatrix}.$$

8. Suppose that
$$A = \begin{bmatrix} 1 & 4 \\ -2 & 3 \\ 1 & -2 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix}$ and $C = \begin{bmatrix} 16 & 12 & -12 \\ 12 & -2 & 2 \\ -8 & 0 & 0 \end{bmatrix}$. Find a matrix *K* such that $AKB = C$.

- 9. Given the Fibonacci sequence $F_0 = 0$, $F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$. Compute Q^n for which $Q = \begin{bmatrix} F_2 & F_1 \\ F_1 & F_0 \end{bmatrix}$. (Please give your answer of Q^n as a 2×2 matrix)
- 10. Compute the determinant of the following matrix:

$$\begin{bmatrix} 5 & 4 & 8 & 1 & 1 \\ 4 & 5 & 7 & 1 & 2 \\ 3 & 6 & 6 & 1 & 3 \\ 2 & 7 & 5 & 1 & 4 \\ 1 & 8 & 4 & 1 & 5 \end{bmatrix}.$$

(計算紙)