Mathematics for Machine Learning

- Linear Algebra: Basis, Rank, Linear Mappings \& Affine Spaces

Joseph Chuang-Chieh Lin

Department of Computer Science \& Information Engineering, Tamkang University

Fall 2023

Credits for the resource

- The slides are based on the textbooks:
- Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong: Mathematics for Machine Learning. Cambridge University Press. 2020.
- Howard Anton, Chris Rorres, Anton Kaul: Elementary Linear Algebra. Wiley. 2019.
- We could partially refer to the monograph:

Francesco Orabona: A Modern Introduction to Online Learning. https://arxiv.org/abs/1912.13213

Outline

(1) Why linear algebra?
(2) Vector Space
(3) Basis \& Dimension \& Rank

4 Linear Mappings
(5) Affine Spaces

Outline

(1) Why linear algebra?
(2) Vector Space
(3) Basis \& Dimension \& Rank
(4) Linear Mappings
(5) Affine Spaces

Why linear algebra?

- Crucial in the graduate school entrance examination.

Why linear algebra?

- Crucial in the graduate school entrance examination.
- Matrix operations.

Why linear algebra?

- Crucial in the graduate school entrance examination.
- Matrix operations.
- Vectorization.

Vectorization Example (1/3)

$$
\begin{aligned}
y_{i} & =\left\langle\mathbf{m}, \mathbf{x}_{i}\right\rangle \\
& =m_{1} x_{i, 1}+m_{2} x_{i, 2}+\ldots+m_{k} x_{i, k}
\end{aligned} \quad \begin{aligned}
& \mathrm{m}= \text { np.random.rand }(1,5) \\
& \mathrm{x}= \text { np.random.rand }(5000000,5) \\
& \# \text { assume } \mathrm{k}=5
\end{aligned}
$$

\mathbf{m}^{\top}

Vectorization Example (2/3)

```
start = time.time()
zer = []
for i in range(0,5000000):
    total = 0
    for j in range(0,5):
        total = total + x[i][j]*m[0][j]
    zer.append(total)
zer = np.array(zer)
end = time.time()
```


Vectorization Example (2/3)

```
start = time.time()
zer = []
for i in range(0,5000000):
    total = 0
    for j in range(0,5):
            total = total + x[i][j]*m[0][j]
    zer.append(total)
zer = np.array(zer)
end = time.time()
```


Vectorization Example (3/3)

```
start = time.time()
zer = np.matmul(x, m.T)
end = time.time()
```


Outline

(1) Why linear algebra?

(2) Vector Space

3 Basis \& Dimension \& Rank

(4) Linear Mappings
(5) Affine Spaces

Group

Group

Consider a set \mathcal{G} and an operation $\otimes: \mathcal{G} \times \mathcal{G} \mapsto \mathcal{G}$ defined on \mathcal{G}. Then $G:(\mathcal{G}, \otimes)$ is called a group if the following hold:

Group

Group

Consider a set \mathcal{G} and an operation $\otimes: \mathcal{G} \times \mathcal{G} \mapsto \mathcal{G}$ defined on \mathcal{G}. Then $G:(\mathcal{G}, \otimes)$ is called a group if the following hold:
(1) $\forall x, y \in \mathcal{G}, x \otimes y \in \mathcal{G}$.

Group

Group

Consider a set \mathcal{G} and an operation $\otimes: \mathcal{G} \times \mathcal{G} \mapsto \mathcal{G}$ defined on \mathcal{G}. Then $G:(\mathcal{G}, \otimes)$ is called a group if the following hold:
(1) $\forall x, y \in \mathcal{G}, x \otimes y \in \mathcal{G}$.
(2) $\forall x, y, z \in \mathcal{G},(x \otimes y) \otimes z=x \otimes(y \otimes z)$.

Group

Group

Consider a set \mathcal{G} and an operation $\otimes: \mathcal{G} \times \mathcal{G} \mapsto \mathcal{G}$ defined on \mathcal{G}. Then $G:(\mathcal{G}, \otimes)$ is called a group if the following hold:
(1) $\forall x, y \in \mathcal{G}, x \otimes y \in \mathcal{G}$.
(2) $\forall x, y, z \in \mathcal{G},(x \otimes y) \otimes z=x \otimes(y \otimes z)$.
(3) $\exists e \in \mathcal{G}$ such that $\forall x \in \mathcal{G}, x \otimes e=e \otimes x=x$.

Group

Group

Consider a set \mathcal{G} and an operation $\otimes: \mathcal{G} \times \mathcal{G} \mapsto \mathcal{G}$ defined on \mathcal{G}. Then $G:(\mathcal{G}, \otimes)$ is called a group if the following hold:
(1) $\forall x, y \in \mathcal{G}, x \otimes y \in \mathcal{G}$.
(2) $\forall x, y, z \in \mathcal{G},(x \otimes y) \otimes z=x \otimes(y \otimes z)$.
(3) $\exists e \in \mathcal{G}$ such that $\forall x \in \mathcal{G}, x \otimes e=e \otimes x=x$.
(1) $\forall x \in \mathcal{G}, \exists y \in \mathcal{G}$ such that $x \otimes y=y \otimes x=e$. We denote by x^{-1} the inverse element of x.

Group

Group

Consider a set \mathcal{G} and an operation $\otimes: \mathcal{G} \times \mathcal{G} \mapsto \mathcal{G}$ defined on \mathcal{G}. Then $G:(\mathcal{G}, \otimes)$ is called a group if the following hold:
(1) $\forall x, y \in \mathcal{G}, x \otimes y \in \mathcal{G}$.
(2) $\forall x, y, z \in \mathcal{G},(x \otimes y) \otimes z=x \otimes(y \otimes z)$.
(3) $\exists e \in \mathcal{G}$ such that $\forall x \in \mathcal{G}, x \otimes e=e \otimes x=x$.
(1) $\forall x \in \mathcal{G}, \exists y \in \mathcal{G}$ such that $x \otimes y=y \otimes x=e$. We denote by x^{-1} the inverse element of x.

- If G is a group and $\forall x, y \in \mathcal{G}$ we have $x \otimes y=y \otimes x$, then G is an Abelian group.

Examples

- $(\mathbb{Z},+)$: an Abelain group.
- ($\mathbb{N} \cup\{0\},+$) is NOT a group.
- (\mathbb{Z}, \cdot) is NOT a group.
- ($\mathbb{R}, \cdot)$ is NOT a group.
- ($\mathbb{R} \backslash\{0\}, \cdot)$ is an Abelian group.
- $\left(\mathbb{R}^{m \times n},+\right)$ is an Abelian group.

