Mathematics for Machine Learning

— Linear Algebra: Projections \& Gram-Schmidt Orthogonalization

Joseph Chuang-Chieh Lin
Department of Computer Science \& Information Engineering, Tamkang University

Fall 2023

Credits for the resource

- The slides are based on the textbooks:
- Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong: Mathematics for Machine Learning. Cambridge University Press. 2020.
- Howard Anton, Chris Rorres, Anton Kaul: Elementary Linear Algebra. Wiley. 2019.
- We could partially refer to the monograph:

Francesco Orabona: A Modern Introduction to Online Learning. https://arxiv.org/abs/1912.13213

Outline

(1) Orthogonal Projections

(2) Gram-Schmidt Orthogonalization

(3) Rotations

Outline

(1) Orthogonal Projections

(2) Gram-Schmidt Orthogonalization

Motivations (1/2)

- In machine learning, we often need to deal with high-dimensional data.

Motivations (1/2)

- In machine learning, we often need to deal with high-dimensional data.
- High-dimensional data is often hard to analyze or visualize.

Motivations (1/2)

- In machine learning, we often need to deal with high-dimensional data.
- High-dimensional data is often hard to analyze or visualize.
- Sometimes, only a few dimensions contain most information.

Motivations (1/2)

- In machine learning, we often need to deal with high-dimensional data.
- High-dimensional data is often hard to analyze or visualize.
- Sometimes, only a few dimensions contain most information.
- We might try to project the original high-dimensional data onto a lower-dimensional space and work on it.

Motivations (1/2)

- In machine learning, we often need to deal with high-dimensional data.
- High-dimensional data is often hard to analyze or visualize.
- Sometimes, only a few dimensions contain most information.
- We might try to project the original high-dimensional data onto a lower-dimensional space and work on it.
- Note: When we compress or visualize high-dimensional data, we will lose information.

Motivations (2/2)

Examples (dimensionality reduction)

- Principal Component Analysis (PCA)

Motivations (2/2)

Examples (dimensionality reduction)

- Principal Component Analysis (PCA)
- Deep Neural Networks

Motivations (2/2)

Examples (dimensionality reduction)

- Principal Component Analysis (PCA)
- Deep Neural Networks
- Classification

Motivations (2/2)

Examples (dimensionality reduction)

- Principal Component Analysis (PCA)
- Deep Neural Networks
- Classification
- Linear Regression

Projection from 2D to 1D

(a) Projection of $\boldsymbol{x} \in \mathbb{R}^{2}$ onto a subspace U with basis vector \boldsymbol{b}.

(b) Projection of a two-dimensional vector \boldsymbol{x} with $\|\boldsymbol{x}\|=1$ onto a one-dimensional subspace spanned by \boldsymbol{b}.

Projection

Projection

Let V be a vector space and $U \subseteq V$ be a subspace of V. A linear mapping $\pi: V \mapsto U$ is called a projection if $\pi^{2}=\pi \circ \pi=\pi$.

Projection

Projection

Let V be a vector space and $U \subseteq V$ be a subspace of V. A linear mapping $\pi: V \mapsto U$ is called a projection if $\pi^{2}=\pi \circ \pi=\pi$.

- Recall that linear mappings can be expressed by transformation matrices.

Projection

Projection

Let V be a vector space and $U \subseteq V$ be a subspace of V. A linear mapping $\pi: V \mapsto U$ is called a projection if $\pi^{2}=\pi \circ \pi=\pi$.

- Recall that linear mappings can be expressed by transformation matrices.
- The projection matrices \boldsymbol{P}_{π} exhibit the property that $\boldsymbol{P}_{\pi}^{2}=\boldsymbol{P}_{\pi}$.

Illustration of projections onto 1-D

Illustration of projections onto 1-D

- $\pi_{U}(\mathbf{x})$: closest to \mathbf{x}.
- $\left\|\mathbf{x}-\pi_{U}(\mathbf{x})\right\|$ is minimal.

Illustration of projections onto 1-D

- $\pi_{U}(\mathbf{x})$: closest to \mathbf{x}.
- $\left\|\mathbf{x}-\pi_{U}(\mathbf{x})\right\|$ is minimal.
- $\left\langle\pi_{U}(\mathbf{x})-\mathbf{x}, \mathbf{b}\right\rangle=0$.
- Projection $\pi_{U}(\mathbf{x})$ of \mathbf{x} onto U must be an element in U.
- $\pi_{U}(\mathbf{x})=\lambda \mathbf{b}$ for some $\lambda \in \mathbb{R}$.

Illustration of projections onto 1-D

- $\pi_{U}(\mathbf{x})$: closest to \mathbf{x}.
- $\left\|\mathbf{x}-\pi_{U}(\mathbf{x})\right\|$ is minimal.
- $\left\langle\pi_{U}(\mathbf{x})-\mathbf{x}, \mathbf{b}\right\rangle=0$.
- Projection $\pi_{U}(\mathbf{x})$ of \mathbf{x} onto U must be an element in U.
- $\pi_{U}(\mathbf{x})=\lambda \mathbf{b}$ for some $\lambda \in \mathbb{R}$.
- Determining the coordinates:

Illustration of projections onto 1-D

- $\pi_{U}(\mathbf{x})$: closest to \mathbf{x}.
- $\left\|\mathbf{x}-\pi_{U}(\mathbf{x})\right\|$ is minimal.
- $\left\langle\pi_{U}(\mathbf{x})-\mathbf{x}, \mathbf{b}\right\rangle=0$.
- Projection $\pi_{U}(\mathbf{x})$ of \mathbf{x} onto U must be an element in U.
- $\pi_{U}(\mathbf{x})=\lambda \mathbf{b}$ for some $\lambda \in \mathbb{R}$.
- Determining the coordinates:

Since $\pi_{U}(\mathbf{b})=\lambda \mathbf{b}$:

$$
\left\langle\mathbf{x}-\pi_{U}(\mathbf{x}), \mathbf{b}\right\rangle=0 \Leftrightarrow\langle\mathbf{x}-\lambda \mathbf{b}, \mathbf{b}\rangle=0 .
$$

Illustration of projections onto 1-D

- $\pi_{U}(\mathbf{x})$: closest to \mathbf{x}.
- $\left\|\mathbf{x}-\pi_{U}(\mathbf{x})\right\|$ is minimal.
- $\left\langle\pi_{U}(\mathbf{x})-\mathbf{x}, \mathbf{b}\right\rangle=0$.
- Projection $\pi_{U}(\mathbf{x})$ of \mathbf{x} onto U must be an element in U.
- $\pi_{U}(\mathbf{x})=\lambda \mathbf{b}$ for some $\lambda \in \mathbb{R}$.
- Determining the coordinates:

Since $\pi_{U}(\mathbf{b})=\lambda \mathbf{b}$:

$$
\begin{array}{r}
\left\langle\mathbf{x}-\pi_{U}(\mathbf{x}), \mathbf{b}\right\rangle=0 \Leftrightarrow\langle\mathbf{x}-\lambda \mathbf{b}, \mathbf{b}\rangle=0 . \\
\Leftrightarrow\langle\mathbf{x}, \mathbf{b}\rangle-\lambda\langle\mathbf{b}, \mathbf{b}\rangle=0 \Leftrightarrow \lambda=\frac{\langle\mathbf{x}, \mathbf{b}\rangle}{\langle\mathbf{b}, \mathbf{b}\rangle}=\frac{\langle\mathbf{b}, \mathbf{x}\rangle}{\|\mathbf{b}\|^{2}}
\end{array}
$$

Illustration of projections onto 1-D

- $\pi_{U}(\mathbf{x})$: closest to \mathbf{x}.
- $\left\|\mathbf{x}-\pi_{U}(\mathbf{x})\right\|$ is minimal.
- $\left\langle\pi_{U}(\mathbf{x})-\mathbf{x}, \mathbf{b}\right\rangle=0$.
- Projection $\pi_{U}(\mathbf{x})$ of \mathbf{x} onto U must be an element in U.
- $\pi_{U}(\mathbf{x})=\lambda \mathbf{b}$ for some $\lambda \in \mathbb{R}$.
- Determining the coordinates:

Since $\pi_{U}(\mathbf{b})=\lambda \mathbf{b}$:

$$
\begin{array}{r}
\left\langle\mathbf{x}-\pi_{U}(\mathbf{x}), \mathbf{b}\right\rangle=0 \Leftrightarrow\langle\mathbf{x}-\lambda \mathbf{b}, \mathbf{b}\rangle=0 . \\
\Leftrightarrow\langle\mathbf{x}, \mathbf{b}\rangle-\lambda\langle\mathbf{b}, \mathbf{b}\rangle=0 \Leftrightarrow \lambda=\frac{\langle\mathbf{x}, \mathbf{b}\rangle}{\langle\mathbf{b}, \mathbf{b}\rangle}=\frac{\langle\mathbf{b}, \mathbf{x}\rangle}{\|\mathbf{b}\|^{2}}=\frac{\mathbf{b}^{\top} \mathbf{x}}{\mathbf{b}^{\top} \mathbf{b}} .
\end{array}
$$

- Finding the projection $\pi_{U}(\mathbf{x}) \in U$:

$$
\pi_{U}(\mathbf{x})=\lambda \mathbf{b}=\frac{\langle\mathbf{x}, \mathbf{b}\rangle}{\|\mathbf{b}\|^{2}} \mathbf{b}=\frac{\mathbf{b}^{\top} \mathbf{x}}{\|\mathbf{b}\|^{2}} \mathbf{b}
$$

- Finding the projection $\pi_{U}(\mathbf{x}) \in U$:

$$
\pi_{U}(\mathbf{x})=\lambda \mathbf{b}=\frac{\langle\mathbf{x}, \mathbf{b}\rangle}{\|\mathbf{b}\|^{2}} \mathbf{b}=\frac{\mathbf{b}^{\top} \mathbf{x}}{\|\mathbf{b}\|^{2}} \mathbf{b}
$$

Note that $\left\|\pi_{U}(\mathbf{x})\right\|=\|\lambda \mathbf{b}\|=|\lambda|\|\mathbf{b}\|$.

- Finding the projection $\pi_{U}(\mathbf{x}) \in U$:

$$
\pi_{U}(\mathbf{x})=\lambda \mathbf{b}=\frac{\langle\mathbf{x}, \mathbf{b}\rangle}{\|\mathbf{b}\|^{2}} \mathbf{b}=\frac{\mathbf{b}^{\top} \mathbf{x}}{\|\mathbf{b}\|^{2}} \mathbf{b}
$$

Note that $\left\|\pi_{U}(\mathbf{x})\right\|=\|\lambda \mathbf{b}\|=|\lambda|\|\mathbf{b}\|$.

