Mathematics for Machine Learning — Probabilistic Modeling & Inference

Joseph Chuang-Chieh Lin

Department of Computer Science & Information Engineering, Tamkang University

Fall 2023

Joseph C. C. Lin (CSIE, TKU, TW)

ML Math - Bayesian Inference

Credits for the resource

- The slides are based on the textbooks:
 - Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong: Mathematics for Machine Learning. Cambridge University Press. 2020.
 - Howard Anton, Chris Rorres, Anton Kaul: Elementary Linear Algebra. Wiley. 2019.
- We could partially refer to the monograph: *Francesco Orabona: A Modern Introduction to Online Learning. https://arxiv.org/abs/1912.13213*

Outline

Probabilistic Models & Bayesian Inference

< □ > < 同 > < 回 > < 回 > < 回 >

- We are concerned with prediction of future events and decision making.
- We build models that describe the generative process that generates the observed data.
- For example, consider the outcome of a coin-flip experiment ("heads" or "tails").

<日

<</p>

- We are concerned with prediction of future events and decision making.
- We build models that describe the generative process that generates the observed data.
- For example, consider the outcome of a coin-flip experiment ("heads" or "tails").
 - Define a parameter μ which describes the probability of "heads" (the parameter of a Bernoulli distribution).

A (1) × A (2) × A (2) × A

- We are concerned with prediction of future events and decision making.
- We build models that describe the generative process that generates the observed data.
- For example, consider the outcome of a coin-flip experiment ("heads" or "tails").
 - Define a parameter μ which describes the probability of "heads" (the parameter of a Bernoulli distribution).
 - Then, we can sample an outcome x ∈ {head, tail} from the Bernoulli distribution p(x | μ) = Ber(μ).

- We are concerned with prediction of future events and decision making.
- We build models that describe the generative process that generates the observed data.
- For example, consider the outcome of a coin-flip experiment ("heads" or "tails").
 - Define a parameter μ which describes the probability of "heads" (the parameter of a Bernoulli distribution).
 - Then, we can sample an outcome x ∈ {head, tail} from the Bernoulli distribution p(x | μ) = Ber(μ).
- Note: μ is unknown in advance and can never be observed directly.

イロト 不得 トイヨト イヨト

- We are concerned with prediction of future events and decision making.
- We build models that describe the generative process that generates the observed data.
- For example, consider the outcome of a coin-flip experiment ("heads" or "tails").
 - Define a parameter μ which describes the probability of "heads" (the parameter of a Bernoulli distribution).
 - Then, we can sample an outcome x ∈ {head, tail} from the Bernoulli distribution p(x | μ) = Ber(μ).
- Note: μ is unknown in advance and can never be observed directly.
- We need mechanisms to learn something about µ given observed outcomes of coin-flip.

Joseph C. C. Lin (CSIE, TKU, TW)

Probabilistic Models

- The benefit of using probabilistic models:
 - A unified and consistent set of tools from probability theory for modeling, inference, prediction, and model selection.
- $p(\mathbf{x}, \theta)$: the joint distribution of the observed variables \mathbf{x} and the hidden parameters θ .

・ 何 ト ・ ヨ ト ・ ヨ ト

Probabilistic Models

- The benefit of using probabilistic models:
 - A unified and consistent set of tools from probability theory for modeling, inference, prediction, and model selection.
- p(x, θ): the joint distribution of the observed variables x and the hidden parameters θ. It encapsulates the information:
 - The prior and the likelihood.
 - The marginal likelihood $p(\mathbf{x})$ (though integrating out the parameters is required.)
 - The posterior (obtained by dividing the joint by the marginal likelihood).

イロト イヨト イヨト ・

Probabilistic Models

- The benefit of using probabilistic models:
 - A unified and consistent set of tools from probability theory for modeling, inference, prediction, and model selection.
- p(x, θ): the joint distribution of the observed variables x and the hidden parameters θ. It encapsulates the information:
 - The prior and the likelihood.
 - The marginal likelihood $p(\mathbf{x})$ (though integrating out the parameters is required.)
 - The posterior (obtained by dividing the joint by the marginal likelihood).
- Therefore, a probabilistic model is specified by the joint distribution of all its random variables.

< 日 > < 同 > < 三 > < 三 > <

- We have already learnt two ways of estimating model parameters θ :
 - Maximum likelihood estimation (MLE)
 - Maximum a posteriori estimation (MAP)
- We can then obtain a *single-best* value of θ (solving an optimization problem), then we can use them to make predictions.
- Having the full posterior distribution around can be useful and leads to more robust decisions.

- 4 同 ト 4 三 ト - 4 三 ト - -

• Bayesian inference: finding such a posterior distribution.