Vector Space

Vector Space

A real-valued vector space $V=(\mathcal{V},+, \cdot)$ is a set \mathcal{V} with two operations: $+: \mathcal{V} \times \mathcal{V} \mapsto \mathcal{V}$
$\cdot: \mathbb{R} \times \mathcal{V} \mapsto \mathcal{V}$
where

- $(\mathcal{V},+)$ is an Abelian group.
- Distributivity holds:
- $\forall \lambda \in \mathbb{R}, \mathbf{x}, \mathbf{y} \in \mathcal{V}: \lambda \cdot(\mathbf{x}+\mathbf{y})=\lambda \cdot \mathbf{x}+\lambda \cdot \mathbf{y}$.
- $\forall \lambda, \psi \in \mathbb{R}, \mathbf{x} \in \mathcal{V}:(\lambda+\psi) \cdot \mathbf{x}=\lambda \cdot \mathbf{x}+\psi \cdot \mathbf{x}$.
- $\forall \lambda, \psi \in \mathbb{R}, \mathbf{x} \in \mathcal{V}: \lambda \cdot(\psi \cdot \mathbf{x})=(\lambda \psi) \cdot \mathbf{x}$.
- $\forall \mathbf{x} \in \mathcal{V}: 1 \cdot \mathbf{x}=\mathbf{x}$.
\star Note: A vector multiplication is not defined.

Vector Subspaces

Vector Subspace

Let $V=(\mathcal{V},+, \cdot)$ be a vector space and $\mathcal{U} \subset \mathcal{V}$ and $\mathcal{U} \neq \emptyset$. Then $U=(\mathcal{U},+, \cdot)$ is called a vector subspace of V if U is a vector space with the operations + and \cdot restricted to $\mathcal{U} \times \mathcal{U}$ and $\mathbb{R} \times \mathcal{U}$ respectively.

- Denote by $U \subseteq V$ a subspace u of V.

Vector Subspaces

Vector Subspace

Let $V=(\mathcal{V},+, \cdot)$ be a vector space and $\mathcal{U} \subset \mathcal{V}$ and $\mathcal{U} \neq \emptyset$. Then $U=(\mathcal{U},+, \cdot)$ is called a vector subspace of V if U is a vector space with the operations + and \cdot restricted to $\mathcal{U} \times \mathcal{U}$ and $\mathbb{R} \times \mathcal{U}$ respectively.

- Denote by $U \subseteq V$ a subspace u of V.

Examples

- The trivial subspace of a vector space $V:\{0\}$ and V.

Examples

- The trivial subspace of a vector space $V:\{0\}$ and V.
- The solution set of a homogeneous system of linear equations $A \mathbf{x}=\mathbf{0}$ with n unknowns (i.e., $\mathbf{x}=\left[x_{1}, \ldots, x_{n}\right]^{\top}$) is a subspace of \mathbb{R}^{n}.

Examples

- The trivial subspace of a vector space $V:\{0\}$ and V.
- The solution set of a homogeneous system of linear equations $A \mathbf{x}=\mathbf{0}$ with n unknowns (i.e., $\mathbf{x}=\left[x_{1}, \ldots, x_{n}\right]^{\top}$) is a subspace of \mathbb{R}^{n}.
- The intersection of arbitrarily many subspaces is a subspace.

Examples

- The trivial subspace of a vector space $V:\{0\}$ and V.
- The solution set of a homogeneous system of linear equations $A \mathbf{x}=\mathbf{0}$ with n unknowns (i.e., $\mathbf{x}=\left[x_{1}, \ldots, x_{n}\right]^{\top}$) is a subspace of \mathbb{R}^{n}.
- The intersection of arbitrarily many subspaces is a subspace.
- The solution of an inhomogeneous system of linear equations $A \mathbf{x}=\mathbf{b}$ for $\mathbf{b} \neq \mathbf{0}$ is NOT a subspace of \mathbb{R}^{n}.

Linear Combination

Linear Combination

Consider a vector space V and a finite number of vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k} \in V$. Then, every $\mathbf{v} \in V$ of the form

$$
\mathbf{v}=\lambda_{1} \mathbf{x}_{1}+\cdots \lambda_{k} \mathbf{x}_{k}=\sum_{i=1}^{k} \lambda_{i} x_{i} \in V
$$

with $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}$ is a linear combination of the vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$.

- Question: How to represent $\mathbf{0}$ as a linear combination of $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$?

Linearly Independent

Linear (In)dependence

Consider a vector space V with $k>0$ vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k} \in V$.

- If there is a nontrivial linear combination such that $\mathbf{0}=\sum_{i=1}^{k} \lambda_{i} x_{i}$ with at least one $\lambda_{i} \neq 0$, then we say $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$ are linearly dependent.
- If only the trivial solution exists (i.e., $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{k}=0$), then we say $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$ are linearly independent.

Recall some facts

- If at least one of vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$ is $\mathbf{0}$ then they are linearly dependent.

Recall some facts

- If at least one of vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$ is $\mathbf{0}$ then they are linearly dependent.
- Two identical vectors are linearly dependent.

Recall some facts

- If at least one of vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$ is $\mathbf{0}$ then they are linearly dependent.
- Two identical vectors are linearly dependent.
- Write all vectors as rows (or columns) of a matrix and perform Gaussian elimination until the matrix is in row echelon form.

Remark (1/2)

Consider a vector space V with k linear independent vectors $\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}$ and m linear combinations

$$
\begin{aligned}
\mathbf{x}_{1} & =\sum_{i=1}^{k} \lambda_{i, 1} \mathbf{b}_{i} \\
& \vdots \\
\mathbf{x}_{m} & =\sum_{i=1}^{k} \lambda_{i, m} \mathbf{b}_{i}
\end{aligned}
$$

Remark (1/2)

Consider a vector space V with k linear independent vectors $\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}$ and m linear combinations

$$
\begin{aligned}
\mathbf{x}_{1} & =\sum_{i=1}^{k} \lambda_{i, 1} \mathbf{b}_{i} \\
& \vdots \\
\mathbf{x}_{m} & =\sum_{i=1}^{k} \lambda_{i, m} \mathbf{b}_{i}
\end{aligned}
$$

- Define $\boldsymbol{B}=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right]$ (i.e., a matrix), then

$$
\mathbf{x}_{j}=\boldsymbol{B} \boldsymbol{\lambda}_{j}, \text { for } \boldsymbol{\lambda}_{j}=\left[\begin{array}{c}
\lambda_{1 j} \\
\vdots \\
\lambda_{k j}
\end{array}\right], j=1, \ldots, m
$$

Remark (2/2)

We want to test whether $\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}$ are linearly independent.

