Mathematics for Machine Learning

- Expectation Maximization

Joseph Chuang-Chieh Lin

Department of Computer Science \& Information Engineering, Tamkang University

Fall 2023

Credits for the resource

- The slides are based on the textbooks:
- Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong: Mathematics for Machine Learning. Cambridge University Press. 2020.
- Howard Anton, Chris Rorres, Anton Kaul: Elementary Linear Algebra. Wiley. 2019.
- We could partially refer to the monograph:

Francesco Orabona: A Modern Introduction to Online Learning. https://arxiv.org/abs/1912.13213

Outline

(1) Expectation Maximization (EM) Algorithm

(2) Latent-Variable Perspective

Outline

(1) Expectation Maximization (EM) Algorithm

2 Latent-Variable Perspective

Motivation

- The previous approach do not give a closed-form solution for the updates of the parameters.
- \because the complex dependency on the parameters.

Motivation

- The previous approach do not give a closed-form solution for the updates of the parameters.
- \because the complex dependency on the parameters.
- The likelihood approach suggests a simple iterative scheme for finding a solution to the parameters estimation problem.

Expectation Maximization

Dempster et al. (1977)

Choose initial parameter values (i.e., $\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}, \pi_{k}$) and alternate between the following two steps until convergence:

- E-step: Evaluate the responsibilities $r_{i k}$
- It can be viewed as the posterior prob. of data point i belonging to mixture component k.
- M-step: Use the updated responsibilities to re-estimate the parameters.

Expectation Maximization

Dempster et al. (1977)

Choose initial parameter values (i.e., $\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}, \pi_{k}$) and alternate between the following two steps until convergence:

- E-step: Evaluate the responsibilities $r_{i k}$
- It can be viewed as the posterior prob. of data point i belonging to mixture component k.
- M-step: Use the updated responsibilities to re-estimate the parameters.
- Intuitive idea: the log-likelihood is increased after each step.

EM algorithm for Estimating parameters of a GMM

(1) Initialize $\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}, \pi_{k}$.
(2) E-step: Evaluate $r_{i k}$ for every data point \mathbf{x}_{i} using the current parameters:

$$
r_{i k}=\frac{\pi_{k} \mathcal{N}\left(\mathbf{x}_{i} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)}{\sum_{j} \pi_{j} \mathcal{N}\left(\mathbf{x}_{i} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)}
$$

(3) M-step: Re-estimate parameters $\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}, \pi_{k}$ using the current responsibilities $r_{i k}$ from the E-step:

$$
\begin{aligned}
\boldsymbol{\mu}_{k} & =\frac{1}{N_{k}} \sum_{i=1}^{N} r_{i k} \mathbf{x}_{i} \\
\boldsymbol{\Sigma}_{k} & =\frac{1}{N_{k}} \sum_{i=1}^{N} r_{i k}\left(\mathbf{x}_{i}-\boldsymbol{\mu}_{k}\right)\left(\mathbf{x}_{i}-\boldsymbol{\mu}_{k}\right)^{\top} \\
\pi_{k} & =\frac{N_{k}}{N}
\end{aligned}
$$

(a) Dataset.

(b) Negative log-likelihood.

Outline

(1) Expectation Maximization (EM) Algorithm

(2) Latent-Variable Perspective

Latent-Variable Perspective

- View the GMM from the perspective of a discrete latent variable model.
- The latent variable z can attain only a finite set of values.

A View of Generative Process

- Consider a GMM as a probabilistic model of generating data.

A View of Generative Process

- Consider a GMM as a probabilistic model of generating data.
- Assume that a mixture model with K components and that a data point \mathbf{x} can be generated by exactly one mixture component.

A View of Generative Process

- Consider a GMM as a probabilistic model of generating data.
- Assume that a mixture model with K components and that a data point \mathbf{x} can be generated by exactly one mixture component.
- Consider a binary $z_{k} \in\{0,1\}$ (whether the k th component is responsible for the data point or not).

