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Credits for the resource

The slides are based on the textbooks:

Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong:
Mathematics for Machine Learning. Cambridge University Press.
2020.
Howard Anton, Chris Rorres, Anton Kaul: Elementary Linear
Algebra. Wiley. 2019.

We could partially refer to the monograph:
Francesco Orabona: A Modern Introduction to Online Learning.
https://arxiv.org/abs/1912.13213
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ML Math - Linear Algebra

Orthogonal Projections

Motivations (1/2)

In machine learning, we often need to deal with high-dimensional
data.

High-dimensional data is often hard to analyze or visualize.

Sometimes, only a few dimensions contain most information.

We might try to project the original high-dimensional data onto a
lower-dimensional space and work on it.

Note: When we compress or visualize high-dimensional data, we will
lose information.
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ML Math - Linear Algebra

Orthogonal Projections

Motivations (2/2)

Examples (dimensionality reduction)

Principal Component Analysis (PCA)

Deep Neural Networks

Classification

Linear Regression
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Orthogonal Projections

Projection from 2D to 1D
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Orthogonal Projections

Projection

Projection

Let V be a vector space and U ⊆ V be a subspace of V . A linear mapping
π : V 7→ U is called a projection if π2 = π ◦ π = π.

Recall that linear mappings can be expressed by transformation
matrices.

The projection matrices Pπ exhibit the property that P2
π = Pπ.

Joseph C. C. Lin (CSIE, TKU, TW) ML Math - Linear Algebra Fall 2023 8 / 31



ML Math - Linear Algebra

Orthogonal Projections

Projection

Projection

Let V be a vector space and U ⊆ V be a subspace of V . A linear mapping
π : V 7→ U is called a projection if π2 = π ◦ π = π.

Recall that linear mappings can be expressed by transformation
matrices.

The projection matrices Pπ exhibit the property that P2
π = Pπ.

Joseph C. C. Lin (CSIE, TKU, TW) ML Math - Linear Algebra Fall 2023 8 / 31



ML Math - Linear Algebra

Orthogonal Projections

Projection

Projection

Let V be a vector space and U ⊆ V be a subspace of V . A linear mapping
π : V 7→ U is called a projection if π2 = π ◦ π = π.

Recall that linear mappings can be expressed by transformation
matrices.

The projection matrices Pπ exhibit the property that P2
π = Pπ.

Joseph C. C. Lin (CSIE, TKU, TW) ML Math - Linear Algebra Fall 2023 8 / 31



ML Math - Linear Algebra

Orthogonal Projections

Illustration of projections onto 1-D
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Orthogonal Projections

Illustration of projections onto 1-D

πU(x): closest to x.

∥x− πU(x)∥ is minimal.

⟨πU(x)− x,b⟩ = 0.

Projection πU(x) of x onto U must be an element in U.

πU(x) = λb for some λ ∈ R.

Determining the coordinates:

Since πU(b) = λb:

⟨x− πU(x),b⟩ = 0 ⇔ ⟨x− λb,b⟩ = 0.

⇔ ⟨x,b⟩ − λ⟨b,b⟩ = 0 ⇔ λ = ⟨x,b⟩
⟨b,b⟩ = ⟨b,x⟩

∥b∥2 = b⊤x
b⊤b .
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ML Math - Linear Algebra

Orthogonal Projections

Finding the projection πU(x) ∈ U:

πU(x) = λb =
⟨x,b⟩
∥b∥2

b =
b⊤x

∥b∥2
b.

Note that ∥πU(x)∥ = ∥λb∥ = |λ|∥b∥.
If we use the dot product as the inner product and let θ be the angle
between x and b:

∥πU(x)∥ =
|b⊤x|
∥b∥2

∥b∥ = | cos θ|∥x∥∥b∥ ∥b∥
∥b∥2

= | cos θ|∥x∥.
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ML Math - Linear Algebra

Orthogonal Projections

Finding the projection matrix Pπ:

Recall: projection is a linear mapping.
With the dot product as the inner product,

∥πU(x)∥ = λb = bλ = b
b⊤x

∥b∥2
=

bb⊤

∥b∥2
x.

So,

Pπ =
bb⊤

∥b∥2
.

Note: bb⊤ is a symmetric matrix.
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ML Math - Linear Algebra

Orthogonal Projections

Example

Find the projection matrix Pπ onto the line U through the origin spanned
by b = [1 2 2]⊤ and the projection of x = [1 1 1]⊤.

Pπ =
bb⊤

b⊤b
=

1

9

 1
2
2

 [1 2 2] =
1

9

 1 2 2
2 4 4
2 4 4

 .