- If we use the dot product as the inner product and let θ be the angle between \mathbf{x} and \mathbf{b} :

$$
\left\|\pi_{U}(\mathbf{x})\right\|=\frac{\left|\mathbf{b}^{\top} \mathbf{x}\right|}{\|\mathbf{b}\|^{2}}\|\mathbf{b}\|=|\cos \theta|\|\mathbf{x}\|\|\mathbf{b}\| \frac{\|\mathbf{b}\|}{\|\mathbf{b}\|^{2}}=|\cos \theta|\|\mathbf{x}\| .
$$

- Finding the projection matrix \boldsymbol{P}_{π} :
- Recall: projection is a linear mapping.
- With the dot product as the inner product,

$$
\left\|\pi_{U}(\mathbf{x})\right\|=\lambda \mathbf{b}=\mathbf{b} \lambda=\mathbf{b} \frac{\mathbf{b}^{\top} \mathbf{x}}{\|\mathbf{b}\|^{2}}=\frac{\mathbf{b b}^{\top}}{\|\mathbf{b}\|^{2}} \mathbf{x} .
$$

- So,

$$
\boldsymbol{P}_{\pi}=\frac{\mathbf{b b ^ { \top }}}{\|\mathbf{b}\|^{2}} .
$$

Note: $\mathbf{b b}^{\top}$ is a symmetric matrix.

- Finding the projection matrix \boldsymbol{P}_{π} :
- Recall: projection is a linear mapping.
- With the dot product as the inner product,

$$
\left\|\pi_{U}(\mathbf{x})\right\|=\lambda \mathbf{b}=\mathbf{b} \lambda=\mathbf{b} \frac{\mathbf{b}^{\top} \mathbf{x}}{\|\mathbf{b}\|^{2}}=\frac{\mathbf{b b}^{\top}}{\|\mathbf{b}\|^{2}} \mathbf{x} .
$$

- So,

$$
\boldsymbol{P}_{\pi}=\frac{\mathbf{b b ^ { \top }}}{\|\mathbf{b}\|^{2}} .
$$

Note: $\mathbf{b b}^{\top}$ is a symmetric matrix.

Example

Find the projection matrix \boldsymbol{P}_{π} onto the line U through the origin spanned by $\mathbf{b}=\left[\begin{array}{lll}1 & 2 & 2\end{array}\right]^{\top}$ and the projection of $\mathbf{x}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{\top}$.

Example

Find the projection matrix \boldsymbol{P}_{π} onto the line U through the origin spanned by $\mathbf{b}=\left[\begin{array}{lll}1 & 2 & 2\end{array}\right]^{\top}$ and the projection of $\mathbf{x}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{\top}$.

$$
\boldsymbol{P}_{\pi}=\frac{\mathbf{b b}^{\top}}{\mathbf{b}^{\top} \mathbf{b}}
$$

Example

Find the projection matrix \boldsymbol{P}_{π} onto the line U through the origin spanned by $\mathbf{b}=\left[\begin{array}{lll}1 & 2 & 2\end{array}\right]^{\top}$ and the projection of $\mathbf{x}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{\top}$.

$$
\boldsymbol{P}_{\pi}=\frac{\mathbf{b b}^{\top}}{\mathbf{b}^{\top} \mathbf{b}}=\frac{1}{9}\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 2
\end{array}\right]
$$

Example

Find the projection matrix \boldsymbol{P}_{π} onto the line U through the origin spanned by $\mathbf{b}=\left[\begin{array}{lll}1 & 2 & 2\end{array}\right]^{\top}$ and the projection of $\mathbf{x}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{\top}$.

$$
\begin{gathered}
\boldsymbol{P}_{\pi}=\frac{\mathbf{b b}^{\top}}{\mathbf{b}^{\top} \mathbf{b}}=\frac{1}{9}\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 2
\end{array}\right]=\frac{1}{9}\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 4 & 4 \\
2 & 4 & 4
\end{array}\right] . \\
\pi_{U}(\mathbf{x})=\boldsymbol{P}_{\pi} \mathbf{x}=\frac{1}{9}\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 4 & 4 \\
2 & 4 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\frac{1}{9}\left[\begin{array}{c}
5 \\
10 \\
10
\end{array}\right]
\end{gathered}
$$

Example

Find the projection matrix \boldsymbol{P}_{π} onto the line U through the origin spanned by $\mathbf{b}=\left[\begin{array}{lll}1 & 2 & 2\end{array}\right]^{\top}$ and the projection of $\mathbf{x}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{\top}$.

$$
\begin{gathered}
\boldsymbol{P}_{\pi}=\frac{\mathbf{b b}^{\top}}{\mathbf{b}^{\top} \mathbf{b}}=\frac{1}{9}\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 2
\end{array}\right]=\frac{1}{9}\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 4 & 4 \\
2 & 4 & 4
\end{array}\right] . \\
\pi_{U}(\mathbf{x})=\boldsymbol{P}_{\pi} \mathbf{x}=\frac{1}{9}\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 4 & 4 \\
2 & 4 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\frac{1}{9}\left[\begin{array}{c}
5 \\
10 \\
10
\end{array}\right] \in \operatorname{span}\left(\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]\right) .
\end{gathered}
$$

Projection onto General Subspaces (1/4)

Orthogonal projections of $\mathbf{x} \in \mathbb{R}^{n}$ onto $U \subseteq \mathbb{R}^{n}$ with $\operatorname{dim}(U)=m \geq 1$.

Projection onto General Subspaces (2/4)

- Any projection can be represented as a linear combination of the basis vectors $\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}$ of U.
- $\pi_{U}(\mathbf{x})=\sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i}$.
- Find the coordinates $\lambda_{1}, \ldots, \lambda_{m}$:

$$
\pi_{U}(\mathbf{x})=\sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i}=\boldsymbol{B} \boldsymbol{\lambda}
$$

for $\boldsymbol{B}=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right] \in \mathbb{R}^{n \times m}, \boldsymbol{\lambda}=\left[\lambda_{1}, \ldots, \lambda_{m}\right]^{\top} \in \mathbb{R}^{m}$.