1

• For a dataset \mathcal{X} , a parameter prior $p(\theta)$, and a likelihood function, the posterior

$$\mathsf{p}(\boldsymbol{ heta} \mid \mathcal{X}) = rac{\mathsf{p}(\mathcal{X} \mid \boldsymbol{ heta})\mathsf{p}(\boldsymbol{ heta})}{\mathsf{p}(\mathcal{X})},$$

then by applying Bayes' theorem,

$$p(\mathcal{X}) = \int p(\mathcal{X} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) \mathrm{d}\boldsymbol{\theta}.$$

- Bayesian inference: finding such a posterior distribution.
- For a dataset \mathcal{X} , a parameter prior $p(\theta)$, and a likelihood function, the posterior

$$p(\theta \mid \mathcal{X}) = rac{p(\mathcal{X} \mid \theta)p(\theta)}{p(\mathcal{X})},$$

then by applying Bayes' theorem,

$$p(\mathcal{X}) = \int p(\mathcal{X} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) \mathrm{d} \boldsymbol{\theta}.$$

• Propagate uncertainty from the parameters to the data. Specifically, with a distribution $p(\theta)$, our predictions will be

$$p(\mathbf{x}) = \int p(\mathbf{x} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) \mathrm{d}\boldsymbol{\theta}$$

Joseph C. C. Lin (CSIE, TKU, TW)

- Bayesian inference: finding such a posterior distribution.
- For a dataset \mathcal{X} , a parameter prior $p(\theta)$, and a likelihood function, the posterior

$$p(\theta \mid \mathcal{X}) = rac{p(\mathcal{X} \mid \theta)p(\theta)}{p(\mathcal{X})},$$

then by applying Bayes' theorem,

$$p(\mathcal{X}) = \int p(\mathcal{X} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) \mathrm{d}\boldsymbol{\theta}.$$

• Propagate uncertainty from the parameters to the data. Specifically, with a distribution $p(\theta)$, our predictions will be

$$p(\mathbf{x}) = \int p(\mathbf{x} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) \mathrm{d}\boldsymbol{\theta} = \mathbb{E}_{\boldsymbol{\theta}}[p(\mathbf{x} \mid \boldsymbol{\theta})],$$

which no longer depend on the model parameters θ .

Joseph C. C. Lin (CSIE, TKU, TW)

- Bayesian inference: finding such a posterior distribution.
- For a dataset \mathcal{X} , a parameter prior $p(\theta)$, and a likelihood function, the posterior

$$p(\theta \mid \mathcal{X}) = rac{p(\mathcal{X} \mid \theta)p(\theta)}{p(\mathcal{X})},$$

then by applying Bayes' theorem,

$$p(\mathcal{X}) = \int p(\mathcal{X} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) \mathrm{d}\boldsymbol{\theta}.$$

• Propagate uncertainty from the parameters to the data. Specifically, with a distribution $p(\theta)$, our predictions will be

$$p(\mathbf{x}) = \int p(\mathbf{x} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) \mathrm{d}\boldsymbol{\theta} = \mathbb{E}_{\boldsymbol{\theta}}[p(\mathbf{x} \mid \boldsymbol{\theta})],$$

which no longer depend on the model parameters θ .

• It has been marginalized/integrated out.

Joseph C. C. Lin (CSIE, TKU, TW)

ML Math - Bayesian Inference

A D A A B A A B A A B A B B

ML Math - Bayesian Inference

Probabilistic Models & Bayesian Inference

Bayesian Inference (3/3)

$$p(\mathbf{x}) = \int p(\mathbf{x} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) \mathrm{d}\boldsymbol{\theta} = \mathbb{E}_{\boldsymbol{\theta}}[p(\mathbf{x} \mid \boldsymbol{\theta})],$$

- The prediction becomes an average over all plausible values of θ .
 - The plausibility is encapsulated by the distribution $p(\theta)$.

< □ > < 同 > < 回 > < 回 > < 回 >

Probabilistic Models & Bayesian Inference

Computational Issues

• MLE or MAP yields a consistent point estimate θ^* of the parameters.

- Key computational problem: optimization.
- Prediction: straightforward.
- Bayesian inference yields a distribution.
 - Key computational problem: integration.
 - Prediction: solving another integration problem.

Latent-Variable Models

Outline

イロト イポト イヨト イヨト

э

Latent Variables

- Sometimes it is useful to have additional variable (besides θ) as part of the model.
 - We call them latent variables.
 - They do not parametrize the model explicitly.
 - E.g., mixture of *K* Gaussians (further reading link).
- Latent variables can
 - Describe the data-generation process.
 - Increase the interpretability of the model.
 - Simplify the structure of the model.