A View of Generative Process

- Consider a GMM as a probabilistic model of generating data.
- Assume that a mixture model with K components and that a data point \mathbf{x} can be generated by exactly one mixture component.
- Consider a binary $z_{k} \in\{0,1\}$ (whether the k th component is responsible for the data point or not).

$$
p\left(\mathbf{x} \mid z_{k}=1\right)=\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right) .
$$

A View of Generative Process

- Consider a GMM as a probabilistic model of generating data.
- Assume that a mixture model with K components and that a data point \mathbf{x} can be generated by exactly one mixture component.
- Consider a binary $z_{k} \in\{0,1\}$ (whether the k th component is responsible for the data point or not).

$$
p\left(\mathbf{x} \mid z_{k}=1\right)=\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right) .
$$

- Define $\mathbf{z}:=\left[z_{1}, \ldots, z_{K}\right]^{\top} \in \mathbb{R}^{K}$ as a vector consisting of exactly one 1 and $K-1$ many 0 s.
- One-hot encoding.
- $\mathbf{z}=\left[z_{1}, z_{2}, z_{3}\right]^{\top}=[0,1,0]^{\top} \Rightarrow$ the $2 n d$ mixture component is selected.

Prior on the latent variable

- When the variables z_{k} are unknown, we can place a prior distribution on \mathbf{z} in practice:

$$
p(\mathbf{z})=\boldsymbol{\pi}=\left[\pi_{1}, \ldots, \pi_{K}\right]^{\top}, \sum_{k=1}^{K} \pi_{k}=1
$$

where the k th entry $\pi_{k}=p\left(z_{k}=1\right)$ describes the prob. that the k th mixture component generated data point \mathbf{x}.

Sampling from a GMM

Ancestral sampling.

A Simple Sampling Procedure

(1) Sample $z^{(i)} \sim p(z)$.
(2) Sample $\mathbf{x}^{(i)} \sim p\left(\mathbf{x} \mid z^{(i)}=1\right)$.

Sampling from a GMM

The joint distribution

$$
p\left(\mathbf{x}, z_{k}=1\right)=p\left(\mathbf{x} \mid z_{k}=1\right) p\left(z_{k}=1\right)=\pi_{k} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right),
$$

for $k=1, \ldots, K$. So, we have

$$
p(\mathbf{x}, \mathbf{z})=\left[\begin{array}{c}
p\left(\mathbf{x}, z_{1}=1\right) \\
p\left(\mathbf{x}, z_{2}=1\right) \\
\vdots \\
p\left(\mathbf{x}, z_{K}=1\right)
\end{array}\right]=\left[\begin{array}{c}
\pi_{1} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right) \\
\pi_{2} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}\right) \\
\vdots \\
\pi_{K} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{K}, \boldsymbol{\Sigma}_{K}\right),
\end{array}\right]
$$

which fully specifies the probabilistic model.

Likelihood $p(\mathbf{x} \mid \boldsymbol{\theta})$ in a latent-variable model

Previously, we omitted the parameters $\boldsymbol{\theta}$ of the probabilistic model.

- How to obtain the likelihood $p(\mathbf{x} \mid \boldsymbol{\theta})$ in a latent-variable model?

Likelihood $p(\mathbf{x} \mid \boldsymbol{\theta})$ in a latent-variable model

Previously, we omitted the parameters $\boldsymbol{\theta}$ of the probabilistic model.

- How to obtain the likelihood $p(\mathbf{x} \mid \boldsymbol{\theta})$ in a latent-variable model?
- Marginalizing out the latent variables.

Likelihood $p(\mathbf{x} \mid \boldsymbol{\theta})$ in a latent-variable model

Previously, we omitted the parameters $\boldsymbol{\theta}$ of the probabilistic model.

- How to obtain the likelihood $p(\mathbf{x} \mid \boldsymbol{\theta})$ in a latent-variable model?
- Marginalizing out the latent variables.
- Summing out all latent variables from $p(\mathbf{x}, \mathbf{z})$:

$$
\begin{aligned}
& p(\mathbf{x} \mid \boldsymbol{\theta})=\sum_{\mathbf{z}} p(\mathbf{x} \mid \boldsymbol{\theta}, \mathbf{z}) p(\mathbf{z} \mid \boldsymbol{\theta}) \\
& \boldsymbol{\theta}:=\left\{\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}, \pi_{k}: k=1,2, \ldots, K\right\} .
\end{aligned}
$$

Likelihood $p(\mathbf{x} \mid \boldsymbol{\theta})$ in a latent-variable model

Previously, we omitted the parameters $\boldsymbol{\theta}$ of the probabilistic model.