Projection onto General Subspaces (2/4)

- Any projection can be represented as a linear combination of the basis vectors $\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}$ of U.
- $\pi_{U}(\mathbf{x})=\sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i}$.
- Find the coordinates $\lambda_{1}, \ldots, \lambda_{m}$:

$$
\pi_{U}(\mathbf{x})=\sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i}=\boldsymbol{B} \boldsymbol{\lambda} \quad(\text { closest to } \mathbf{x} \text { on } U)
$$

for $\boldsymbol{B}=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right] \in \mathbb{R}^{n \times m}, \boldsymbol{\lambda}=\left[\lambda_{1}, \ldots, \lambda_{m}\right]^{\top} \in \mathbb{R}^{m}$.
Note: $\mathbf{x} \perp\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right\}(\because$ minimum distance $)$

$$
\begin{aligned}
\left\langle\mathbf{b}_{1}, \mathbf{x}-\pi_{U}(\mathbf{x})\right\rangle & =\mathbf{b}_{1}^{\top}\left(\mathbf{x}-\pi_{U}(\mathbf{x})\right)=0 \\
& \vdots \\
\left\langle\mathbf{b}_{m}, \mathbf{x}-\pi_{U}(\mathbf{x})\right\rangle & =\mathbf{b}_{m}^{\top}\left(\mathbf{x}-\pi_{U}(\mathbf{x})\right)=0
\end{aligned}
$$

Projection onto General Subspaces (3/4)

- Any projection can be represented as a linear combination of the basis vectors $\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}$ of U.
- $\pi_{U}(\mathbf{x})=\sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i}$.
- Find the coordinates $\lambda_{1}, \ldots, \lambda_{m}$:

$$
\pi_{U}(\mathbf{x})=\sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i}=B \lambda(\text { closest to } \mathbf{x} \text { on } U)
$$

for $\boldsymbol{B}=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right] \in \mathbb{R}^{n \times m}, \boldsymbol{\lambda}=\left[\lambda_{1}, \ldots, \lambda_{m}\right]^{\top} \in \mathbb{R}^{m}$.
Note: $\left(\mathbf{x}-\pi_{U}(\mathbf{x})\right) \perp\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right\}(\because$ minimum distance $)$

$$
\begin{aligned}
\mathbf{b}_{1}^{\top}(\mathbf{x}-\boldsymbol{B} \boldsymbol{\lambda}) & =0 \\
\vdots & \\
\mathbf{b}_{m}^{\top}(\mathbf{x}-\boldsymbol{B} \boldsymbol{\lambda}) & =0
\end{aligned}
$$

Projection onto General Subspaces (4/4)

Since

$$
\begin{array}{cc}
\mathbf{b}_{1}^{\top}(\mathbf{x}-\boldsymbol{B} \boldsymbol{\lambda}) & =0 \\
\vdots & \\
\mathbf{b}_{m}^{\top}(\mathbf{x}-\boldsymbol{B} \boldsymbol{\lambda})= & =0
\end{array}
$$

We have

$$
\begin{array}{r}
{\left[\begin{array}{c}
\mathbf{b}_{1}^{\top} \\
\vdots \\
\mathbf{b}_{m}^{\top}
\end{array}\right][\mathbf{x}-\boldsymbol{B} \boldsymbol{\lambda}]=\mathbf{0}}
\end{array} \begin{array}{r}
\boldsymbol{B}^{\top}(\mathbf{x}-\boldsymbol{B} \boldsymbol{\lambda})=\mathbf{0} \\
\end{array} \begin{aligned}
& \boldsymbol{B}^{\top} \boldsymbol{B} \boldsymbol{\lambda}=\boldsymbol{B}^{\top} \mathbf{x}
\end{aligned}
$$

Note: $\boldsymbol{B}^{\top} \boldsymbol{B}$ is invertible

Projection onto General Subspaces (4/4)

Since

$$
\begin{array}{cc}
\mathbf{b}_{1}^{\top}(\mathbf{x}-\boldsymbol{B} \boldsymbol{\lambda}) & =0 \\
\vdots & \\
\mathbf{b}_{m}^{\top}(\mathbf{x}-\boldsymbol{B} \boldsymbol{\lambda})= & =0
\end{array}
$$

We have

$$
\begin{aligned}
& {\left[\begin{array}{c}
\mathbf{b}_{1}^{\top} \\
\vdots \\
\mathbf{b}_{m}^{\top}
\end{array}\right][\mathbf{x}-\boldsymbol{B} \boldsymbol{\lambda}]=\mathbf{0} } \Leftrightarrow \\
& \boldsymbol{B}^{\top}(\mathbf{x}-\boldsymbol{B} \boldsymbol{\lambda})=\mathbf{0} \\
& \Leftrightarrow \boldsymbol{B}^{\top} \boldsymbol{B} \boldsymbol{\lambda}=\boldsymbol{B}^{\top} \mathbf{x}
\end{aligned}
$$

Note: $\boldsymbol{B}^{\top} \boldsymbol{B}$ is invertible $\Rightarrow \boldsymbol{\lambda}=\left(\boldsymbol{B}^{\top} \boldsymbol{B}\right)^{-1} \boldsymbol{B}^{\top} \mathbf{x}$.