Denote data by **x**, the model parameter by θ and the latent variables by **z**, we obtain the conditional distribution:

 $p(\mathbf{x} \mid \mathbf{z}, \boldsymbol{\theta}).$

イロト 不得下 イヨト イヨト

Denote data by **x**, the model parameter by θ and the latent variables by **z**, we obtain the conditional distribution:

 $p(\mathbf{x} \mid \mathbf{z}, \boldsymbol{\theta}).$

 \Rightarrow Generate data for any model parameter and latent variables.

Denote data by **x**, the model parameter by θ and the latent variables by **z**, we obtain the conditional distribution:

 $p(\mathbf{x} \mid \mathbf{z}, \boldsymbol{\theta}).$

- \Rightarrow Generate data for any model parameter and latent variables.
 - We place a prior p(z) on the given latent variables z.

Denote data by **x**, the model parameter by θ and the latent variables by **z**, we obtain the conditional distribution:

 $p(\mathbf{x} \mid \mathbf{z}, \boldsymbol{\theta}).$

- \Rightarrow Generate data for any model parameter and latent variables.
 - We place a prior p(z) on the given latent variables z.

A Two-Step Procedure for Parameter Learning & Inference

- **()** Compute the likelihood $p(\mathbf{x} | \theta)$ (not depending on **z**).
- **②** Use the likelihood for parameter estimation or Bayesian inference.

イロト イヨト イヨト イヨト 三日

Likelihood in Terms of Marginal Distribution

What we already have: a conditional distribution

 $p(\mathbf{x} \mid \mathbf{z}, \boldsymbol{\theta}).$

We need to marginalize out the latent variables to have the predictive distribution of the data given the model parameters θ :

$$p(\mathbf{x} \mid \boldsymbol{\theta}) = \int p(\mathbf{x} \mid \mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) \mathrm{d}\mathbf{z},$$

Joseph C. C. Lin (CSIE, TKU, TW)

<日

<</p>

Likelihood in Terms of Marginal Distribution

What we already have: a conditional distribution

 $p(\mathbf{x} \mid \mathbf{z}, \boldsymbol{\theta}).$

We need to marginalize out the latent variables to have the predictive distribution of the data given the model parameters θ :

$$p(\mathbf{x} \mid \boldsymbol{\theta}) = \int p(\mathbf{x} \mid \mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) \mathrm{d}\mathbf{z},$$

Note that $p(\mathbf{z})$ is a prior,

<日

<</p>

Likelihood in Terms of Marginal Distribution

What we already have: a conditional distribution

 $p(\mathbf{x} \mid \mathbf{z}, \boldsymbol{\theta}).$

We need to marginalize out the latent variables to have the predictive distribution of the data given the model parameters θ :

$$p(\mathbf{x} \mid \boldsymbol{\theta}) = \int p(\mathbf{x} \mid \mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z},$$

Note that $p(\mathbf{z})$ is a prior, and $p(\mathbf{x} \mid \boldsymbol{\theta})$ does not depend on \mathbf{z} .

- ロ ト ・ 同 ト ・ 三 ト ・ 三 ト - -

• MAP estimation is also straightforward:

イロト イポト イヨト イヨト

э

- MAP estimation is also straightforward:
 - Place a prior $p(\theta)$ and use Bayes' theorem to obtain

- MAP estimation is also straightforward:
 - Place a prior $p(\theta)$ and use Bayes' theorem to obtain

$$p(\theta \mid \mathcal{X}) = rac{p(\mathcal{X} \mid \theta)p(\theta)}{p(\mathcal{X})}$$

- MAP estimation is also straightforward:
 - Place a prior $p(\theta)$ and use Bayes' theorem to obtain

$$p(\theta \mid \mathcal{X}) = rac{p(\mathcal{X} \mid \theta)p(\theta)}{p(\mathcal{X})}$$

 $\Rightarrow\,$ a posterior distribution over the model parameters given a dataset $\mathcal{X}.$

- MAP estimation is also straightforward:
 - Place a prior $p(\theta)$ and use Bayes' theorem to obtain

$$p(\theta \mid \mathcal{X}) = rac{p(\mathcal{X} \mid \theta)p(\theta)}{p(\mathcal{X})}$$

- $\Rightarrow\,$ a posterior distribution over the model parameters given a dataset $\mathcal{X}.$
 - $p(\mathcal{X} \mid \theta)$ requires the marginalization of latent variables **z**.