- $\sum_{j=1}^{m} \psi_{j} \mathbf{x}_{j}=\mathbf{0}$.

Remark (2/2)

We want to test whether $\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}$ are linearly independent.

- $\sum_{j=1}^{m} \psi_{j} \mathbf{x}_{j}=\mathbf{0}$.
- So,

$$
\sum_{j=1}^{m} \psi_{j} \mathbf{x}_{j}=\sum_{j=1}^{m} \psi_{j} \boldsymbol{B} \boldsymbol{\lambda}_{j}=\boldsymbol{B} \sum_{j=1}^{m} \psi_{j} \boldsymbol{\lambda}_{j}
$$

Remark (2/2)

We want to test whether $\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}$ are linearly independent.

- $\sum_{j=1}^{m} \psi_{j} \mathbf{x}_{j}=\mathbf{0}$.
- So,

$$
\sum_{j=1}^{m} \psi_{j} \mathbf{x}_{j}=\sum_{j=1}^{m} \psi_{j} \boldsymbol{B} \boldsymbol{\lambda}_{j}=\boldsymbol{B} \sum_{j=1}^{m} \psi_{j} \boldsymbol{\lambda}_{j}
$$

- Why does the last equality hold?

Remark (2/2)

We want to test whether $\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}$ are linearly independent.

- $\sum_{j=1}^{m} \psi_{j} \mathbf{x}_{j}=\mathbf{0}$.
- So,

$$
\sum_{j=1}^{m} \psi_{j} \mathbf{x}_{j}=\sum_{j=1}^{m} \psi_{j} \boldsymbol{B} \boldsymbol{\lambda}_{j}=\boldsymbol{B} \sum_{j=1}^{m} \psi_{j} \boldsymbol{\lambda}_{j}
$$

- Why does the last equality hold?
- $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\}$ are linearly independent iff $\left\{\boldsymbol{\lambda}_{1}, \ldots, \boldsymbol{\lambda}_{m}\right\}$ are linearly independent.

Remark (2/2)

We want to test whether $\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}$ are linearly independent.

- $\sum_{j=1}^{m} \psi_{j} \mathbf{x}_{j}=\mathbf{0}$.
- So,

$$
\sum_{j=1}^{m} \psi_{j} \mathbf{x}_{j}=\sum_{j=1}^{m} \psi_{j} \boldsymbol{B} \boldsymbol{\lambda}_{j}=\boldsymbol{B} \sum_{j=1}^{m} \psi_{j} \boldsymbol{\lambda}_{j}
$$

- Why does the last equality hold?
- $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\}$ are linearly independent iff $\left\{\boldsymbol{\lambda}_{1}, \ldots, \boldsymbol{\lambda}_{m}\right\}$ are linearly independent.
- Note: m linear combinations of k vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$ are linearly dependent if $m>k$.

Example

Consider a set of linearly independent vectors $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}, \mathbf{b}_{4} \in \mathbb{R}^{n}$ and

$$
\begin{aligned}
& \mathbf{x}_{1}=\mathbf{b}_{1}-2 \mathbf{b}_{2}+\mathbf{b}_{3} \\
& \mathbf{x}_{2}=-4 \mathbf{b}_{1}-2 \mathbf{b}_{2} \\
& \mathbf{b}_{3} \\
& \mathbf{x}_{3}=2 \mathbf{b}_{1}+3 \mathbf{b}_{2}-\mathbf{b}_{3} \\
& \mathbf{x}_{4}=17 \mathbf{b}_{1}-10 \mathbf{b}_{4}+3 \mathbf{b}_{4} \\
& \mathbf{x}_{3} \\
& 11 \mathbf{b}_{3}
\end{aligned}+\mathbf{b}_{4}
$$

Question: Is $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right\}$ linearly independent?

Example

Consider a set of linearly independent vectors $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}, \mathbf{b}_{4} \in \mathbb{R}^{n}$ and

$$
\begin{aligned}
& \mathbf{x}_{1}=\mathbf{b}_{1}-2 \mathbf{b}_{2}+\mathbf{b}_{3}-\mathbf{b}_{4} \\
& \mathbf{x}_{2}=-4 \mathbf{b}_{1}-2 \mathbf{b}_{2}+4 \mathbf{b}_{4} \\
& \mathbf{x}_{3}=2 \mathbf{b}_{1}+3 \mathbf{b}_{2}-\mathbf{b}_{3}-3 \mathbf{b}_{4} \\
& \mathbf{x}_{4}=17 \mathbf{b}_{1}-10 \mathbf{b}_{2}+11 \mathbf{b}_{3}+\mathbf{b}_{4}
\end{aligned}
$$

Question: Is $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right\}$ linearly independent?

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
1 & -2 & 1 & -1 \\
-4 & -2 & 0 & 4 \\
2 & 3 & -1 & 3 \\
17 & -10 & 11 & 1
\end{array}\right]
$$

Example

Consider a set of linearly independent vectors $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}, \mathbf{b}_{4} \in \mathbb{R}^{n}$ and

$$
\begin{aligned}
& \mathbf{x}_{1}=\mathbf{b}_{1}-2 \mathbf{b}_{2}+\mathbf{b}_{3}-\mathbf{b}_{4} \\
& \mathbf{x}_{2}=-4 \mathbf{b}_{1}-2 \mathbf{b}_{2}+4 \mathbf{b}_{4} \\
& \mathbf{x}_{3}=2 \mathbf{b}_{1}+3 \mathbf{b}_{2}-\mathbf{b}_{3}-3 \mathbf{b}_{4} \\
& \mathbf{x}_{4}=17 \mathbf{b}_{1}-10 \mathbf{b}_{2}+11 \mathbf{b}_{3}+\mathbf{b}_{4}
\end{aligned}
$$

Question: Is $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right\}$ linearly independent?