Projection onto General Subspaces (4/4)

Since

$$
\begin{aligned}
\mathbf{b}_{1}^{\top}(\mathbf{x}-\boldsymbol{B} \boldsymbol{\lambda}) & =0 \\
\vdots & \\
\mathbf{b}_{m}^{\top}(\mathbf{x}-\boldsymbol{B} \boldsymbol{\lambda}) & =0
\end{aligned}
$$

We have

$$
\begin{aligned}
& {\left[\begin{array}{c}
\mathbf{b}_{1}^{\top} \\
\vdots \\
\mathbf{b}_{m}^{\top}
\end{array}\right][\mathbf{x}-\boldsymbol{B} \boldsymbol{\lambda}]=\mathbf{0} } \Leftrightarrow \\
& \boldsymbol{B}^{\top}(\mathbf{x}-\boldsymbol{B} \boldsymbol{\lambda})=\mathbf{0} \\
& \Leftrightarrow \boldsymbol{B}^{\top} \boldsymbol{B} \boldsymbol{\lambda}=\boldsymbol{B}^{\top} \mathbf{x}
\end{aligned}
$$

Note: $\boldsymbol{B}^{\top} \boldsymbol{B}$ is invertible $\Rightarrow \boldsymbol{\lambda}=\left(\boldsymbol{B}^{\top} \boldsymbol{B}\right)^{-1} \boldsymbol{B}^{\top} \mathbf{x}$.

- $\pi_{U}(\mathbf{x})=B\left(B^{\top} \boldsymbol{B}\right)^{-1} \boldsymbol{B}^{\top} \mathbf{x}$

Projection onto General Subspaces (4/4)

Since

$$
\begin{array}{cl}
\mathbf{b}_{1}^{\top}(\mathbf{x}-\boldsymbol{B} \boldsymbol{\lambda}) & =0 \\
\vdots & \\
\mathbf{b}_{m}^{\top}(\mathbf{x}-\boldsymbol{B} \boldsymbol{\lambda})=0
\end{array}
$$

We have

$$
\begin{array}{r}
{\left[\begin{array}{c}
\mathbf{b}_{1}^{\top} \\
\vdots \\
\mathbf{b}_{m}^{\top}
\end{array}\right][\mathbf{x}-\boldsymbol{B} \boldsymbol{\lambda}]=\mathbf{0}}
\end{array} \begin{array}{r}
\\
\\
\Leftrightarrow \boldsymbol{B}^{\top}(\mathbf{x}-\boldsymbol{B} \boldsymbol{\lambda})=\mathbf{0} \\
\\
\boldsymbol{B}^{\top} \boldsymbol{B} \boldsymbol{\lambda}=\boldsymbol{B}^{\top} \mathbf{x}
\end{array}
$$

Note: $\boldsymbol{B}^{\top} \boldsymbol{B}$ is invertible $\Rightarrow \boldsymbol{\lambda}=\left(\boldsymbol{B}^{\top} \boldsymbol{B}\right)^{-1} \boldsymbol{B}^{\top} \mathbf{x}$.

- $\pi_{U}(\mathbf{x})=B\left(\boldsymbol{B}^{\top} \boldsymbol{B}\right)^{-1} \boldsymbol{B}^{\top} \mathbf{x} \Rightarrow$ Projection matrix $\boldsymbol{P}_{\pi}=\boldsymbol{B}\left(\boldsymbol{B}^{\top} \boldsymbol{B}\right)^{-1} \boldsymbol{B}^{\top}$.

But wait a minute...

Why $\boldsymbol{B}^{\top} \boldsymbol{B}$ is invertible?

But wait a minute...

Why $\boldsymbol{B}^{\top} \boldsymbol{B}$ is invertible?

Fact

$\operatorname{rank}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)=\operatorname{rank}(\boldsymbol{A})$ for any $\boldsymbol{A} \in \mathbb{R}^{n \times m}$.

But wait a minute...

Why $\boldsymbol{B}^{\top} \boldsymbol{B}$ is invertible?

Fact

$\operatorname{rank}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)=\operatorname{rank}(\boldsymbol{A})$ for any $\boldsymbol{A} \in \mathbb{R}^{n \times m}$.

- Claim: $\operatorname{null}(\boldsymbol{A})=\operatorname{null}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)$.
$(\Rightarrow): \quad \boldsymbol{A} \mathbf{x}=\mathbf{0}$

But wait a minute...

Why $\boldsymbol{B}^{\top} \boldsymbol{B}$ is invertible?

Fact

$\operatorname{rank}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)=\operatorname{rank}(\boldsymbol{A})$ for any $\boldsymbol{A} \in \mathbb{R}^{n \times m}$.

- Claim: $\operatorname{null}(\boldsymbol{A})=\operatorname{null}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)$.
$(\Rightarrow): \quad \boldsymbol{A} \mathbf{x}=\mathbf{0} \Longrightarrow$

But wait a minute...

Why $\boldsymbol{B}^{\top} \boldsymbol{B}$ is invertible?

Fact

$\operatorname{rank}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)=\operatorname{rank}(\boldsymbol{A})$ for any $\boldsymbol{A} \in \mathbb{R}^{n \times m}$.

- Claim: $\operatorname{null}(\boldsymbol{A})=\operatorname{null}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)$.
$(\Rightarrow): \quad \boldsymbol{A} \mathbf{x}=\mathbf{0} \Longrightarrow \boldsymbol{A}^{\top} \boldsymbol{A} \mathbf{x}=\mathbf{0}$.
$(\Leftarrow): \quad \boldsymbol{A}^{\top} \boldsymbol{A} \mathbf{x}=\mathbf{0}$

But wait a minute...

Why $\boldsymbol{B}^{\top} \boldsymbol{B}$ is invertible?