πU(x) = Pπx =
1

9

 1 2 2
2 4 4
2 4 4

 1
1
1

 =
1

9

 5
10
10

 ∈ span

 1
2
2

 .
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ML Math - Linear Algebra

Orthogonal Projections

Projection onto General Subspaces (1/4)

Orthogonal projections of x ∈ Rn onto U ⊆ Rn with dim(U) = m ≥ 1.
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ML Math - Linear Algebra

Orthogonal Projections

Projection onto General Subspaces (2/4)

Any projection can be represented as a linear combination of the basis
vectors b1, . . . ,bm of U.

πU(x) =
∑m

i=1 λibi .

Find the coordinates λ1, . . . , λm:

πU(x) =
m∑
i=1

λibi = Bλ

(closest to x on U)

for B = [b1, . . . ,bm] ∈ Rn×m, λ = [λ1, . . . , λm]
⊤ ∈ Rm.

Note: x ⊥ {b1, . . . ,bm} (∵ minimum distance)

⟨b1, x− πU(x)⟩ = b⊤1 (x− πU(x)) = 0
...

⟨bm, x− πU(x)⟩ = b⊤m(x− πU(x)) = 0

Joseph C. C. Lin (CSIE, TKU, TW) ML Math - Linear Algebra Fall 2023 15 / 31
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ML Math - Linear Algebra

Orthogonal Projections

Projection onto General Subspaces (3/4)

Any projection can be represented as a linear combination of the basis
vectors b1, . . . ,bm of U.

πU(x) =
∑m

i=1 λibi .

Find the coordinates λ1, . . . , λm:

πU(x) =
m∑
i=1

λibi = Bλ (closest to x on U)

for B = [b1, . . . ,bm] ∈ Rn×m, λ = [λ1, . . . , λm]
⊤ ∈ Rm.

Note: (x− πU(x)) ⊥ {b1, . . . ,bm} (∵ minimum distance)

b⊤1 (x −Bλ) = 0
...

b⊤m(x −Bλ) = 0
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ML Math - Linear Algebra

Orthogonal Projections

Projection onto General Subspaces (4/4)

Since
b⊤1 (x −Bλ) = 0

...

b⊤m(x −Bλ) = 0

We have  b⊤1
...
b⊤m

 [x− Bλ] = 0 ⇔ B⊤(x− Bλ) = 0

⇔ B⊤Bλ = B⊤x

Note: B⊤B is invertible

⇒ λ = (B⊤B)−1B⊤x.

πU(x) = B(B⊤B)−1B⊤x ⇒ Projection matrix Pπ = B(B⊤B)−1B⊤.
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ML Math - Linear Algebra

Orthogonal Projections

But wait a minute . . .

Why B⊤B is invertible?

Fact

rank(A⊤A) = rank(A) for any A ∈ Rn×m.

Claim: null(A) = null(A⊤A).

(⇒): Ax = 0 =⇒ A⊤Ax = 0.
(⇐): A⊤Ax = 0 =⇒ x⊤A⊤Ax = (Ax)⊤(Ax) = ∥Ax∥2 = 0 =⇒ Ax = 0

rank(A) = rank(A⊤A) (∵ the Dimension Theorem).

Joseph C. C. Lin (CSIE, TKU, TW) ML Math - Linear Algebra Fall 2023 18 / 31

https://math.stackexchange.com/questions/211949/gram-matrices-rank


ML Math - Linear Algebra

Orthogonal Projections

But wait a minute . . .

Why B⊤B is invertible?

Fact

rank(A⊤A) = rank(A) for any A ∈ Rn×m.

Claim: null(A) = null(A⊤A).

(⇒): Ax = 0 =⇒ A⊤Ax = 0.
(⇐): A⊤Ax = 0 =⇒ x⊤A⊤Ax = (Ax)⊤(Ax) = ∥Ax∥2 = 0 =⇒ Ax = 0

rank(A) = rank(A⊤A) (∵ the Dimension Theorem).

Joseph C. C. Lin (CSIE, TKU, TW) ML Math - Linear Algebra Fall 2023 18 / 31

https://math.stackexchange.com/questions/211949/gram-matrices-rank


ML Math - Linear Algebra

Orthogonal Projections

But wait a minute . . .

Why B⊤B is invertible?

Fact

rank(A⊤A) = rank(A) for any A ∈ Rn×m.

Claim: null(A) = null(A⊤A).

(⇒): Ax = 0

=⇒ A⊤Ax = 0.
(⇐): A⊤Ax = 0 =⇒ x⊤A⊤Ax = (Ax)⊤(Ax) = ∥Ax∥2 = 0 =⇒ Ax = 0

rank(A) = rank(A⊤A) (∵ the Dimension Theorem).

Joseph C. C. Lin (CSIE, TKU, TW) ML Math - Linear Algebra Fall 2023 18 / 31

https://math.stackexchange.com/questions/211949/gram-matrices-rank


ML Math - Linear Algebra

Orthogonal Projections

But wait a minute . . .