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
1 & -2 & 1 & -1 \\
-4 & -2 & 0 & 4 \\
2 & 3 & -1 & 3 \\
17 & -10 & 11 & 1
\end{array}\right] \longrightarrow
$$

Example

Consider a set of linearly independent vectors $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}, \mathbf{b}_{4} \in \mathbb{R}^{n}$ and

$$
\begin{aligned}
& \mathbf{x}_{1}=\mathbf{b}_{1}-2 \mathbf{b}_{2}+\mathbf{b}_{3}-\mathbf{b}_{4} \\
& \mathbf{x}_{2}=-4 \mathbf{b}_{1}-2 \mathbf{b}_{2}+4 \mathbf{b}_{4} \\
& \mathbf{x}_{3}=2 \mathbf{b}_{1}+3 \mathbf{b}_{2}-\mathbf{b}_{3}-3 \mathbf{b}_{4} \\
& \mathbf{x}_{4}=17 \mathbf{b}_{1}-10 \mathbf{b}_{2}+11 \mathbf{b}_{3}+\mathbf{b}_{4}
\end{aligned}
$$

Question: Is $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right\}$ linearly independent?

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
1 & -2 & 1 & -1 \\
-4 & -2 & 0 & 4 \\
2 & 3 & -1 & 3 \\
17 & -10 & 11 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -2 & 1 & -1 \\
0 & 1 & -\frac{2}{5} & 0 \\
0 & 0 & 1 & 5 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Outline

(1) Why linear algebra?

(2) Vector Space
(3) Basis \& Dimension \& Rank
(4) Linear Mappings
(5) Affine Spaces

Basis

Spanning/Generating

Consider a vector space $V=(\mathcal{V},+, \cdot)$ and a set $\mathcal{A}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\} \subseteq \mathcal{V}$. If every vector $\mathbf{v} \in \mathcal{V}$ can be expressed as a linear combination of vectors in \mathcal{A}, then \mathcal{A} is called a spanning set (or generating set) of V.

- \mathcal{A} spans $V ; \operatorname{span}(\mathcal{A})=V$.

Basis

Spanning/Generating

Consider a vector space $V=(\mathcal{V},+, \cdot)$ and a set $\mathcal{A}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\} \subseteq \mathcal{V}$. If every vector $\mathbf{v} \in \mathcal{V}$ can be expressed as a linear combination of vectors in \mathcal{A}, then \mathcal{A} is called a spanning set (or generating set) of V.

- \mathcal{A} spans $V ; \operatorname{span}(\mathcal{A})=V$.

Basis

Consider a vector space $V=(\mathcal{V},+, \cdot)$ and a set $\mathcal{A} \subseteq \mathcal{V}$. Then if one of the following condition holds, we say that \mathcal{A} is a basis of V.

- \mathcal{A} is a minimal generating set of V.

Basis

Spanning/Generating

Consider a vector space $V=(\mathcal{V},+, \cdot)$ and a set $\mathcal{A}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\} \subseteq \mathcal{V}$. If every vector $\mathbf{v} \in \mathcal{V}$ can be expressed as a linear combination of vectors in \mathcal{A}, then \mathcal{A} is called a spanning set (or generating set) of V.

- \mathcal{A} spans $V ; \operatorname{span}(\mathcal{A})=V$.

Basis

Consider a vector space $V=(\mathcal{V},+, \cdot)$ and a set $\mathcal{A} \subseteq \mathcal{V}$. Then if one of the following condition holds, we say that \mathcal{A} is a basis of V.

- \mathcal{A} is a minimal generating set of V.

No smaller set $\mathcal{A}^{\prime} \subsetneq \mathcal{A} \subseteq \mathcal{V}$ that spans V.

- \mathcal{A} spans V and is also linearly independent.

Dimension

Dimension

The number of basis vectors of a vector space V is the dimension of V and denoted by $\operatorname{dim}(V)$.

- For $U \subset V$ a subspace of V, $\operatorname{dim}(U) \leq \operatorname{dim}(V)$

Exercise

Given $\mathbf{x}_{1}=\left[\begin{array}{c}1 \\ 2 \\ -1 \\ -1 \\ -1\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{c}2 \\ -1 \\ 1 \\ 2 \\ -2\end{array}\right], \mathbf{x}_{3}=\left[\begin{array}{c}3 \\ -4 \\ 3 \\ 5 \\ -3\end{array}\right], \mathbf{x}_{4}=\left[\begin{array}{c}-1 \\ 8 \\ -5 \\ -6 \\ 1\end{array}\right]$.
Find a basis of $\operatorname{span}\left(\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{4}\right\}\right)$.

Rank

Rank

Rank: the number of linearly independent columns of a matrix $\boldsymbol{A}=\mathbb{R}^{m \times n}$.

Rank

Rank

Rank: the number of linearly independent columns of a matrix $\boldsymbol{A}=\mathbb{R}^{m \times n}$. This equals the number of linearly independent rows of \boldsymbol{A}.

Denote by $\operatorname{rank}(\boldsymbol{A})$ the rank of \boldsymbol{A}.

Important Properties

- $\operatorname{rank}(\boldsymbol{A})=\operatorname{rank}\left(\boldsymbol{A}^{\top}\right)$.
- For all $\boldsymbol{A} \in \mathbb{R}^{n \times n}, \boldsymbol{A}$ is invertible if and only if $\operatorname{rank}(\boldsymbol{A})=n$.
- $\operatorname{nullity}(\boldsymbol{A})=\operatorname{dim}(\operatorname{null}(\boldsymbol{A}))=n-\operatorname{rank}(\boldsymbol{A})$, where null (\boldsymbol{A}) is the subspace of \mathbb{R}^{n} which solutions for $\mathbf{A x}=\mathbf{0}$.
- If $\operatorname{rank}(\boldsymbol{A})=\min \{m, n\}$ for a matrix $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, then we say \boldsymbol{A} has full rank.

Outline

(1) Why linear algebra?

(2) Vector Space
(3) Basis \& Dimension \& Rank

4 Linear Mappings

5 Affine Spaces

Linear Mappings/Linear Transformation

A mapping $\Phi: V \mapsto W$ preserves the structure of the vector space if

- $\Phi(\mathbf{x}+\mathbf{y})=\Phi(\mathbf{x})+\Phi(\mathbf{y})$
- $\Phi(\lambda \mathbf{x})=\lambda \Phi(\mathbf{x})$
for all $\mathbf{x}, \mathbf{y} \in V$ and $\lambda \in \mathbb{R}$.

