Mathematics for Machine Learning

Continuous Optimization
 Introduction to the Policy Gradient Trick

Joseph Chuang-Chieh Lin

Department of Computer Science & Engineering, National Taiwan Ocean University

Fall 2025

Credits for the resource

- The slides are based on the textbooks and reference lectures:
 - Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong: Mathematics for Machine Learning. Cambridge University Press. 2020.
 - Roger Grosse's Course Lectures on Neural Networks and Deep Learning (https://www.cs.toronto.edu/r̃grosse/courses/csc421_2019/).
- We could partially refer to the monograph:
 Francesco Orabona: A Modern Introduction to Online Learning.
 https://arxiv.org/abs/1912.13213

Outline

1 Markov Decision Process (MDP)

Policy Gradient

Outline

1 Markov Decision Process (MDP)

2 Policy Gradient

Reinforcement Learning (RL)

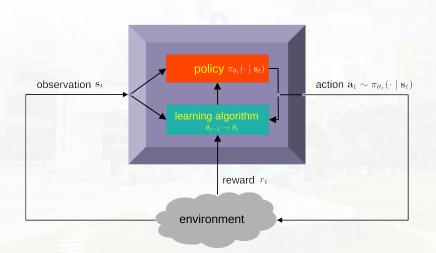
From Wikipedia:

- Reinforcement learning (RL) is an interdisciplinary area of machine learning and optimal control concerned with how an intelligent agent should take actions in a dynamic environment in order to maximize a reward signal.
- Reinforcement learning is one of the three basic machine learning paradigms, alongside supervised learning and unsupervised learning.
- Example of RL environments: [link].

RL Setting

- Each agent interacts with an environment (static or dynamic).
- In each time step t,
 - the agent receives feedback or observations from the environment about the state s_t.
 - the agent then takes an action \mathbf{a}_t which can affect the state $(\mathbf{s}_t \to \mathbf{s}_{t+1})$.
 - the agent receives the **reward** $r(\mathbf{s}_t, \mathbf{a}_t)$.
- Goal of the agent: learn a policy $\pi_{\theta}(\mathbf{a}_t \mid \mathbf{s}_t)$.
 - A distribution over the actions given the current state \mathbf{s}_t and the parameter $\boldsymbol{\theta}$.
 - θ : can be regarded as a machine learning model.

RL Setting



Markov Decision Process (MDP) (1/3)

- Markov decision process (MDP): an RL environment setting.
- Assumption: all information is encapsulated in the current state s_t;
 transitions are independent of past states.

MDP components

- initial state distribution $p(\mathbf{s}_0)$.
- policy: $\pi_{\theta}(\mathbf{a}_t \mid \mathbf{s}_t)$
- transition prob.: $p(\mathbf{s}_{t+1} \mid \mathbf{s}_t, \mathbf{a}_t)$.
- reward function: $r(\mathbf{s}_t, \mathbf{a}_t)$.
- We consider fully observable environment.
 - **s**_t can be observed directly.

Markov Decision Process (MDP) (2/3)

- Trajectory or rollout: $\tau = (s_0, a_0, s_1, a_1, \dots, s_T, a_T)$
- Probability of a trajectory:

$$p(\tau) = p(s_0) \pi_{\theta}(a_0 | s_0) p(s_1 | s_0, a_0) \pi_{\theta}(a_1 | s_1) p(s_2 | s_1, a_1)$$

$$\cdots p(s_T | s_{T-1}, a_{T-1}) \pi_{\theta}(a_T | s_T).$$

- Return for a trajectory: $r(\tau) = \sum_{t=0}^{T} r(\mathbf{s}_t, \mathbf{a}_t)$.
- **Goal:** Maximize $R := \mathbb{E}_{p(\tau)}[r(\tau)]$.
- The expectation is over the environment's dynamics and the policy, but we only have control over the policy.

<□ > <□ > <□ > < 亘 > < 亘 > □ ■ 9 9 (©

Markov Decision Process (MDP) (3/3)

 \star What's the issue when we compute $p(\tau)$ and R?

Markov Decision Process (MDP) (3/3)

- * What's the issue when we compute $p(\tau)$ and R?
- Each long trajectory could happen with extremely low probability.

Markov Decision Process (MDP) (3/3)

- * What's the issue when we compute $p(\tau)$ and R?
- Each long trajectory could happen with extremely low probability.
- Problematic to derive $\frac{dR}{d\theta}$.

