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Credits for the resource

The slides are based on the textbooks:

Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong:
Mathematics for Machine Learning. Cambridge University Press.
2020.
Howard Anton, Chris Rorres, Anton Kaul: Elementary Linear
Algebra. Wiley. 2019.

We could partially refer to the monograph:
Francesco Orabona: A Modern Introduction to Online Learning.
https://arxiv.org/abs/1912.13213
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Expectation Maximization (EM) Algorithm

Motivation

The previous approach do not give a closed-form solution for the
updates of the parameters.

∵ the complex dependency on the parameters.

The likelihood approach suggests a simple iterative scheme for finding
a solution to the parameters estimation problem.
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Expectation Maximization (EM) Algorithm

Expectation Maximization

Dempster et al. (1977)

Choose initial parameter values (i.e., µk ,Σk , πk) and alternate between
the following two steps until convergence:

E-step: Evaluate the responsibilities rik
It can be viewed as the posterior prob. of data point i belonging to
mixture component k .

M-step: Use the updated responsibilities to re-estimate the
parameters.

Intuitive idea: the log-likelihood is increased after each step.
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Expectation Maximization (EM) Algorithm

EM algorithm for Estimating parameters of a GMM

1 Initialize µk ,Σk , πk .

2 E-step: Evaluate rik for every data point xi using the current
parameters:

rik =
πkN (xi | µk ,Σk)∑
j πjN (xi | µj ,Σj)

3 M-step: Re-estimate parameters µk ,Σk , πk using the current
responsibilities rik from the E-step:

µk =
1

Nk

N∑
i=1

rikxi ,

Σk =
1

Nk

N∑
i=1

rik(xi − µk)(xi − µk)
⊤,

πk =
Nk

N
.
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Latent-Variable Perspective

Latent-Variable Perspective

View the GMM from the perspective of a discrete latent variable
model.

The latent variable z can attain only a finite set of values.
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Latent-Variable Perspective

A View of Generative Process

Consider a GMM as a probabilistic model of generating data.

Assume that a mixture model with K components and that a data
point x can be generated by exactly one mixture component.

Consider a binary zk ∈ {0, 1} (whether the kth component is
responsible for the data point or not).

p(x | zk = 1) = N (x | µk ,Σk).

Define z := [z1, . . . , zK ]
⊤ ∈ RK as a vector consisting of exactly one 1

and K − 1 many 0s.

One-hot encoding.
z = [z1, z2, z3]

⊤ = [0, 1, 0]⊤ ⇒ the 2nd mixture component is selected.
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Latent-Variable Perspective

Prior on the latent variable

When the variables zk are unknown, we can place a prior distribution
on z in practice:

p(z) = π = [π1, . . . , πK ]
⊤,

K∑
k=1

πk = 1,

where the kth entry πk = p(zk = 1) describes the prob. that the kth
mixture component generated data point x.
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Latent-Variable Perspective

Sampling from a GMM

Ancestral sampling.

A Simple Sampling Procedure

1 Sample z(i) ∼ p(z).

2 Sample x(i) ∼ p(x | z(i) = 1).

Joseph C. C. Lin (CSIE, TKU, TW) ML Math - EM Algorithm Fall 2023 13 / 20



ML Math - EM Algorithm

Latent-Variable Perspective

Sampling from a GMM

The joint distribution

p(x, zk = 1) = p(x | zk = 1)p(zk = 1) = πkN (x | µk ,Σk),

for k = 1, . . . ,K . So, we have

p(x, z) =


p(x, z1 = 1)
p(x, z2 = 1)

...
p(x, zK = 1)

 =


π1N (x | µ1,Σ1)
π2N (x | µ2,Σ2)

...
πKN (x | µK ,ΣK ),


which fully specifies the probabilistic model.
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Latent-Variable Perspective

Likelihood p(x | θ) in a latent-variable model

Previously, we omitted the parameters θ of the probabilistic model.

How to obtain the likelihood p(x | θ) in a latent-variable model?

Marginalizing out the latent variables.

Summing out all latent variables from p(x, z):

p(x | θ) =
∑
z

p(x | θ, z)p(z | θ)

=
K∑

k=1

p(x | θ, zk = 1)p(zk = 1 | θ)

,

θ := {µk ,Σk , πk : k = 1, 2, . . . ,K}.
There is only one single nonzero entry in each z, so there are only K
possible configurations of z.
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Latent-Variable Perspective

So, the desired marginal distribution is

p(x | θ) =
K∑

k=1

p(x | θ, zk = 1)p(zk = 1 | θ) =
K∑

k=1

πkN (x | µk ,Σk)

For the given dataset X , we have the likelihood

p(X | θ) =
N∏
i=1

p(xi | θ) =
N∏
i=1

K∑
k=1

πkN (xi | µk ,Σk)

which is exactly the GMM likelihood we have derived before!
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Latent-Variable Perspective

Posterior Distribution

Let us look at the posterior distribution on the latent z.

By Bayes’ theorem,

p(zk = 1 | x) = p(zk = 1)p(x | zk = 1)

p(x)
,

where the marginal p(x) = p(x | θ) is we have already derived.

Hence,

p(zk = 1 | x) = πkN (x | µk ,Σk)∑K
j=1 πjN (x | µj ,Σj)

,

⋆ The responsibility of the kth mixture component for x!
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Latent-Variable Perspective

Extending to a Full Dataset (1/2)

Consider a dataset of N data points X = {x1, . . . , xN}.

Assume that every data point xi possesses its own latent variable

zi = [zi1, . . . , ziK ]
⊤ ∈ RK .

Assume that we share the same prior π across all latent variables zi .

The conditional distribution

p(x1, . . . , xN | z1, . . . , zN) =
N∏
i=1

p(xi | zi ).
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Latent-Variable Perspective

Extending to a Full Dataset (2/2)

Consider the posterior distribution p(zik = 1 | xi ) by applying Bayes’
theorem:

p(zik = 1 | xi ) =
p(xi | zik = 1)p(zik = 1)∑K
j=1 p(xi | zij = 1)p(zij = 1)

=
πkN (xi | µk ,Σk)∑K
j=1 πjN (xi | µj ,Σj)

= rik .

Now, we see that the responsibilities have a mathematically justified
interpretation as posterior probabilities.
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Discussions
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