Linear Mappings/Linear Transformation

A mapping $\Phi: V \mapsto W$ preserves the structure of the vector space if

- $\Phi(\mathbf{x}+\mathbf{y})=\Phi(\mathbf{x})+\Phi(\mathbf{y})$
- $\Phi(\lambda \mathbf{x})=\lambda \Phi(\mathbf{x})$
for all $\mathbf{x}, \mathbf{y} \in V$ and $\lambda \in \mathbb{R}$.

Linear Mapping

For two vector spaces V, W, a mapping $\Phi: V \mapsto W$ is a linear mapping if

$$
\forall \mathbf{x}, \mathbf{y} \in V, \forall \lambda, \psi \in \mathbb{R}: \Phi(\lambda \mathbf{x}+\psi \mathbf{y})=\lambda \Phi(\mathbf{x})+\psi \Phi(\mathbf{y})
$$

Different coordinate representation

Transformation Matrix

Transformation Matrix

Given vector spaces V, W with corresponding bases $B=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ and $C=\left(\mathbf{c}_{1}, \ldots, \mathbf{c}_{m}\right)$. Consider a linear mapping $\Phi: V \mapsto W$. For $1 \leq j \leq n$,

$$
\Phi\left(\mathbf{b}_{j}\right)=\alpha_{1, j} \mathbf{c}_{1}+\cdots \alpha_{m, j} \mathbf{c}_{m}=\sum_{i=1}^{m} \alpha_{i j} \mathbf{c}_{i}
$$

is the unique representation of $\Phi\left(\mathbf{b}_{j}\right)$ w.r.t. C (i.e., coordinate). Then, we call the $m \times n$ matrix \boldsymbol{A}_{Φ}, whose elements are $A_{\Phi}(i, j)=\alpha_{i j}$, the transformation matrix of Φ.

- If $\hat{\mathbf{x}}$ is the coordinate of $\mathbf{x} \in V$ w.r.t. B and $\hat{\mathbf{y}}=\Phi(\mathbf{x}) \in W$ w.r.t. C, then

$$
\hat{\mathbf{y}}=\boldsymbol{A}_{\Phi}(\hat{\mathbf{x}}) .
$$

Example

Consider a linear mapping $\Phi: V \mapsto W$ and ordered bases $B=\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right)$ of V and $C=\left(\mathbf{c}_{1}, \mathbf{c}_{2}, \mathbf{c}_{3}, \mathbf{c}_{4}\right)$ of W. Assume that

$$
\begin{aligned}
\Phi\left(\mathbf{b}_{1}\right) & =\mathbf{c}_{1}-\mathbf{c}_{2}+3 \mathbf{c}_{3}-\mathbf{c}_{4} \\
\Phi\left(\mathbf{b}_{2}\right) & =2 \mathbf{c}_{1}+\mathbf{c}_{2}+7 \mathbf{c}_{3}+2 \mathbf{c}_{4} \\
\Phi\left(\mathbf{b}_{3}\right) & =3 \mathbf{c}_{2}+\mathbf{c}_{3}+4 \mathbf{c}_{4} .
\end{aligned}
$$

The transformation matrix \boldsymbol{A}_{Φ} w.r.t. B and C satisfying $\Phi\left(\mathbf{b}_{k}\right)=\sum_{i=1}^{4} \alpha_{i k} \mathbf{c}_{i}$ for $k=1,2,3$ is

Example

Consider a linear mapping $\Phi: V \mapsto W$ and ordered bases $B=\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right)$ of V and $C=\left(\mathbf{c}_{1}, \mathbf{c}_{2}, \mathbf{c}_{3}, \mathbf{c}_{4}\right)$ of W. Assume that

$$
\begin{aligned}
\Phi\left(\mathbf{b}_{1}\right) & =\mathbf{c}_{1}-\mathbf{c}_{2}+3 \mathbf{c}_{3}-\mathbf{c}_{4} \\
\Phi\left(\mathbf{b}_{2}\right) & =2 \mathbf{c}_{1}+\mathbf{c}_{2}+7 \mathbf{c}_{3}+2 \mathbf{c}_{4} \\
\Phi\left(\mathbf{b}_{3}\right) & =3 \mathbf{c}_{2}+\mathbf{c}_{3}+4 \mathbf{c}_{4} .
\end{aligned}
$$

The transformation matrix \boldsymbol{A}_{Φ} w.r.t. B and C satisfying $\Phi\left(\mathbf{b}_{k}\right)=\sum_{i=1}^{4} \alpha_{i k} \mathbf{c}_{i}$ for $k=1,2,3$ is

$$
\boldsymbol{A}_{\Phi}=\left[\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}\right]=\left[\begin{array}{ccc}
1 & 2 & 0 \\
-1 & 1 & 3 \\
3 & 7 & 1 \\
-1 & 2 & 4
\end{array}\right]
$$

Basis Change (1/4)

- $[/]_{B}^{B^{\prime}}$: a transformation matrix that maps coordinates w.r.t. B onto coordinates w.r.t. B^{\prime}.

Basis Change (1/4)

- $[I]_{B}^{B^{\prime}}$: a transformation matrix that maps coordinates w.r.t. B onto coordinates w.r.t. B^{\prime}.
- For example, let $B=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}, B^{\prime}=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]\right\}$

Basis Change (1/4)

- $[I]_{B}^{B^{\prime}}$: a transformation matrix that maps coordinates w.r.t. B onto coordinates w.r.t. B^{\prime}.
- For example, let $B=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}, B^{\prime}=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]\right\}$
- $[I]_{B^{\prime}}^{B}=$

Basis Change (1/4)

- $[I]_{B}^{B^{\prime}}$: a transformation matrix that maps coordinates w.r.t. B onto coordinates w.r.t. B^{\prime}.
- For example, let $B=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}, B^{\prime}=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]\right\}$ - $[I]_{B^{\prime}}^{B}=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$.

Basis Change (1/4)

- $[I]_{B}^{B^{\prime}}$: a transformation matrix that maps coordinates w.r.t. B onto coordinates w.r.t. B^{\prime}.
- For example, let $B=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}, B^{\prime}=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]\right\}$
- $[I]_{B^{\prime}}^{B}=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$.
- What about $[/]_{B}^{B^{\prime}}$?

Basis Change (2/4)

Basis Change

Consider a transformation matrix

$$
\boldsymbol{A}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

w.r.t. the standard basis (canonical basis) in \mathbb{R}^{2}.

