Mathematics for Machine Learning
— Introduction

Joseph Chuang-Chieh Lin

Department of Computer Science & Information Engineering,
Tamkang University

Fall 2023
Credits for the resource

- The slides are based on the textbook:

- We could partially refer to the monograph:
 Francesco Orabona: A Modern Introduction to Online Learning.
 https://arxiv.org/abs/1912.13213
Grading Policy

- Attendance (10%)
- Assignments & Quizzes (30%)
- Midterm Exam (30%)
 - 7 Nov. 2023.
- Final Exam (30%)
 (Sorry; just after the Christmas)
Outline

1 Introduction
Three Core Concepts of Machine Learning

- Data
- Model
- Learning
Remark on the Data

- Machine learning is inherently *data driven*.
Remark on the Data

- Machine learning is inherently **data driven**.
 - Garbage in, garbage out.

Mitchell 1997
A model is said to learn from data if its performance on a given task improves after the data is taken into account.
Remark on the Data

- Machine learning is inherently **data driven**.
 - Garbage in, garbage out.

Mitchell 1997

A model is said to learn from data if its performance on a given task improves after the data is taken into account.

Goal: Find good models that generalize well to yet unseen data
Four pillars of ML

The four pillars of ML:

- Regression
- Dimensionality Reduction
- Density Estimation
- Classification

Fundamentals:

- Calculus
- Linear Algebra
- Vector Algebra
- Analytic Geometry
- Matrix Decomposition
- Probability & Distributions
- Optimization
Why are the mathematical foundations of machine learning important?
Why are the mathematical foundations of machine learning important?

- To understand fundamental principles upon which more complicated machine learning systems are built.
- To facilitate creating new machine learning solutions, understanding and debugging existing approaches.
- To learn about the inherent assumptions and limitations of the methodologies we are working with.
What’s a machine learning *algorithm*?

- **Predictor**: A system that makes predictions based on input data.
- **Training**: A system that adapts some internal parameters of the predictor so that it *performs well on future unseen input data*.
Some Reasonable Assumptions

- Numerical representation of the data:
Some Reasonable Assumptions

- Numerical representation of the data: vectors.
 - An array of numbers (CS view)
Some Reasonable Assumptions

- Numerical representation of the data: **vectors**.
 - An array of numbers (CS view)
 - An arrow with a direction and magnitude (physics view)
Some Reasonable Assumptions

- Numerical representation of the data: vectors.
 - An array of numbers (CS view)
 - An arrow with a direction and magnitude (physics view)
 - An object that obeys addition and scaling (mathematical view; OOP view).
An Intuition of Learning/Training a Model

- Assume that we are given a dataset and a suitable model.
- Training a model: use the data to optimize parameters of the model w.r.t. some loss/utility function.
- The training process can be viewed as either climbing a hill to reach its peak moving downwards to the valley.
An Intuition of Learning/Training a Model

- Assume that we are given a dataset and a suitable model.
- **Training a model**: use the data to optimize parameters of the model w.r.t. some loss/utility function.
- The training process can be viewed as either climbing a hill to reach its peak moving downwards to the valley.
- However, at the same time, we are interested in the model which performs well on unseen data. Otherwise, it could be just that we find a way to memorize the data.
Part I.

Mathematics as the Foundation
Why linear algebra/vector algebra?

- The study of vectors and matrices.
Why linear algebra/vector algebra?

- The study of vectors and matrices.
- Represent numerical data as vectors.
Why linear algebra/vector algebra?

- The study of vectors and matrices.
- Represent numerical data as vectors.
- Represent a table of data as a matrix.
Why linear algebra/vector algebra?

- The study of vectors and matrices.
- Represent numerical data as vectors.
- Represent a table of data as a matrix.
- Formalize the similarity between vectors:
 - Analytic geometry (distance, norm, inner product, projection, . . .)
Why linear algebra/vector algebra?

- The study of vectors and matrices.
- Represent numerical data as vectors.
- Represent a table of data as a matrix.
- Formalize the *similarity* between vectors:
 - Analytic geometry (distance, norm, inner product, projection, . . .)
- Intuitive interpretation of the data and better efficiency for learning: *matrix decomposition*.
Part II:
Introductory Machine Learning
Topics

- Data, model & parameter estimation.
- Continuous Optimization.
- Linear regression.
 - Map the input $x \in \mathbb{R}^d$ to corresponding observed function values $y \in \mathbb{R}$.
- Density estimation.
 - Find a probability distribution that describes the data.
- Principal Component Analysis
 - Matrix decomposition.
- Classification.
Terminologies

- **i.e.** \(\Rightarrow \) that is,
- **e.g.** \(\Rightarrow \) such as
- **:\:** \(\Rightarrow \) because
- **:\:** \(\Rightarrow \) therefore
- **et al.** \(\Rightarrow \) and others
- **\(\forall \)** \(\Rightarrow \) for any
- **\(\exists \)** \(\Rightarrow \) there exists
- **a.k.a.** \(\Rightarrow \) also known as
- **w.r.t.** \(\Rightarrow \) with respect to
- **i.i.d.** \(\Rightarrow \) identically and independently distributed
Warm-up Exercise

Exercise

- Consider \(\mathbf{x} = [x_1 \ x_2 \ x_3]^\top \in \mathbb{R}^3 \) and \(\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \).

- Compute \(\mathbf{x}^\top \mathbf{A} \mathbf{x} \).

- Compute \(\text{tr}(\mathbf{A} \mathbf{x} \mathbf{x}^\top) \).
Reminders

- This is NOT a course of pure mathematics. This is also for ENGINEERING purpose!
- This is a course which can help you build solid foundation for machine learning (for both industrial and academical tasks and jobs).
- Preview before classes and Review after classes are strongly recommended.
- Absolute grades will be given; no final adjustment.
Discussions