- How to obtain the likelihood $p(\mathbf{x} \mid \boldsymbol{\theta})$ in a latent-variable model?
- Marginalizing out the latent variables.
- Summing out all latent variables from $p(\mathbf{x}, \mathbf{z})$:

$$
\begin{aligned}
& p(\mathbf{x} \mid \boldsymbol{\theta})=\sum_{\mathbf{z}} p(\mathbf{x} \mid \boldsymbol{\theta}, \mathbf{z}) p(\mathbf{z} \mid \boldsymbol{\theta})=\sum_{k=1}^{K} p\left(\mathbf{x} \mid \boldsymbol{\theta}, z_{k}=1\right) p\left(z_{k}=1 \mid \boldsymbol{\theta}\right), \\
& \boldsymbol{\theta}:=\left\{\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}, \pi_{k}: k=1,2, \ldots, K\right\} .
\end{aligned}
$$

- There is only one single nonzero entry in each \mathbf{z}, so there are only K possible configurations of \mathbf{z}.

So, the desired marginal distribution is

$$
p(\mathbf{x} \mid \boldsymbol{\theta})=\sum_{k=1}^{K} p\left(\mathbf{x} \mid \boldsymbol{\theta}, z_{k}=1\right) p\left(z_{k}=1 \mid \boldsymbol{\theta}\right)=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

So, the desired marginal distribution is

$$
p(\mathbf{x} \mid \boldsymbol{\theta})=\sum_{k=1}^{K} p\left(\mathbf{x} \mid \boldsymbol{\theta}, z_{k}=1\right) p\left(z_{k}=1 \mid \boldsymbol{\theta}\right)=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

For the given dataset \mathcal{X}, we have the likelihood

$$
p(\mathcal{X} \mid \boldsymbol{\theta})=\prod_{i=1}^{N} p\left(\mathbf{x}_{i} \mid \boldsymbol{\theta}\right)=\prod_{i=1}^{N} \sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x}_{i} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

So, the desired marginal distribution is

$$
p(\mathbf{x} \mid \boldsymbol{\theta})=\sum_{k=1}^{K} p\left(\mathbf{x} \mid \boldsymbol{\theta}, z_{k}=1\right) p\left(z_{k}=1 \mid \boldsymbol{\theta}\right)=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

For the given dataset \mathcal{X}, we have the likelihood

$$
p(\mathcal{X} \mid \boldsymbol{\theta})=\prod_{i=1}^{N} p\left(\mathbf{x}_{i} \mid \boldsymbol{\theta}\right)=\prod_{i=1}^{N} \sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x}_{i} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

which is exactly the GMM likelihood we have derived before!

Posterior Distribution

- Let us look at the posterior distribution on the latent \mathbf{z}.

Posterior Distribution

- Let us look at the posterior distribution on the latent \mathbf{z}.
- By Bayes' theorem,

Posterior Distribution

- Let us look at the posterior distribution on the latent \mathbf{z}.
- By Bayes' theorem,

$$
p\left(z_{k}=1 \mid \mathbf{x}\right)=\frac{p\left(z_{k}=1\right) p\left(\mathbf{x} \mid z_{k}=1\right)}{p(\mathbf{x})}
$$

where the marginal $p(\mathbf{x})=p(\mathbf{x} \mid \boldsymbol{\theta})$ is we have already derived.

- Hence,

$$
p\left(z_{k}=1 \mid \mathbf{x}\right)=\frac{\pi_{k} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)}{\sum_{j=1}^{K} \pi_{j} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)},
$$

Posterior Distribution

- Let us look at the posterior distribution on the latent \mathbf{z}.
- By Bayes' theorem,

$$
p\left(z_{k}=1 \mid \mathbf{x}\right)=\frac{p\left(z_{k}=1\right) p\left(\mathbf{x} \mid z_{k}=1\right)}{p(\mathbf{x})}
$$

where the marginal $p(\mathbf{x})=p(\mathbf{x} \mid \boldsymbol{\theta})$ is we have already derived.

- Hence,

$$
p\left(z_{k}=1 \mid \mathbf{x}\right)=\frac{\pi_{k} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)}{\sum_{j=1}^{K} \pi_{j} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)},
$$

\star The responsibility of the k th mixture component for x !

Extending to a Full Dataset (1/2)

- Consider a dataset of N data points $\mathcal{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$.
- Assume that every data point \mathbf{x}_{i} possesses its own latent variable

$$
\mathbf{z}_{i}=\left[z_{i 1}, \ldots, z_{i K}\right]^{\top} \in \mathbb{R}^{K}
$$

Extending to a Full Dataset (1/2)

- Consider a dataset of N data points $\mathcal{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$.
- Assume that every data point \mathbf{x}_{i} possesses its own latent variable

$$
\mathbf{z}_{i}=\left[z_{i 1}, \ldots, z_{i K}\right]^{\top} \in \mathbb{R}^{K}
$$

- Assume that we share the same prior $\boldsymbol{\pi}$ across all latent variables \mathbf{z}_{i}.

