Midterm Exam of Linear Algebra

15:10 - 17:00, 16 April 2024; Room E401
Note: Cell phones and any calculator are forbidden.

Part I: True (T) or False (F) (40\%; each for 4\%)

1. A homogeneous system of linear equations can have infinitely many solutions.
2. If A and B are invertible of the same size, then $A B$ is invertible and $(A B)^{-1}=A^{-1} B^{-1}$.
3. If A is an invertible symmetric matrix, then A^{-1} is symmetric.
4. The product of elementary matrices is always invertible.
5. For every matrix $A \in \mathbb{R}^{n \times m}$ and $n, m \in \mathbb{N}$, we have $\operatorname{tr}\left(A^{\top} A\right)=\operatorname{tr}\left(A A^{\top}\right)$.
6. For any invertible and symmetric $n \times n$ matrix A, we have A^{n} is invertible and $\left(A^{n}\right)^{-1}=\left(A^{\top}\right)^{-n}$.
7. If $B=R_{2}^{(2)} R_{12}^{(3)} A$ where $R_{2}^{(2)}, R_{12}^{(3)}$ are two elementary matrices, then $A=R_{21}^{(-3)} R_{2}^{(1 / 2)} B$.
8. For $A \in \mathbb{R}^{2 \times 2}, T(A)=A-A^{\top}$ is a linear transformation.
9. If $\mathbf{b}, \mathbf{x} \in \mathbb{R}^{n}$ and $\mathbf{b} \neq \mathbf{0}$, then $T(\mathbf{x})=\mathbf{x}+\mathbf{b}$ is a matrix transformation on \mathbb{R}^{n}.
10. If $A^{n+1}=\mathbf{0}$, then $(I-A)^{-1}=I+A+A^{2}+\cdots+A^{n}$.

Part II: Calculations. (80\%; each for 8\%; ONLY THE ANSWERS ARE REQUIRED)

1. Solve the system with variables $x_{1}, x_{2}, x_{3}, x_{4}:\left[\begin{array}{ccccc}1 & 2 & 3 & 4 & 10 \\ 2 & 3 & 4 & 5 & 14 \\ 3 & 4 & 5 & 6 & 18 \\ 4 & 5 & 6 & 7 & 22\end{array}\right]$
2. Compute A^{10} where $A=\left[\begin{array}{cc}2 & 1 \\ 1 & -2\end{array}\right]$
3. Compute the inverse of $A=\left[\begin{array}{ccc}6 & 2 & 3 \\ 3 & 1 & 1 \\ 10 & 3 & 4\end{array}\right]$.
4. Let $A=\left[\begin{array}{cc}-2 & 0 \\ 6 & 1\end{array}\right]$. Find elementary matrices E_{1}, E_{2} and E_{3} such that $A=E_{1} E_{2} E_{3}$.
5. Find the standard matrix A for the linear transformation $T: \mathbb{R}^{3} \mapsto \mathbb{R}^{3}$ for which

$$
T\left(\left[\begin{array}{c}
-2 \\
3 \\
-4
\end{array}\right]\right)=\left[\begin{array}{c}
5 \\
3 \\
14
\end{array}\right], T\left(\left[\begin{array}{c}
3 \\
-2 \\
3
\end{array}\right]\right)=\left[\begin{array}{c}
-4 \\
6 \\
-14
\end{array}\right] \text { and } T\left(\left[\begin{array}{c}
-4 \\
-5 \\
5
\end{array}\right]\right)=\left[\begin{array}{c}
-6 \\
-40 \\
-2
\end{array}\right]
$$

6. Compute $\left[\begin{array}{rrrr}1 & 0 & 0 & -3 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]^{2024}$.
7. Find the inverse of $\left[\begin{array}{rr}\cos (-\theta) & \sin (-\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$.
8. Suppose that $A=\left[\begin{array}{cc}1 & 4 \\ -2 & 3 \\ 1 & -2\end{array}\right], B=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & 1 & -1\end{array}\right]$ and $C=\left[\begin{array}{ccc}16 & 12 & -12 \\ 12 & -2 & 2 \\ -8 & 0 & 0\end{array}\right]$. Find a matrix K such that $A K B=C$.
9. Given the Fibonacci sequence $F_{0}=0, F_{1}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$. Compute Q^{n} for which $Q=\left[\begin{array}{ll}F_{2} & F_{1} \\ F_{1} & F_{0}\end{array}\right]$. (Please give your answer of Q^{n} as a 2×2 matrix)
10. Compute the determinant of the following matrix:

$$
\left[\begin{array}{lllll}
5 & 4 & 8 & 1 & 1 \\
4 & 5 & 7 & 1 & 2 \\
3 & 6 & 6 & 1 & 3 \\
2 & 7 & 5 & 1 & 4 \\
1 & 8 & 4 & 1 & 5
\end{array}\right]
$$

（計算紙）