Outline

1 Markov Decision Process (MDP)

Policy Gradient

The Log-derivative Trick

Log-derivative Trick

$$\frac{\partial}{\partial \theta} \log p(\tau) = \frac{1}{p(\tau)} \frac{\partial}{\partial \theta} p(\tau).$$

Hence, the gradient of the expected return turns out to be

$$\begin{split} \frac{\partial}{\partial \boldsymbol{\theta}} \, \mathbb{E}_{p_{\boldsymbol{\theta}}(\tau)}[\, r(\tau)\,] &= \frac{\partial}{\partial \boldsymbol{\theta}} \sum_{\tau} r(\tau) \, p_{\boldsymbol{\theta}}(\tau) = \sum_{\tau} r(\tau) \, \frac{\partial p_{\boldsymbol{\theta}}(\tau)}{\partial \boldsymbol{\theta}} \\ &= \sum_{\tau} r(\tau) \, p_{\boldsymbol{\theta}}(\tau) \, \frac{\partial}{\partial \boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau) \\ &= \mathbb{E}_{p_{\boldsymbol{\theta}}(\tau)} \Big[\, r(\tau) \, \frac{\partial}{\partial \boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau) \, \Big]. \end{split}$$

Estimate of the gradient

$$\frac{\partial}{\partial \boldsymbol{\theta}} \mathbb{E}_{p_{\boldsymbol{\theta}}(\tau)}[r(\tau)] = \mathbb{E}_{p_{\boldsymbol{\theta}}(\tau)} \Big[r(\tau) \frac{\partial}{\partial \boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau) \Big].$$

Sampling the trajectories and rewards to have its estimate.

Estimate of the gradient

$$\frac{\partial}{\partial \boldsymbol{\theta}} \mathbb{E}_{p_{\boldsymbol{\theta}}(\tau)}[r(\tau)] = \mathbb{E}_{p_{\boldsymbol{\theta}}(\tau)} \Big[r(\tau) \frac{\partial}{\partial \boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau) \Big].$$

- Sampling the trajectories and rewards to have its estimate.
- Let's unpack the gradient of $\log p_{\theta}(\tau)$:

Estimate of the gradient

$$\frac{\partial}{\partial \boldsymbol{\theta}} \mathbb{E}_{p_{\boldsymbol{\theta}}(\tau)}[r(\tau)] = \mathbb{E}_{p_{\boldsymbol{\theta}}(\tau)} \Big[r(\tau) \frac{\partial}{\partial \boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau) \Big].$$

- Sampling the trajectories and rewards to have its estimate.
- Let's unpack the gradient of $\log p_{\theta}(\tau)$:

$$\begin{split} \frac{\partial}{\partial \boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau) &= \frac{\partial}{\partial \boldsymbol{\theta}} \log \left[p(\mathbf{s}_0) \prod_{t=0}^T \pi_{\boldsymbol{\theta}}(\mathbf{a}_t \mid \mathbf{s}_t) \prod_{t=1}^T p(\mathbf{s}_t \mid \mathbf{s}_{t-1}, \mathbf{a}_{t-1}) \right] \\ &= \frac{\partial}{\partial \boldsymbol{\theta}} \log \left(\prod_{t=0}^T \pi_{\boldsymbol{\theta}}(\mathbf{a}_t \mid \mathbf{s}_t) \right) \\ &= \sum_{t=0}^T \frac{\partial}{\partial \boldsymbol{\theta}} \log (\pi_{\boldsymbol{\theta}}(\mathbf{a}_t \mid \mathbf{s}_t)). \end{split}$$

Update after T steps

ullet Let a trajectory be $au = (\mathbf{s}_0, \mathbf{a}_0, \dots, \mathbf{s}_T, \mathbf{a}_T)$ and define the episode return

$$r(\tau) = \sum_{k=0}^{T} r(\mathbf{s}_k, \mathbf{a}_k).$$

Since we have the gradient

$$\nabla_{\boldsymbol{\theta}} \mathbb{E}_{p_{\boldsymbol{\theta}}(\tau)}[r(\tau)] = \mathbb{E}_{p_{\boldsymbol{\theta}}(\tau)}[r(\tau) \sum_{t=0}^{T} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_t \mid \mathbf{s}_t)].$$

- Issue:
 - How to perform the expectation?

• Given trajectories $\tau^{(1)}, \tau^{(2)}, \dots, \tau^{(N)}$, each consists of T_i steps.

• Given trajectories $\tau^{(1)}, \tau^{(2)}, \dots, \tau^{(N)}$, each consists of T_i steps.

$$\nabla_{\boldsymbol{\theta}} \mathbb{E}_{p_{\boldsymbol{\theta}}(\tau)}[r(\tau)] \approx \frac{1}{N} \sum_{i=1}^{N} r(\tau^{(i)}) \sum_{t=0}^{T_i} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_t^{(i)} \mid \mathbf{s}_t^{(i)}).$$

• Given trajectories $\tau^{(1)}, \tau^{(2)}, \dots, \tau^{(N)}$, each consists of T_i steps.