Basis Change (2/4)

Basis Change

Consider a transformation matrix

$$
\boldsymbol{A}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

w.r.t. the standard basis (canonical basis) in \mathbb{R}^{2}. Define a new basis $B=\left(\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]\right)$

Then, what about the transformation matrix $\tilde{\boldsymbol{A}}$ w.r.t. B ?

Basis Change (3/4)

Basis Change

Given

- a linear mapping $\Phi: V \mapsto W$, ordered bases

$$
\begin{aligned}
& B=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right), \tilde{B}=\left(\tilde{\mathbf{b}}_{1}, \ldots, \tilde{\mathbf{b}}_{n}\right) \text { of } V \\
& C=\left(\mathbf{c}_{1}, \ldots, \mathbf{c}_{m}\right), \tilde{C}=\left(\tilde{\mathbf{c}}_{1}, \ldots, \tilde{\mathbf{c}}_{m}\right) \text { of } W
\end{aligned}
$$

- a transformation matrix \boldsymbol{A}_{Φ} of Φ w.r.t. B and C.

Then, the corresponding transformation matrix $\tilde{\boldsymbol{A}}_{\Phi}$ w.r.t. \tilde{B} and \tilde{C} is

$$
\tilde{\boldsymbol{A}}_{\Phi}=\boldsymbol{T}^{-1} \boldsymbol{A}_{\Phi} \boldsymbol{S}
$$

where $\boldsymbol{S}=[I]_{\tilde{B}}^{B} \in \mathbb{R}^{n \times n}$ and $\boldsymbol{T}=[I]_{\tilde{C}}^{C} \in \mathbb{R}^{m \times m}$.

Proof (1/2)

$\tilde{\mathbf{b}}_{j}=s_{1 j} \mathbf{b}_{1}+\cdots s_{n, j} \mathbf{b}_{n}=\sum_{i=1}^{n} s_{i j} \mathbf{b}_{i}, \quad j=1, \ldots, n$.
$\tilde{\boldsymbol{c}}_{k}=t_{1 \mathbf{k}} \mathbf{c}_{1}+\cdots t_{m, k} \mathbf{c}_{m}=\sum_{\ell=1}^{m} t_{\ell k} \mathbf{c}_{\ell}, \quad k=1, \ldots, m$.
Let $\boldsymbol{S}=\left(\left(s_{i j}\right)\right)=[I]_{\tilde{B}}^{B} \in \mathbb{R}^{n \times n}$ and $\boldsymbol{T}=\left(\left(t_{t k}\right)\right)=[/]_{\tilde{C}}^{\mathcal{C}} \in \mathbb{R}^{m \times m}$.

Proof ($1 / 2$)

$\tilde{\boldsymbol{b}}_{j}=s_{1 j} \mathbf{b}_{1}+\cdots s_{n, j} \mathbf{b}_{n}=\sum_{i=1}^{n} s_{i j} \mathbf{b}_{i}, \quad j=1, \ldots, n$.
$\tilde{\boldsymbol{c}}_{k}=t_{1 k} \mathbf{c}_{1}+\cdots t_{m, k} \mathbf{c}_{m}=\sum_{\ell=1}^{m} t_{\ell k} \mathbf{c}_{\ell,} \quad k=1, \ldots, m$.
Let $\boldsymbol{S}=\left(\left(s_{i j}\right)\right)=[I]_{\tilde{B}}^{B} \in \mathbb{R}^{n \times n}$ and $\boldsymbol{T}=\left(\left(t_{\ell k}\right)\right)=[I]_{\tilde{C}}^{C} \in \mathbb{R}^{m \times m}$.

- Applying the mapping Φ, we get that for all $j=1, \ldots, n$,

$$
\Phi\left(\tilde{\boldsymbol{b}}_{j}\right)=\sum_{k=1}^{m} \underbrace{\tilde{a}_{k j} \tilde{\mathbf{c}}_{k}}_{\in W}
$$

Proof ($1 / 2$)

$\tilde{\mathbf{b}}_{j}=s_{1 j} \mathbf{b}_{1}+\cdots s_{n, j} \mathbf{b}_{n}=\sum_{i=1}^{n} s_{i j} \mathbf{b}_{i}, \quad j=1, \ldots, n$.
$\tilde{\boldsymbol{c}}_{k}=t_{1 k} \mathbf{c}_{1}+\cdots t_{m, k} \mathbf{c}_{m}=\sum_{\ell=1}^{m} t_{\ell k} \mathbf{c}_{\ell}, \quad k=1, \ldots, m$.
Let $\boldsymbol{S}=\left(\left(s_{i j}\right)\right)=[/]_{\tilde{B}}^{B} \in \mathbb{R}^{n \times n}$ and $\boldsymbol{T}=\left(\left(t_{t k}\right)\right)=[/]_{\tilde{C}}^{\mathcal{C}} \in \mathbb{R}^{m \times m}$.

- Applying the mapping Φ, we get that for all $j=1, \ldots, n$,

$$
\Phi\left(\tilde{\boldsymbol{b}}_{j}\right)=\sum_{k=1}^{m} \underbrace{\tilde{a}_{k j} \tilde{\mathbf{c}}_{k}}_{\in W}=\sum_{k=1}^{m} \tilde{a}_{k j} \sum_{\ell=1}^{m} t_{\ell k} \mathbf{c}_{\ell}
$$

Proof ($1 / 2$)

$\tilde{\boldsymbol{b}}_{j}=s_{1 j} \mathbf{b}_{1}+\cdots s_{n, j} \mathbf{b}_{n}=\sum_{i=1}^{n} s_{i j} \mathbf{b}_{i}, \quad j=1, \ldots, n$.
$\tilde{\boldsymbol{c}}_{k}=t_{1 k} \mathbf{c}_{1}+\cdots t_{m, k} \mathbf{c}_{m}=\sum_{\ell=1}^{m} t_{\ell k} \mathbf{c}_{\ell}, \quad k=1, \ldots, m$.
Let $\boldsymbol{S}=\left(\left(s_{i j}\right)\right)=[/]_{\tilde{B}}^{B} \in \mathbb{R}^{n \times n}$ and $\boldsymbol{T}=\left(\left(t_{\ell k}\right)\right)=[/]_{\tilde{C}}^{\mathcal{C}} \in \mathbb{R}^{m \times m}$.