Extending to a Full Dataset (1/2)

- Consider a dataset of N data points $\mathcal{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$.
- Assume that every data point \mathbf{x}_{i} possesses its own latent variable

$$
\mathbf{z}_{i}=\left[z_{i 1}, \ldots, z_{i K}\right]^{\top} \in \mathbb{R}^{K}
$$

- Assume that we share the same prior $\boldsymbol{\pi}$ across all latent variables $\mathbf{z}_{\boldsymbol{i}}$.
- The conditional distribution

$$
p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \mid \mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right)=
$$

Extending to a Full Dataset (1/2)

- Consider a dataset of N data points $\mathcal{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$.
- Assume that every data point \mathbf{x}_{i} possesses its own latent variable

$$
\mathbf{z}_{i}=\left[z_{i 1}, \ldots, z_{i K}\right]^{\top} \in \mathbb{R}^{K}
$$

- Assume that we share the same prior $\boldsymbol{\pi}$ across all latent variables \mathbf{z}_{i}.
- The conditional distribution

$$
p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \mid \mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right)=\prod_{i=1}^{N} p\left(\mathbf{x}_{i} \mid \mathbf{z}_{i}\right)
$$

Extending to a Full Dataset (2/2)

Consider the posterior distribution $p\left(z_{i k}=1 \mid \mathbf{x}_{i}\right)$ by applying Bayes' theorem:

$$
\begin{aligned}
p\left(z_{i k}=1 \mid \mathbf{x}_{i}\right) & =\frac{p\left(\mathbf{x}_{i} \mid z_{i k}=1\right) p\left(z_{i k}=1\right)}{\sum_{j=1}^{K} p\left(\mathbf{x}_{i} \mid z_{i j}=1\right) p\left(z_{i j}=1\right)} \\
& =\frac{\pi_{k} \mathcal{N}\left(\mathbf{x}_{i} \mid \boldsymbol{\mu}_{k}, \mathbf{\Sigma}_{k}\right)}{\sum_{j=1}^{K} \pi_{j} \mathcal{N}\left(\mathbf{x}_{i} \mid \boldsymbol{\mu}_{j}, \mathbf{\Sigma}_{j}\right)}
\end{aligned}
$$

Extending to a Full Dataset (2/2)

Consider the posterior distribution $p\left(z_{i k}=1 \mid \mathbf{x}_{i}\right)$ by applying Bayes' theorem:

$$
\begin{aligned}
p\left(z_{i k}=1 \mid \mathbf{x}_{i}\right) & =\frac{p\left(\mathbf{x}_{i} \mid z_{i k}=1\right) p\left(z_{i k}=1\right)}{\sum_{j=1}^{K} p\left(\mathbf{x}_{i} \mid z_{i j}=1\right) p\left(z_{i j}=1\right)} \\
& =\frac{\pi_{k} \mathcal{N}\left(\mathbf{x}_{i} \mid \boldsymbol{\mu}_{k}, \mathbf{\Sigma}_{k}\right)}{\sum_{j=1}^{K} \pi_{j} \mathcal{N}\left(\mathbf{x}_{i} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)} \\
& =r_{i k} .
\end{aligned}
$$

Extending to a Full Dataset (2/2)

Consider the posterior distribution $p\left(z_{i k}=1 \mid \mathbf{x}_{i}\right)$ by applying Bayes' theorem:

$$
\begin{aligned}
p\left(z_{i k}=1 \mid \mathbf{x}_{i}\right) & =\frac{p\left(\mathbf{x}_{i} \mid z_{i k}=1\right) p\left(z_{i k}=1\right)}{\sum_{j=1}^{K} p\left(\mathbf{x}_{i} \mid z_{i j}=1\right) p\left(z_{i j}=1\right)} \\
& =\frac{\pi_{k} \mathcal{N}\left(\mathbf{x}_{i} \mid \boldsymbol{\mu}_{k}, \mathbf{\Sigma}_{k}\right)}{\sum_{j=1}^{K} \pi_{j} \mathcal{N}\left(\mathbf{x}_{i} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)} \\
& =r_{i k} .
\end{aligned}
$$

- Now, we see that the responsibilities have a mathematically justified interpretation as posterior probabilities.

Discussions