Why B⊤B is invertible?

Fact

rank(A⊤A) = rank(A) for any A ∈ Rn×m.

Claim: null(A) = null(A⊤A).

(⇒): Ax = 0 =⇒

A⊤Ax = 0.
(⇐): A⊤Ax = 0 =⇒ x⊤A⊤Ax = (Ax)⊤(Ax) = ∥Ax∥2 = 0 =⇒ Ax = 0

rank(A) = rank(A⊤A) (∵ the Dimension Theorem).

Joseph C. C. Lin (CSIE, TKU, TW) ML Math - Linear Algebra Fall 2023 18 / 31

https://math.stackexchange.com/questions/211949/gram-matrices-rank


ML Math - Linear Algebra

Orthogonal Projections

But wait a minute . . .

Why B⊤B is invertible?

Fact

rank(A⊤A) = rank(A) for any A ∈ Rn×m.

Claim: null(A) = null(A⊤A).

(⇒): Ax = 0 =⇒ A⊤Ax = 0.
(⇐): A⊤Ax = 0

=⇒ x⊤A⊤Ax = (Ax)⊤(Ax) = ∥Ax∥2 = 0 =⇒ Ax = 0

rank(A) = rank(A⊤A) (∵ the Dimension Theorem).

Joseph C. C. Lin (CSIE, TKU, TW) ML Math - Linear Algebra Fall 2023 18 / 31

https://math.stackexchange.com/questions/211949/gram-matrices-rank


ML Math - Linear Algebra

Orthogonal Projections

But wait a minute . . .

Why B⊤B is invertible?

Fact

rank(A⊤A) = rank(A) for any A ∈ Rn×m.

Claim: null(A) = null(A⊤A).

(⇒): Ax = 0 =⇒ A⊤Ax = 0.
(⇐): A⊤Ax = 0 =⇒

x⊤A⊤Ax = (Ax)⊤(Ax) = ∥Ax∥2 = 0 =⇒ Ax = 0

rank(A) = rank(A⊤A) (∵ the Dimension Theorem).

Joseph C. C. Lin (CSIE, TKU, TW) ML Math - Linear Algebra Fall 2023 18 / 31

https://math.stackexchange.com/questions/211949/gram-matrices-rank


ML Math - Linear Algebra

Orthogonal Projections

But wait a minute . . .

Why B⊤B is invertible?

Fact

rank(A⊤A) = rank(A) for any A ∈ Rn×m.

Claim: null(A) = null(A⊤A).

(⇒): Ax = 0 =⇒ A⊤Ax = 0.
(⇐): A⊤Ax = 0 =⇒ x⊤A⊤Ax

= (Ax)⊤(Ax) = ∥Ax∥2 = 0 =⇒ Ax = 0

rank(A) = rank(A⊤A) (∵ the Dimension Theorem).

Joseph C. C. Lin (CSIE, TKU, TW) ML Math - Linear Algebra Fall 2023 18 / 31

https://math.stackexchange.com/questions/211949/gram-matrices-rank


ML Math - Linear Algebra

Orthogonal Projections

But wait a minute . . .

Why B⊤B is invertible?

Fact

rank(A⊤A) = rank(A) for any A ∈ Rn×m.

Claim: null(A) = null(A⊤A).

(⇒): Ax = 0 =⇒ A⊤Ax = 0.
(⇐): A⊤Ax = 0 =⇒ x⊤A⊤Ax = (Ax)⊤(Ax)

= ∥Ax∥2 = 0 =⇒ Ax = 0

rank(A) = rank(A⊤A) (∵ the Dimension Theorem).

Joseph C. C. Lin (CSIE, TKU, TW) ML Math - Linear Algebra Fall 2023 18 / 31

https://math.stackexchange.com/questions/211949/gram-matrices-rank


ML Math - Linear Algebra

Orthogonal Projections

But wait a minute . . .

Why B⊤B is invertible?

Fact

rank(A⊤A) = rank(A) for any A ∈ Rn×m.

Claim: null(A) = null(A⊤A).

(⇒): Ax = 0 =⇒ A⊤Ax = 0.
(⇐): A⊤Ax = 0 =⇒ x⊤A⊤Ax = (Ax)⊤(Ax) = ∥Ax∥2 = 0

=⇒ Ax = 0

rank(A) = rank(A⊤A) (∵ the Dimension Theorem).

Joseph C. C. Lin (CSIE, TKU, TW) ML Math - Linear Algebra Fall 2023 18 / 31

https://math.stackexchange.com/questions/211949/gram-matrices-rank


ML Math - Linear Algebra

Orthogonal Projections

But wait a minute . . .

Why B⊤B is invertible?