Fact

$\operatorname{rank}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)=\operatorname{rank}(\boldsymbol{A})$ for any $\boldsymbol{A} \in \mathbb{R}^{n \times m}$.

- Claim: $\operatorname{null}(\boldsymbol{A})=\operatorname{null}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)$.
$(\Rightarrow): \quad \boldsymbol{A} \mathbf{x}=\mathbf{0} \Longrightarrow \boldsymbol{A}^{\top} \boldsymbol{A} \mathbf{x}=\mathbf{0}$.
$(\Leftarrow): \quad \boldsymbol{A}^{\top} \boldsymbol{A} \mathbf{x}=\mathbf{0} \Longrightarrow$

But wait a minute...

Why $\boldsymbol{B}^{\top} \boldsymbol{B}$ is invertible?

Fact

$\operatorname{rank}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)=\operatorname{rank}(\boldsymbol{A})$ for any $\boldsymbol{A} \in \mathbb{R}^{n \times m}$.

- Claim: $\operatorname{null}(\boldsymbol{A})=\operatorname{null}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)$.
$(\Rightarrow): \quad \boldsymbol{A} \mathbf{x}=\mathbf{0} \Longrightarrow \boldsymbol{A}^{\top} \boldsymbol{A} \mathbf{x}=\mathbf{0}$.
$(\Leftarrow): \quad \boldsymbol{A}^{\top} \boldsymbol{A} \mathbf{x}=\mathbf{0} \Longrightarrow \mathbf{x}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A} \mathbf{x}$

But wait a minute...

Why $\boldsymbol{B}^{\top} \boldsymbol{B}$ is invertible?

Fact

$\operatorname{rank}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)=\operatorname{rank}(\boldsymbol{A})$ for any $\boldsymbol{A} \in \mathbb{R}^{n \times m}$.

- Claim: $\operatorname{null}(\boldsymbol{A})=\operatorname{null}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)$.
$(\Rightarrow): \quad \boldsymbol{A} \mathbf{x}=\mathbf{0} \Longrightarrow \boldsymbol{A}^{\top} \boldsymbol{A} \mathbf{x}=\mathbf{0}$.
$(\Leftarrow): \quad \boldsymbol{A}^{\top} \boldsymbol{A} \mathbf{x}=\mathbf{0} \Longrightarrow \mathbf{x}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A} \mathbf{x}=(\boldsymbol{A} \mathbf{x})^{\top}(\boldsymbol{A} \mathbf{x})$

But wait a minute...

Why $\boldsymbol{B}^{\top} \boldsymbol{B}$ is invertible?

Fact

$\operatorname{rank}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)=\operatorname{rank}(\boldsymbol{A})$ for any $\boldsymbol{A} \in \mathbb{R}^{n \times m}$.

- Claim: $\operatorname{null}(\boldsymbol{A})=\operatorname{null}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)$.
$(\Rightarrow): \quad \boldsymbol{A} \mathbf{x}=\mathbf{0} \Longrightarrow \boldsymbol{A}^{\top} \boldsymbol{A} \mathbf{x}=\mathbf{0}$.
$(\Leftarrow): \quad \boldsymbol{A}^{\top} \boldsymbol{A} \mathbf{x}=\mathbf{0} \Longrightarrow \mathbf{x}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A} \mathbf{x}=(\boldsymbol{A} \mathbf{x})^{\top}(\boldsymbol{A} \mathbf{x})=\|\boldsymbol{A} \mathbf{x}\|^{2}=0$

But wait a minute...

Why $\boldsymbol{B}^{\top} \boldsymbol{B}$ is invertible?

Fact

$\operatorname{rank}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)=\operatorname{rank}(\boldsymbol{A})$ for any $\boldsymbol{A} \in \mathbb{R}^{n \times m}$.

- Claim: $\operatorname{null}(\boldsymbol{A})=\operatorname{null}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)$.
$(\Rightarrow): \quad \boldsymbol{A} \mathbf{x}=\mathbf{0} \Longrightarrow \boldsymbol{A}^{\top} \boldsymbol{A} \mathbf{x}=\mathbf{0}$.
$(\Leftarrow): \quad \boldsymbol{A}^{\top} \boldsymbol{A} \mathbf{x}=\mathbf{0} \Longrightarrow \mathbf{x}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A} \mathbf{x}=(\boldsymbol{A} \mathbf{x})^{\top}(\boldsymbol{A} \mathbf{x})=\|\boldsymbol{A} \mathbf{x}\|^{2}=0 \Longrightarrow \boldsymbol{A} \mathbf{x}=\mathbf{0}$

But wait a minute...

Why $\boldsymbol{B}^{\top} \boldsymbol{B}$ is invertible?

Fact

$\operatorname{rank}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)=\operatorname{rank}(\boldsymbol{A})$ for any $\boldsymbol{A} \in \mathbb{R}^{n \times m}$.

- Claim: $\operatorname{null}(\boldsymbol{A})=\operatorname{null}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)$.
$(\Rightarrow): \quad \boldsymbol{A} \mathbf{x}=\mathbf{0} \Longrightarrow \boldsymbol{A}^{\top} \boldsymbol{A} \mathbf{x}=\mathbf{0}$.
$(\Leftarrow): \quad \boldsymbol{A}^{\top} \boldsymbol{A} \mathbf{x}=\mathbf{0} \Longrightarrow \mathbf{x}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A} \mathbf{x}=(\boldsymbol{A} \mathbf{x})^{\top}(\boldsymbol{A} \mathbf{x})=\|\boldsymbol{A} \mathbf{x}\|^{2}=0 \Longrightarrow \boldsymbol{A} \mathbf{x}=\mathbf{0}$
- $\operatorname{rank}(\boldsymbol{A})=\operatorname{rank}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)(\because$ the Dimension Theorem $)$.

