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ML Math - Bayesian Inference

Credits for the resource

The slides are based on the textbooks:

Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong:
Mathematics for Machine Learning. Cambridge University Press.
2020.
Howard Anton, Chris Rorres, Anton Kaul: Elementary Linear
Algebra. Wiley. 2019.

We could partially refer to the monograph:
Francesco Orabona: A Modern Introduction to Online Learning.
https://arxiv.org/abs/1912.13213
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ML Math - Bayesian Inference

Probabilistic Models & Bayesian Inference

Motivation

We are concerned with prediction of future events and decision
making.

We build models that describe the generative process that generates
the observed data.

For example, consider the outcome of a coin-flip experiment (“heads”
or “tails”).

Define a parameter µ which describes the probability of “heads” (the
parameter of a Bernoulli distribution).

Then, we can sample an outcome x ∈ {head, tail} from the Bernoulli
distribution p(x | µ) = Ber(µ).

Note: µ is unknown in advance and can never be observed directly.

We need mechanisms to learn something about µ given observed
outcomes of coin-flip.
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ML Math - Bayesian Inference

Probabilistic Models & Bayesian Inference

Probabilistic Models

The benefit of using probabilistic models:

A unified and consistent set of tools from probability theory for
modeling, inference, prediction, and model selection.

p(x,θ): the joint distribution of the observed variables x and the
hidden parameters θ.

It encapsulates the information:

The prior and the likelihood.
The marginal likelihood p(x) (though integrating out the parameters is
required.)
The posterior (obtained by dividing the joint by the marginal
likelihood).

Therefore, a probabilistic model is specified by the joint distribution
of all its random variables.
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Probabilistic Models & Bayesian Inference

Bayesian Inference (1/3)

We have already learnt two ways of estimating model parameters θ:

Maximum likelihood estimation (MLE)
Maximum a posteriori estimation (MAP)

We can then obtain a single-best value of θ (solving an optimization
problem), then we can use them to make predictions.

Having the full posterior distribution around can be useful and leads
to more robust decisions.
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ML Math - Bayesian Inference

Probabilistic Models & Bayesian Inference

Bayesian Inference (2/3)

Bayesian inference: finding such a posterior distribution.

For a dataset X , a parameter prior p(θ), and a likelihood function, the
posterior

p(θ | X ) =
p(X | θ)p(θ)

p(X )
,

then by applying Bayes’ theorem,

p(X ) =

∫
p(X | θ)p(θ)dθ.

Propagate uncertainty from the parameters to the data. Specifically, with a
distribution p(θ), our predictions will be

p(x) =

∫
p(x | θ)p(θ)dθ = Eθ[p(x | θ)],

which no longer depend on the model parameters θ.

It has been marginalized/integrated out.
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ML Math - Bayesian Inference

Probabilistic Models & Bayesian Inference

Bayesian Inference (3/3)

p(x) =

∫
p(x | θ)p(θ)dθ = Eθ[p(x | θ)],

The prediction becomes an average over all plausible values of θ.

The plausibility is encapsulated by the distribution p(θ).
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Probabilistic Models & Bayesian Inference

Computational Issues

MLE or MAP yields a consistent point estimate θ∗ of the parameters.

Key computational problem: optimization.
Prediction: straightforward.

Bayesian inference yields a distribution.

Key computational problem: integration.
Prediction: solving another integration problem.
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Latent-Variable Models

Outline

1 Probabilistic Models & Bayesian Inference

2 Latent-Variable Models

Joseph C. C. Lin (CSIE, TKU, TW) ML Math - Bayesian Inference Fall 2023 10 / 16



ML Math - Bayesian Inference

Latent-Variable Models

Latent Variables

Sometimes it is useful to have additional variable (besides θ) as part
of the model.

We call them latent variables.
They do not parametrize the model explicitly.
E.g., mixture of K Gaussians (further reading link).

Latent variables can

Describe the data-generation process.

Increase the interpretability of the model.

Simplify the structure of the model.
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ML Math - Bayesian Inference

Latent-Variable Models

In the Data Generation Process

Denote data by x, the model parameter by θ and the latent variables by z,
we obtain the conditional distribution:

p(x | z,θ).

⇒ Generate data for any model parameter and latent variables.

We place a prior p(z) on the given latent variables z.

A Two-Step Procedure for Parameter Learning & Inference

1 Compute the likelihood p(x | θ) (not depending on z).

2 Use the likelihood for parameter estimation or Bayesian inference.
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Latent-Variable Models

Likelihood in Terms of Marginal Distribution

What we already have: a conditional distribution

p(x | z,θ).

We need to marginalize out the latent variables to have the predictive
distribution of the data given the model parameters θ:

p(x | θ) =
∫

p(x | z,θ)p(z)dz,

Note that p(z) is a prior, and p(x | θ) does not depend on z.
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ML Math - Bayesian Inference

Latent-Variable Models

Bayesian Inference in a Latent Variable Model

MAP estimation is also straightforward:

Place a prior p(θ) and use Bayes’ theorem to obtain

p(θ | X ) =
p(X | θ)p(θ)

p(X )

⇒ a posterior distribution over the model parameters given a dataset X .

p(X | θ) requires the marginalization of latent variables z.

p(x | θ) =
∫

p(x | z,θ)p(z)dz,

Resort to approximation.
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Latent-Variable Models

A Posterior on the Latent Variables

Similarly we can have

p(z | X ) =
p(X | z)p(z)

p(X )
, p(X | z) =

∫
p(X | z,θ)p(θ)dθ,

p(z): the prior on z; p(X | z) requires us to integrate out θ.

It may be difficult to solve the integrals analytically.

Marginalizing out both the latent variables and the model parameters
at the same time is not possible in general.

An easier quantity to compute:

p(z | X ,θ) =
p(X | z,θ)p(z)

p(X | θ)
.

p(z): the prior on z; p(X | z,θ): given.
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Discussions
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