$$\nabla_{\boldsymbol{\theta}} \mathbb{E}_{p_{\boldsymbol{\theta}}(\tau)}[r(\tau)] \approx \frac{1}{N} \sum_{i=1}^{N} r(\tau^{(i)}) \sum_{t=0}^{T_i} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_t^{(i)} \mid \mathbf{s}_t^{(i)}).$$

update rule: (η : the step-size)

$$m{ heta} \leftarrow m{ heta} + \eta \, rac{1}{N} \sum_{i=1}^{N} r(au^{(i)}) \sum_{t=0}^{T_i}
abla_{m{ heta}} \log \pi_{m{ heta}}(\mathbf{a}_t^{(i)} \mid \mathbf{s}_t^{(i)}).$$

• Given trajectories $\tau^{(1)}, \tau^{(2)}, \dots, \tau^{(N)}$, each consists of T_i steps.

$$\nabla_{\boldsymbol{\theta}} \mathbb{E}_{p_{\boldsymbol{\theta}}(\tau)}[r(\tau)] \approx \frac{1}{N} \sum_{i=1}^{N} r(\tau^{(i)}) \sum_{t=0}^{T_i} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_t^{(i)} \mid \mathbf{s}_t^{(i)}).$$

update rule: (η : the step-size)

$$\theta \leftarrow \theta + \eta \frac{1}{N} \sum_{i=1}^{N} r(\tau^{(i)}) \sum_{t=0}^{T_i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_t^{(i)} \mid \mathbf{s}_t^{(i)}).$$

or a time-step-averaged alternative:

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \eta \frac{1}{\sum_{i=1}^{N} (T_i + 1)} \sum_{i=1}^{N} \sum_{t=0}^{T_i} r(\tau^{(i)}) \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_t^{(i)} \mid \mathbf{s}_t^{(i)}).$$

A Monte-Carlo algorithm REINFORCE

REINFORCE [Ronald J. Williams 1992]

- While true
 - Sample a trajectory $\tau = (\mathbf{s}_0, \mathbf{a}_0, \dots, \mathbf{s}_T, \mathbf{a}_T)$ and define the episode return

$$r(\tau) = \sum_{k=0}^{T} r(\mathbf{s}_k, \mathbf{a}_k).$$

• Perform the **single-episode update**: (η : the step-size)

$$m{ heta} \leftarrow m{ heta} + \underbrace{\eta \, r\! (au) \,
abla_{m{ heta}} \log \pi_{m{ heta}}(\mathbf{a}_t \mid \mathbf{s}_t)}_{ ext{accumulated with } t ext{ as } \Delta m{ heta}} \quad ext{for } t = 0, 1, \dots, \mathit{T}.$$

- * This resembles the stochastic gradient ascent on R.
- Recall the gradient is

$$\nabla_{\boldsymbol{\theta}} \mathbb{E}_{p_{\boldsymbol{\theta}}(\tau)}[r(\tau)] = \mathbb{E}_{p_{\boldsymbol{\theta}}(\tau)}[r(\tau) \sum_{t=0}^{T} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_t \mid \mathbf{s}_t)].$$

Credit only future rewards (still unbiased)

Split the total return at time t into past (P_t) and future parts (F_t) :

$$r(\tau) = \underbrace{\sum_{k=0}^{t-1} r(\mathbf{s}_k, \mathbf{a}_k)}_{P_t} + \underbrace{\sum_{k=t}^{T} r(\mathbf{s}_k, \mathbf{a}_k)}_{F_t =: r_t(\tau)}.$$

Then

$$\mathbb{E}[P_t \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_t \mid \mathbf{s}_t)] = 0, \quad \text{since}$$

$$\begin{split} \mathbb{E}_{\mathbf{a}_t \sim \pi_{\boldsymbol{\theta}}(\cdot \mid \mathbf{s}_t)} \big[\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_t \mid \mathbf{s}_t) \big] &= \sum_{\mathbf{a}_t} \pi_{\boldsymbol{\theta}}(\mathbf{a}_t \mid \mathbf{s}_t) \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_t \mid \mathbf{s}_t) \big] \\ &= \nabla_{\boldsymbol{\theta}} \sum_{\mathbf{a}_t} \pi_{\boldsymbol{\theta}}(\mathbf{a}_t \mid \mathbf{s}_t) = 0. \end{split}$$

Hence we may drop P_t to have the gradient without bias.

Update rule: $\theta \leftarrow \theta + \alpha r_t(\tau) \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_t \mid \mathbf{s}_t), \quad t = 0, 1, \dots, T.$

Discussions on the policy gradient approach

- Model-free for the environment.
 - The agent doesn't try to fit the model of the environment.
- If a trajectory happens to be good, all the actions get reinforced.
- A trajectory is viewed as a random walk.
- One can consider time-discount reward $G_t := \sum_{k=t}^{T-1} \gamma^{k-t} r_{k+1}$, that is, $G_t = r_{t+1} + \gamma G_{t+1}$, $G_T = 0$.

Discussions