- Applying the mapping Φ, we get that for all $j=1, \ldots, n$,

$$
\Phi\left(\tilde{\boldsymbol{b}}_{j}\right)=\sum_{k=1}^{m} \underbrace{\tilde{a}_{k j} \tilde{\mathbf{c}}_{k}}_{\in W}=\sum_{k=1}^{m} \tilde{\mathbf{a}}_{k j} \sum_{\ell=1}^{m} t_{\ell k} \mathbf{c}_{\ell}=\sum_{\ell=1}^{m}\left(\sum_{k=1}^{m} t_{\ell k} \tilde{a}_{k j}\right) \mathbf{c}_{\ell} .
$$

Proof ($1 / 2$)

$\tilde{\boldsymbol{b}}_{j}=s_{1 j} \mathbf{b}_{1}+\cdots s_{n, j} \mathbf{b}_{n}=\sum_{i=1}^{n} s_{i j} \mathbf{b}_{i}, \quad j=1, \ldots, n$.
$\tilde{\boldsymbol{c}}_{k}=t_{1 k} \mathbf{c}_{1}+\cdots t_{m, k} \mathbf{c}_{m}=\sum_{\ell=1}^{m} t_{\ell k} \mathbf{c}_{\ell}, \quad k=1, \ldots, m$.
Let $\boldsymbol{S}=\left(\left(s_{i j}\right)\right)=[l]_{\tilde{B}}^{B} \in \mathbb{R}^{n \times n}$ and $\boldsymbol{T}=\left(\left(t_{\ell k}\right)\right)=[/]_{\tilde{C}}^{\mathcal{C}} \in \mathbb{R}^{m \times m}$.

- Applying the mapping Φ, we get that for all $j=1, \ldots, n$,

$$
\Phi\left(\tilde{\boldsymbol{b}}_{j}\right)=\sum_{k=1}^{m} \underbrace{\tilde{a}_{k j} \tilde{\mathbf{j}}_{k}}_{\in W}=\sum_{k=1}^{m} \tilde{\mathbf{a}}_{k j} \sum_{\ell=1}^{m} t_{\ell k} \mathbf{c}_{\ell}=\sum_{\ell=1}^{m}\left(\sum_{k=1}^{m} t_{\ell k} \tilde{a}_{k j}\right) \mathbf{c}_{\ell} .
$$

- Alternatively,

$$
\begin{aligned}
\Phi\left(\tilde{\mathbf{b}}_{j}\right) & =\Phi\left(\sum_{i=1}^{n} s_{i j} \mathbf{b}_{i}\right)=\sum_{i=1}^{n} s_{i j} \Phi\left(\mathbf{b}_{i}\right)=\sum_{i=1}^{n} s_{i j} \sum_{\ell=1}^{m} a_{\ell i} \mathbf{c}_{\ell} \\
& =\sum_{\ell=1}^{m}\left(\sum_{i=1}^{n} a_{\ell i} s_{i j}\right) \mathbf{c}_{\ell}
\end{aligned}
$$

Proof (2/2)

Hence,

$$
\sum_{k=1}^{m} t_{\ell k} \tilde{a}_{k j}=\sum_{i=1}^{n} a_{\ell i} s_{i j}, \text { for each } j
$$

and it means that

Proof (2/2)

Hence,

$$
\sum_{k=1}^{m} t_{\ell k} \tilde{a}_{k j}=\sum_{i=1}^{n} a_{\ell i} s_{i j}, \text { for each } j
$$

and it means that

$$
\boldsymbol{T} \tilde{\boldsymbol{A}}_{\Phi}=\boldsymbol{A}_{\Phi} \boldsymbol{S} \in \mathbb{R}^{m \times n}
$$

such that

$$
\tilde{\boldsymbol{A}}_{\Phi}=\boldsymbol{T}^{-1} \boldsymbol{A}_{\Phi} \boldsymbol{S}
$$

Basis Change (4/4)

- The theorem tells us that

Basis Change (4/4)

- The theorem tells us that

With

- a basis change in V (i.e., $B \rightarrow \tilde{B}$) and
- a basis change in W (i.e., $C \rightarrow \tilde{C}$),
the transformation matrix \boldsymbol{A}_{Φ} of a linear mapping $\Phi: V \mapsto W$ is replaced by an equivalent matrix $\tilde{\boldsymbol{A}}_{\Phi}$ with

$$
\tilde{\boldsymbol{A}}_{\Phi}=\boldsymbol{T}^{-1} \boldsymbol{A}_{\Phi} \boldsymbol{S} .
$$

Example

Consider a linear mapping $\Phi: \mathbb{R}^{3} \mapsto \mathbb{R}^{4}$ with transformation matrix

$$
\boldsymbol{A}_{\Phi}=\left[\begin{array}{ccc}
1 & 2 & 0 \\
-1 & 1 & 3 \\
3 & 7 & 1 \\
-1 & 2 & 4
\end{array}\right]
$$

w.r.t. the standard bases

$$
B=\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right), C=\left(\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\right)
$$

We seek the transformation matrix $\tilde{\boldsymbol{A}}_{\Phi}$ of Φ w.r.t. the new bases

$$
\tilde{B}=\left(\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right), \tilde{C}=\left(\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]\right)
$$

$S=$
$T=$

$$
\boldsymbol{S}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right], \quad \boldsymbol{T}=\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Then,

$$
\tilde{\boldsymbol{A}}_{\Phi}=\boldsymbol{T}^{-1} \boldsymbol{A}_{\Phi} \boldsymbol{S}=\cdots
$$

$$
\boldsymbol{S}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right], \quad \boldsymbol{T}=\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Then,

$$
\tilde{\boldsymbol{A}}_{\Phi}=\boldsymbol{T}^{-1} \boldsymbol{A}_{\Phi} \boldsymbol{S}=\cdots=\left[\begin{array}{ccc}
-4 & -4 & -2 \\
6 & 0 & 0 \\
4 & 8 & 4 \\
1 & 6 & 3
\end{array}\right]
$$

Image and Kernel

Image \& Kernel

For $\Phi: V \mapsto W$, we define

$$
\operatorname{ker}(\Phi):=\Phi^{-1}\left(\mathbf{0}_{W}\right)=\left\{\mathbf{v} \in V \mid \Phi(\mathbf{v})=\mathbf{0}_{W}\right\}
$$

and

$$
\text { Image }(\Phi):=\Phi(V)=\{\mathbf{w} \in W|\exists \mathbf{v} \in V| \Phi(\mathbf{v})=\mathbf{w}\}
$$