14/16

- MAP estimation is also straightforward:
 - Place a prior $p(\theta)$ and use Bayes' theorem to obtain

$$p(\theta \mid \mathcal{X}) = rac{p(\mathcal{X} \mid \theta)p(\theta)}{p(\mathcal{X})}$$

- $\Rightarrow\,$ a posterior distribution over the model parameters given a dataset $\mathcal{X}.$
 - $p(\mathcal{X} \mid \theta)$ requires the marginalization of latent variables **z**.

$$p(\mathbf{x} \mid \boldsymbol{\theta}) = \int p(\mathbf{x} \mid \mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z},$$

• Resort to approximation.

Similarly we can have

$$p(\mathbf{z} \mid \mathcal{X}) = \frac{p(\mathcal{X} \mid \mathbf{z})p(\mathbf{z})}{p(\mathcal{X})}, \quad p(\mathcal{X} \mid \mathbf{z}) = \int p(\mathcal{X} \mid \mathbf{z}, \boldsymbol{\theta})p(\boldsymbol{\theta}) \mathrm{d}\boldsymbol{\theta},$$

(日)

Similarly we can have

$$p(\mathbf{z} \mid \mathcal{X}) = rac{p(\mathcal{X} \mid \mathbf{z})p(\mathbf{z})}{p(\mathcal{X})}, \quad p(\mathcal{X} \mid \mathbf{z}) = \int p(\mathcal{X} \mid \mathbf{z}, \boldsymbol{\theta})p(\boldsymbol{\theta}) \mathrm{d}\boldsymbol{\theta},$$

 $p(\mathbf{z})$: the prior on \mathbf{z} ; $p(\mathcal{X} \mid \mathbf{z})$ requires us to integrate out $\boldsymbol{\theta}$.

Joseph C. C. Lin (CSIE, TKU, TW)

イロト 不得 トイヨト イヨト

э

Similarly we can have

$$p(\mathbf{z} \mid \mathcal{X}) = rac{p(\mathcal{X} \mid \mathbf{z})p(\mathbf{z})}{p(\mathcal{X})}, \quad p(\mathcal{X} \mid \mathbf{z}) = \int p(\mathcal{X} \mid \mathbf{z}, \boldsymbol{\theta})p(\boldsymbol{\theta}) \mathrm{d}\boldsymbol{\theta},$$

 $p(\mathbf{z})$: the prior on \mathbf{z} ; $p(\mathcal{X} \mid \mathbf{z})$ requires us to integrate out $\boldsymbol{\theta}$.

- It may be difficult to solve the integrals analytically.
- Marginalizing out both the latent variables and the model parameters at the same time is not possible in general.

Similarly we can have

$$p(\mathbf{z} \mid \mathcal{X}) = rac{p(\mathcal{X} \mid \mathbf{z})p(\mathbf{z})}{p(\mathcal{X})}, \quad p(\mathcal{X} \mid \mathbf{z}) = \int p(\mathcal{X} \mid \mathbf{z}, \boldsymbol{\theta})p(\boldsymbol{\theta}) \mathrm{d}\boldsymbol{\theta},$$

 $p(\mathbf{z})$: the prior on \mathbf{z} ; $p(\mathcal{X} \mid \mathbf{z})$ requires us to integrate out $\boldsymbol{\theta}$.

- It may be difficult to solve the integrals analytically.
- Marginalizing out both the latent variables and the model parameters at the same time is not possible in general.
- An easier quantity to compute:

・ 同 ト ・ ヨ ト ・ ヨ ト …

Similarly we can have

$$p(\mathbf{z} \mid \mathcal{X}) = rac{p(\mathcal{X} \mid \mathbf{z})p(\mathbf{z})}{p(\mathcal{X})}, \quad p(\mathcal{X} \mid \mathbf{z}) = \int p(\mathcal{X} \mid \mathbf{z}, \boldsymbol{\theta})p(\boldsymbol{\theta}) \mathrm{d}\boldsymbol{\theta},$$

 $p(\mathbf{z})$: the prior on \mathbf{z} ; $p(\mathcal{X} \mid \mathbf{z})$ requires us to integrate out $\boldsymbol{\theta}$.

- It may be difficult to solve the integrals analytically.
- Marginalizing out both the latent variables and the model parameters at the same time is not possible in general.
- An easier quantity to compute:

$$p(\mathbf{z} \mid \mathcal{X}, \boldsymbol{\theta}) = \frac{p(\mathcal{X} \mid \mathbf{z}, \boldsymbol{\theta})p(\mathbf{z})}{p(\mathcal{X} \mid \boldsymbol{\theta})}.$$

• $p(\mathbf{z})$: the prior on \mathbf{z} ; $p(\mathcal{X} \mid \mathbf{z}, \boldsymbol{\theta})$: given.

Joseph C. C. Lin (CSIE, TKU, TW)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Discussions

Joseph C. C. Lin (CSIE, TKU, TW)

ML Math - Bayesian Inference

Fall 2023

A D N A B N A B N A B N

э