Example

Example

For a subspace $U=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]\right\} \subseteq \mathbb{R}^{3}$ and $\mathbf{x}=\left[\begin{array}{l}6 \\ 0 \\ 0\end{array}\right] \in \mathbb{R}^{3}$. Find

- the coordinates λ of \mathbf{x} in terms of U
- the projection point $\pi_{U}(\mathbf{x})$
- the projection matrix \boldsymbol{P}_{π}.
- First, we find that the spanning set of U is a basis (check its linear independence!).
- First, we find that the spanning set of U is a basis (check its linear independence!).
- Derive $\boldsymbol{B}=$
- First, we find that the spanning set of U is a basis (check its linear independence!).
- Derive $\boldsymbol{B}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 1 & 2\end{array}\right]$.
- First, we find that the spanning set of U is a basis (check its linear independence!).
- Derive $\boldsymbol{B}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 1 & 2\end{array}\right]$.
- Compute $\boldsymbol{B}^{\top} \boldsymbol{B}$ and $\boldsymbol{B}^{\top} \mathbf{x}$:

$$
\boldsymbol{B}^{\top} \boldsymbol{B}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
3 & 3 \\
3 & 5
\end{array}\right]
$$

- First, we find that the spanning set of U is a basis (check its linear independence!).
- Derive $\boldsymbol{B}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 1 & 2\end{array}\right]$.
- Compute $\boldsymbol{B}^{\top} \boldsymbol{B}$ and $\boldsymbol{B}^{\top} \mathbf{x}$:

$$
\begin{gathered}
\boldsymbol{B}^{\top} \boldsymbol{B}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
3 & 3 \\
3 & 5
\end{array}\right] \\
\boldsymbol{B}^{\top} \mathbf{x}=
\end{gathered}
$$

- First, we find that the spanning set of U is a basis (check its linear independence!).
- Derive $\boldsymbol{B}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 1 & 2\end{array}\right]$.
- Compute $\boldsymbol{B}^{\top} \boldsymbol{B}$ and $\boldsymbol{B}^{\top} \mathbf{x}$:

$$
\begin{gathered}
\boldsymbol{B}^{\top} \boldsymbol{B}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
3 & 3 \\
3 & 5
\end{array}\right] \\
\boldsymbol{B}^{\top} \mathbf{x}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
6 \\
0 \\
0
\end{array}\right]
\end{gathered}
$$

- First, we find that the spanning set of U is a basis (check its linear independence!).
- Derive $\boldsymbol{B}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 1 & 2\end{array}\right]$.
- Compute $\boldsymbol{B}^{\top} \boldsymbol{B}$ and $\boldsymbol{B}^{\top} \mathbf{x}$:

$$
\begin{gathered}
\boldsymbol{B}^{\top} \boldsymbol{B}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
3 & 3 \\
3 & 5
\end{array}\right] \\
\boldsymbol{B}^{\top} \mathbf{x}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
6 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
6 \\
0
\end{array}\right] .
\end{gathered}
$$

- Then, solve $\boldsymbol{B}^{\top} \boldsymbol{B} \boldsymbol{\lambda}=\boldsymbol{B}^{\top} \mathbf{x}$ to find $\boldsymbol{\lambda}$:

$$
\left[\begin{array}{ll}
3 & 3 \\
5 & 5
\end{array}\right]\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2}
\end{array}\right]=\left[\begin{array}{l}
6 \\
0
\end{array}\right]
$$

So $\boldsymbol{\lambda}=\left[\begin{array}{c}5 \\ -3\end{array}\right]$.

- The projection of \mathbf{x} :

$$
\pi_{U}(\mathbf{x})=\boldsymbol{B} \boldsymbol{\lambda}=\left[\begin{array}{c}
5 \\
2 \\
-1
\end{array}\right]
$$

- The projection error:

$$
\left\|\mathbf{x}-\pi_{U}(\mathbf{x})\right\|=\left\|\left[\begin{array}{lll}
1 & -2 & 1
\end{array}\right]^{\top}\right\|
$$

- The projection error:

$$
\left\|\mathbf{x}-\pi_{u}(\mathbf{x})\right\|=\left\|\left[\begin{array}{lll}
1 & -2 & 1
\end{array}\right]^{\top}\right\|=\sqrt{6}
$$

- Finally, the projection matrix:

$$
\boldsymbol{P}_{\pi}
$$

- The projection error:

$$
\left\|\mathbf{x}-\pi_{U}(\mathbf{x})\right\|=\left\|\left[\begin{array}{lll}
1 & -2 & 1
\end{array}\right]^{\top}\right\|=\sqrt{6}
$$

- Finally, the projection matrix:

$$
\boldsymbol{P}_{\pi}=\boldsymbol{B}\left(\boldsymbol{B}^{\top} \boldsymbol{B}\right)^{-1} \boldsymbol{B}^{\top}=\frac{1}{6}\left[\begin{array}{ccc}
5 & 2 & -1 \\
2 & 2 & 2 \\
-1 & 2 & 5
\end{array}\right]
$$

What if $B=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right)$ is orthonormal?

- $\pi_{u}(\mathbf{x})=\boldsymbol{B}\left(\boldsymbol{B}^{\top} \boldsymbol{B}\right)^{-1} \boldsymbol{B}^{\top} \mathbf{x}$

What if $B=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right)$ is orthonormal?