- V : domain of Φ
- W : codomain of Φ

Remark

For vector spaces V and W and a linear mapping $\Phi: V \mapsto W$:

- $\Phi\left(\mathbf{0}_{V}\right)=\mathbf{0}_{W}$ so $\mathbf{0} \in \operatorname{ker}(\Phi)$.
- Image $(\Phi) \subseteq W$ is a subspace of W
- $\operatorname{ker}(\Phi) \subseteq V$ is a subspace of V.
- Φ is injective (i.e., one-to-one) if and only if $\operatorname{ker}(\Phi)=\{\mathbf{0}\}$.
- Image $(\Phi)=\left\{\boldsymbol{A} \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^{n}\right\}=\left\{\sum_{i=1}^{n} x_{i} \mathbf{a}_{i} \mid x_{1}, \ldots, x_{n} \in \mathbb{R}\right\}=$ $\operatorname{span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right) \subseteq \mathbb{R}^{m}$.
- $\operatorname{rank}(\Phi)=\operatorname{dim}(\operatorname{Image}(\Phi))$.
$\star \operatorname{dim}(\operatorname{ker}(\Phi))+\operatorname{dim}(\operatorname{Image}(\Phi))=\operatorname{dim}(V)$.
- null $(\boldsymbol{A})+\operatorname{rank}(\boldsymbol{A})=$ number of columns of A.
- If $\operatorname{dim}(V)=\operatorname{dim}(W)$, then Φ is injective, surjective and bijective $(\because$ Image $(\Phi) \subseteq W)$.

Example

Consider the mapping $\Phi: \mathbb{R}^{4} \mapsto \mathbb{R}^{2}$,

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \mapsto\left[\begin{array}{cccc}
1 & 2 & -1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+2 x_{2}-x_{3} \\
x_{1}+x_{4}
\end{array}\right]
$$

Example

Consider the mapping $\Phi: \mathbb{R}^{4} \mapsto \mathbb{R}^{2}$,

$$
\begin{aligned}
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] } & \mapsto\left[\begin{array}{cccc}
1 & 2 & -1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+2 x_{2}-x_{3} \\
x_{1}+x_{4}
\end{array}\right] \\
& =x_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

Image $(\Phi)=$

Example

Consider the mapping $\Phi: \mathbb{R}^{4} \mapsto \mathbb{R}^{2}$,

$$
\begin{gathered}
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \mapsto\left[\begin{array}{cccc}
1 & 2 & -1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+2 x_{2}-x_{3} \\
x_{1}+x_{4}
\end{array}\right]} \\
=x_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
\text { Image }(\Phi)=\operatorname{span}\left(\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}\right)
\end{gathered}
$$

Example (contd.)

$$
\left[\begin{array}{cccc}
1 & 2 & -1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]
$$

Example (contd.)

$$
\left[\begin{array}{cccc}
1 & 2 & -1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] \longrightarrow \cdots \longrightarrow
$$

Example (contd.)

$$
\left[\begin{array}{cccc}
1 & 2 & -1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] \rightarrow \cdots \longrightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & -\frac{1}{2} & -\frac{1}{2}
\end{array}\right]
$$

Example (contd.)

$$
\left[\begin{array}{cccc}
1 & 2 & -1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] \rightarrow \cdots \longrightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & -\frac{1}{2} & -\frac{1}{2}
\end{array}\right]
$$

Thus,

$$
\operatorname{ker}(\Phi)=
$$

Example (contd.)

$$
\left[\begin{array}{cccc}
1 & 2 & -1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] \rightarrow \cdots \longrightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & -\frac{1}{2} & -\frac{1}{2}
\end{array}\right]
$$

Thus,

$$
\operatorname{ker}(\Phi)=\operatorname{span}\left\{\left[\begin{array}{l}
0 \\
\frac{1}{2} \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
\frac{1}{2} \\
0 \\
1
\end{array}\right]\right\}
$$

Outline

(1) Why linear algebra?
(2) Vector Space

3 Basis \& Dimension \& Rank
(4) Linear Mappings
(5) Affine Spaces

Affine Spaces

- Spaces that are offset from the origin.
- They are NO LONGER vector (sub)spaces.

Affine Spaces

- Spaces that are offset from the origin.
- They are NO LONGER vector (sub)spaces.

Affine Subspace

Let V be a vector space, $\mathbf{x}_{0} \in V$, and $U \subseteq V$ be a subspace. Then,

$$
\begin{aligned}
L & =\mathbf{x}_{0}+U:=\left\{\mathbf{x}_{0}+\mathbf{u} \mid \mathbf{u} \in U\right\} \\
& =\left\{\mathbf{v} \in V \mid \exists \mathbf{u} \in U: \mathbf{v}=\mathbf{x}_{0}+\mathbf{u}\right\} \subseteq V
\end{aligned}
$$

is called affine subspace (or linear manifold) of V.

- U : direction space.
- \mathbf{x}_{0} : support point.

Remark

- An affine subspace excludes $\mathbf{0}$ if $\mathbf{x}_{0} \notin U$.
- Examples: points, lines, and planes in \mathbb{R}^{3} which do not go through the origin.

Remark

- An affine subspace excludes $\mathbf{0}$ if $\mathbf{x}_{0} \notin U$.
- Examples: points, lines, and planes in \mathbb{R}^{3} which do not go through the origin.
- One-dimensional affine subspaces:

$$
\mathbf{y}=\mathbf{x}_{0}+\lambda \mathbf{b}_{1}
$$

for $\lambda \in \mathbb{R}$ and $U=\operatorname{span}\left(\mathbf{b}_{1}\right)$ is a one-dimensional subspace of \mathbb{R}^{n}.

- Two-dimensional affine subspaces:

$$
\mathbf{y}=\mathbf{x}_{0}+\lambda_{1} \mathbf{b}_{1}+\lambda_{2} \mathbf{b}_{2}
$$

for $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ and $U=\operatorname{span}\left(\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}\right)$ is a two-dimensional subspace of \mathbb{R}^{n}.

0 :

Affine Mappings

Affine Mappings

Given two vector spaces V, W, a linear mapping $\Phi: V \mapsto W$, and $\mathbf{a} \in W$, the mapping $\phi: V \mapsto W$ with

$$
\phi(\mathbf{x})=\mathbf{a}+\Phi(\mathbf{x})
$$

is called an affine mapping from V to W. The vector a is called the translation vector of ϕ.

Discussions

