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Credits for the resource

The slides are based on the textbooks:

Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong:
Mathematics for Machine Learning. Cambridge University Press.
2020.
Howard Anton, Chris Rorres, Anton Kaul: Elementary Linear
Algebra. Wiley. 2019.

We could partially refer to the monograph:
Francesco Orabona: A Modern Introduction to Online Learning.
https://arxiv.org/abs/1912.13213
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Data, Models, and Learning

Motivation

It’s time to consider a problem that a ML algorithm is designed to
solve.

We will see some performance metrics to speak for what a “good”
model is.

As before, we assume that the data is represented as vectors.

Denote by N the number of examples (or data points, examples, etc.)
in a dataset.

The data has D features, hence a vector is of D-dimensional here.
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Data, Models, and Learning

We are interested in the salary of a person aged 60.
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Data, Models, and Learning

Models as Functions

For example, consider the linear function f : RD 7→ R,

f (x) = θ⊤x+ θ0

for unknown θ and θ0.
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Data, Models, and Learning

Models as Probability Distributions

We can also consider predictors as probabilistic models (e.g., distribution
of possible functions).
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Data, Models, and Learning

Goal of Learning

Find a model and its corresponding parameters such that the
predictor performs well on unseen data.

Three algorithmic phases:
Prediction or inference

Non-probabilistic: prediction (e.g., Empirical risk minimization (ERM)).
Probabilistic: inference (e.g., maximum likelihood, Bayesian inference).

Training or parameter estimation.
Hyperparameter tuning or model selection.
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Empirical Risk Minimization

Hypothesis Class of Functions

Given N examples xi ∈ RD , i = 1, . . . ,N and corresponding labels yi ∈ R.

Goal: Estimate a predictor f (·,θ) : RD 7→ R, parametrized by θ

f (xi ,θ
∗) ≈ yi for all i ∈ {1, . . . ,N},

where θ∗ is a good parameter we aim to find.

Let ŷi = f (xi ,θ
∗) represent the output of the predictor.
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Empirical Risk Minimization

Example

Consider the set of affine functions.

Let xi = [1, x
(1)
i , x

(2)
i , . . . , x

(D)
i ]⊤

The corresponding parameter θ = [θ0, θ1, . . . , θD ]
⊤.

Consider a more compact form as below:

f (xi ,θ) = θ⊤xi .

which is equivalent to

f (xi ,θ) = θ0 +
D∑

d=1

θdx
(d)
i
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Empirical Risk Minimization

Loss Functions for Training & Empirical Risk

We specify a loss function ℓ(yn, ŷn) to say how bad a model fits the data.

Goal: Loss Minimization

Find a good parameter θ∗ such that the average loss on the set of N
training examples is minimized.

Assumptions

A given training set {(x1, y1), (x2, y2), . . . , (xN , yN)} is independently and
identically distributed (i.i.d.).

X := [x1, . . . , xN ]
⊤ ∈ RN×D , label vector y := [y1, . . . , yN ]

⊤ ∈ RN .

The average loss:

Remp(f ,X , y) =
1

N

N∑
i=1

ℓ(yi , ŷi ).
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Empirical Risk Minimization

Example

Consider the squared loss ℓ(yi , ŷi ) = (yi − ŷi )
2. So we wish to solve

min
θ∈RD

1

N

N∑
i=1

(yi − f (xn,θ))
2,

that is,

min
θ∈RD

1

N

N∑
i=1

(yi − θ⊤xi )
2 ⇐⇒ min

θ∈RD

1

N
∥y − Xθ∥2.

⋆ The least-squares problem.
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Empirical Risk Minimization

Remark: True Risk in Terms of Expected Risk (1/2)

We are NOT interested in a predictor that ONLY performs well on
the training data.

We seek a predictor that performs well on unseen test data.

Formally, we are interested in finding f that minimizes the expected
risk:

Rtrue(f ) = Ex,y [ℓ(y , f (x))],

where y is the label and f (x) is the prediction based on x.

⋆ Rtrue(f ): the true risk if we had access to an infinite amount of data.

Joseph C. C. Lin (CSIE, TKU, TW) ML Math - ERM Fall 2023 14 / 19



ML Math - ERM

Empirical Risk Minimization

Remark: True Risk in Terms of Expected Risk (1/2)

We are NOT interested in a predictor that ONLY performs well on
the training data.

We seek a predictor that performs well on unseen test data.

Formally, we are interested in finding f that minimizes the expected
risk:

Rtrue(f ) = Ex,y [ℓ(y , f (x))],

where y is the label and f (x) is the prediction based on x.

⋆ Rtrue(f ): the true risk if we had access to an infinite amount of data.

Joseph C. C. Lin (CSIE, TKU, TW) ML Math - ERM Fall 2023 14 / 19



ML Math - ERM

Empirical Risk Minimization

Remark: True Risk in Terms of Expected Risk (2/2)

Questions arising from minimizing expected risk:

How should we change the training procedure to generalize well?

How do we estimate expected risk from finite data?
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Empirical Risk Minimization

Regularization: An Approach to Reduce Overfitting

Key: Bias the search for the minimizer of empirical risk by introducing
a penalty term which is referred to as regularization.

Example

Revisit the least-squares problem. By adding a penalty term involving θ
we have:

min
θ∈RD

1

N
∥y − Xθ∥2 + λ∥θ∥2.
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Empirical Risk Minimization

Cross-Validation: Assess the Generalization Performance (1/2)

Partition the dataset into two sets D = R∪ V s.t. R∩ V = ∅.
R: the training set.

V: the validation set.

K -fold cross-validation: partition the data into K chunks (K − 1 of
them: R; the rest one of them: V).
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Empirical Risk Minimization

Cross-Validation: Assess the Generalization Performance (1/2)

Cross-validation approximates the expected generalization error:

EV [R(f ,V)] ≈
1

K

K∑
k=1

R(f (k),V(k)),

where R(f (k),V(k)) is the risk (e.g., RMSE) on the validation set V(k) for
predictor f (k).

A potential computational cost of training the model K times, which
can be burdensome (except we can do it in parallel).
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Discussions
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