- $\pi_{U}(\mathbf{x})=\boldsymbol{B}\left(\boldsymbol{B}^{\top} \boldsymbol{B}\right)^{-1} \boldsymbol{B}^{\top} \mathbf{x} \quad \Rightarrow \pi_{U}(\mathbf{x})=\boldsymbol{B} \boldsymbol{B}^{\top} \mathbf{x}$.
- $\because B^{\top} B=I$.
- Coordinates: $\boldsymbol{\lambda}=\left(\boldsymbol{B}^{\top} \boldsymbol{B}\right)^{-1} \boldsymbol{B}^{\top} \mathbf{x}=\boldsymbol{B}^{\top} \mathbf{x}$.

Outline

(1) Orthogonal Projections

2) Gram-Schmidt Orthogonalization

(3) Rotations

Illustration of Gram-Schmidt Orthogonalization

- Goal: Transform any basis $\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ of an n-dimensional vector space V into an orthogonal/orthonormal basis of V.

$$
\begin{aligned}
& \mathbf{u}_{1}:=\mathbf{b}_{1} \\
& \mathbf{u}_{k}:=\mathbf{b}_{k}-\pi_{\operatorname{span}\left(\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k-1}\right\}\right)}\left(\mathbf{b}_{k}\right), \quad k=2, \ldots, n
\end{aligned}
$$

(a) Original non-orthogonal (b) First new basis vector (c) Orthogonal basis vectors \boldsymbol{u}_{1} basis vectors $\boldsymbol{b}_{1}, \boldsymbol{b}_{2}$. $\boldsymbol{u}_{1}=\boldsymbol{b}_{1}$ and projection of \boldsymbol{b}_{2} and $\boldsymbol{u}_{2}=\boldsymbol{b}_{2}-\pi_{\mathrm{span}\left[\boldsymbol{u}_{1}\right]}\left(\boldsymbol{b}_{2}\right)$. onto the subspace spanned by

Example

Example

Consider a basis $\left(\mathbf{b}_{1}, \mathbf{b}_{2}\right)$ of \mathbb{R}^{2}, where $\mathbf{b}_{1}=\left[\begin{array}{l}2 \\ 0\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
Apply the Gram-Schmidt method to construct an orthonormal basis ($\mathbf{u}_{1}, \mathbf{u}_{2}$) of \mathbb{R}^{2} (assuming the dot product as the inner product).

$$
\begin{aligned}
& \mathbf{u}_{1}:=\mathbf{b}_{1}=\left[\begin{array}{l}
2 \\
0
\end{array}\right] \\
& \mathbf{u}_{2}:=\mathbf{b}_{2}-\pi_{\text {span }\left(\mathbf{u}_{1}\right)}\left(\mathbf{b}_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{u}_{1} & :=\mathbf{b}_{1}=\left[\begin{array}{l}
2 \\
0
\end{array}\right] \\
\mathbf{u}_{2} & :=\mathbf{b}_{2}-\pi_{\operatorname{span}\left(\mathbf{u}_{1}\right)}\left(\mathbf{b}_{2}\right)=\mathbf{b}_{2}-\frac{\mathbf{u}_{1} \mathbf{u}_{1}^{\top}}{\left\|\mathbf{u}_{1}\right\|^{2}} \mathbf{b}_{2} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{u}_{1} & :=\mathbf{b}_{1}=\left[\begin{array}{l}
2 \\
0
\end{array}\right], \\
\mathbf{u}_{2} & :=\mathbf{b}_{2}-\pi_{\operatorname{span}\left(\mathbf{u}_{1}\right)}\left(\mathbf{b}_{2}\right)=\mathbf{b}_{2}-\frac{\mathbf{u}_{1} \mathbf{u}_{1}^{\top}}{\left\|\mathbf{u}_{1}\right\|^{2}} \mathbf{b}_{2} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

Projection onto Affine Spaces

- Given an affine space $L=\mathbf{x}_{0}+U$.
- U is a low-dimensional subspace of V.
- $\pi_{L}(\mathbf{x})=\mathbf{x}_{0}+\pi_{U}\left(\mathbf{x}-\mathbf{x}_{0}\right)$

(a) Setting.

(b) Reduce problem to projection π_{U} onto vector subspace.

(c) Add support point back in to get affine projection π_{L}.

Outline

(1) Orthogonal Projections

(2) Gram-Schmidt Orthogonalization

(3) Rotations

Rotataions in \mathbb{R}^{2} as An Example

$$
\Phi\left(\boldsymbol{e}_{2}\right)=[-\sin \theta, \cos \theta]^{\top} \boldsymbol{A}
$$

- $\boldsymbol{R}(\theta)=\left[\begin{array}{ll}\Phi\left(\mathbf{e}_{1}\right) & \Phi\left(\mathbf{e}_{2}\right)\end{array}\right]$

Rotataions in \mathbb{R}^{2} as An Example

$$
\Phi\left(\boldsymbol{e}_{2}\right)=[-\sin \theta, \cos \theta]^{\top} \boldsymbol{A}
$$

- Standard basis $\mathbf{e}= \begin{cases}\mathbf{e}_{1} & \left.=\left[\begin{array}{ll}1 & 0\end{array}\right]^{\top}, \quad \mathbf{e}_{2}=\left[\begin{array}{ll}0 & 1\end{array}\right]^{\top}\right\} . \text {. } \text {. }{ }^{\top} \text {. }\end{cases}$
- $\boldsymbol{R}(\theta)=\left[\begin{array}{ll}\Phi\left(\mathbf{e}_{1}\right) & \Phi\left(\mathbf{e}_{2}\right)\end{array}\right]=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$.

Discussions