Fact

rank(A⊤A) = rank(A) for any A ∈ Rn×m.

Claim: null(A) = null(A⊤A).

(⇒): Ax = 0 =⇒ A⊤Ax = 0.
(⇐): A⊤Ax = 0 =⇒ x⊤A⊤Ax = (Ax)⊤(Ax) = ∥Ax∥2 = 0 =⇒ Ax = 0

rank(A) = rank(A⊤A) (∵ the Dimension Theorem).

Joseph C. C. Lin (CSIE, TKU, TW) ML Math - Linear Algebra Fall 2023 18 / 31

https://math.stackexchange.com/questions/211949/gram-matrices-rank


ML Math - Linear Algebra

Orthogonal Projections

But wait a minute . . .

Why B⊤B is invertible?

Fact

rank(A⊤A) = rank(A) for any A ∈ Rn×m.

Claim: null(A) = null(A⊤A).

(⇒): Ax = 0 =⇒ A⊤Ax = 0.
(⇐): A⊤Ax = 0 =⇒ x⊤A⊤Ax = (Ax)⊤(Ax) = ∥Ax∥2 = 0 =⇒ Ax = 0

rank(A) = rank(A⊤A) (∵ the Dimension Theorem).

Joseph C. C. Lin (CSIE, TKU, TW) ML Math - Linear Algebra Fall 2023 18 / 31

https://math.stackexchange.com/questions/211949/gram-matrices-rank


ML Math - Linear Algebra

Orthogonal Projections

Example

Example

For a subspace U = span


 1

1
1

 ,

 0
1
2

 ⊆ R3 and x =

 6
0
0

 ∈ R3.

Find

the coordinates λ of x in terms of U

the projection point πU(x)

the projection matrix Pπ.
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Orthogonal Projections

First, we find that the spanning set of U is a basis (check its linear
independence!).

Derive B =

 1 0
1 1
1 2

.
Compute B⊤B and B⊤x:

B⊤B =

[
1 1 1
0 1 2

] 1 0
1 1
1 2

 =

[
3 3
3 5

]
,

B⊤x =

[
1 1 1
0 1 2

] 6
0
0

 =

[
6
0

]
.
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Orthogonal Projections

Then, solve B⊤Bλ = B⊤x to find λ:[
3 3
5 5

] [
λ1

λ2

]
=

[
6
0

]

So λ =

[
5
−3

]
.

The projection of x:

πU(x) = Bλ =

 5
2
−1

 .
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Orthogonal Projections

The projection error:

∥x− πU(x)∥ = ∥[1 − 2 1]⊤∥

=
√
6.

Finally, the projection matrix:

Pπ = B(B⊤B)−1B⊤ =
1

6

 5 2 −1
2 2 2
−1 2 5

 .
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Orthogonal Projections

What if B = (b1, . . . ,bm) is orthonormal?

πU(x) = B(B⊤B)−1B⊤x

⇒ πU(x) = BB⊤x.
∵ B⊤B = I .

Coordinates: λ = (B⊤B)−1B⊤x = B⊤x.
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Gram-Schmidt Orthogonalization

Outline
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Gram-Schmidt Orthogonalization

Illustration of Gram-Schmidt Orthogonalization

Goal: Transform any basis (b1, . . . ,bn) of an n-dimensional vector
space V into an orthogonal/orthonormal basis of V .

u1 := b1

uk := bk − πspan({u1,...,uk−1})(bk), k = 2, . . . , n.
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Gram-Schmidt Orthogonalization

Example

Example

Consider a basis (b1,b2) of R2, where b1 =

[
2
0

]
, b2 =

[
1
1

]
.

Apply the Gram-Schmidt method to construct an orthonormal basis
(u1,u2) of R2 (assuming the dot product as the inner product).
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Gram-Schmidt Orthogonalization

u1 := b1 =

[
2
0

]
,

u2 := b2 − πspan(u1)(b2)

= b2 −
u1u1

⊤

∥u1∥2
b2

=

[
1
1

]
−
[
1 0
0 0

] [
1
1

]
=

[
0
1

]
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Gram-Schmidt Orthogonalization

Projection onto Affine Spaces

Given an affine space L = x0 + U.

U is a low-dimensional subspace of V .

πL(x) = x0 + πU(x− x0)
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Rotations

Outline
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Rotations

Rotataions in R2 as An Example

Standard basis e = {e1 = [1 0]⊤, e2 = [0 1]⊤}.

R(θ) = [Φ(e1) Φ(e2)]

=

[
cos θ − sin θ
sin θ cos θ

]
.
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Rotations
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Discussions

Joseph C. C. Lin (CSIE, TKU, TW) ML Math - Linear Algebra Fall 2023 31 / 31


	Orthogonal Projections
	Gram-Schmidt Orthogonalization
	Rotations
	

