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Credits for the resource

The slides are based on the textbooks:

Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong:
Mathematics for Machine Learning. Cambridge University Press.
2020.
Howard Anton, Chris Rorres, Anton Kaul: Elementary Linear
Algebra. Wiley. 2019.

We could partially refer to the monograph:
Francesco Orabona: A Modern Introduction to Online Learning.
https://arxiv.org/abs/1912.13213
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ML Math - Probability & Distributions

Gaussian Distribution

Introduction

The Gaussian distribution (a.k.s. normal distribution) is the most
well-studied probability distribution for continuous-valued random
variables.

Widely used in statistics and machine learning.
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Gaussian Distribution

Gaussian Distributions Overlaid with Samples
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Gaussian Distribution

Univariate & Multivariate Gaussian

The probability density functions.

Univariate

p(x | µ, σ2) =
1

2πσ2
exp

(
−(x − µ)2

2σ2

)
.

Σ = VX [x] = CovX [x, x].

Multivariate

p(x | µ,Σ) = (2π)−
D
2 det(Σ)−

1
2 exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
,

for x ∈ RD .

We write p(x) = N (x | µ,Σ) or X ∼ N (µ,Σ).
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Gaussian Distribution

Gaussian distribution of two random variables x1, x2.
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Gaussian Distribution

Marginals and Conditionals of Gaussians

Marginals and Conditionals of Gaussians

Let X ,Y be two multivariate random variables.

Concatenate their states to be [x⊤, y⊤].

p(x, y) = N
([

µx

µy

]
,

[
Σxx Σxy

Σyx Σyy

])
.

where Σxx = Cov[x, x], Σyy = Cov[y, y], Σxy = Cov[x, y].

By [Bishop 2006], the conditional distribution p(x | y) is also
Gaussian.

p(x | y) = N (µx |y ,Σx |y )

µx |y = µx +ΣxyΣ
−1
yy (y − µy )

Σx |y = Σxx −ΣxyΣ
−1
yy Σyx .

p(x) =

∫
p(x, y)dy = N (x | µx ,Σxx).
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Gaussian Distribution

Marginals and Conditionals of Gaussians

Example

Consider p(x1, x2) = N
([

0
2

]
,

[
0.3 −1
−1 5

])
.

Conditioned on x2 = −1, µx1|x2=−1 = 0 + (−1) · 0.2 · (−1− 2) = 0.6
and σ2

x1|x2=−1 = 0.3− (−1) · 0.2 · (−1) = 0.1.

Thus, p(x1 | x2 = −1) = N (0.6, 0.1), p(x1) = N (0, 0.3).
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ML Math - Probability & Distributions

Gaussian Distribution

Sums and Linear Transformations

Sum of Gaussians

Say X ,Y are two independent Gaussian random variables with

X ∼ N (µx ,Σx) and Y ∼ N (µy ,Σy ).

independency: p(x, y) = p(x)p(y).

Then X + Y is also a Gaussian distribution with

X + Y ∼ N (µx + µy ,Σx +Σy )

Please recall E[x+ y] and V[x+ y].
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Gaussian Distribution

Sums and Linear Transformations

Example

Linear Combination of Gaussians

p(ax+ by) =

N (aµx + bµy , a
2Σx + b2Σy ).

Theorem [Mixture of Two Univariate Gaussian Densities]

Consider a mixture of two univariate Gaussian densities

p(x) = αp1(x) + (1− α)p2(x)

for the mixture weight 0 < α < 1 and (µ1, σ
2
1) ̸= (µ2, σ

2
2). Then,

E[x ] = αµ1 + (1− α)µ2

V[x ] = [ασ2
1 + (1− α)σ2

2]

+
(
[αµ2

1 + (1− α)µ2
2]− [αµ1 + (1− α)µ2]

2
)
.
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Gaussian Distribution

Sums and Linear Transformations

Proof of the Theorem

Sketch:

1 E[x ] =
∫ ∞

−∞
xp(x)dx =

∫ ∞

−∞
(αxp1(x) + (1− α)xp2(x))dx

= αµ1 + (1− α)µ2.

2 E[x2] =

∫ ∞

−∞
x2p(x)dx =

∫ ∞

−∞
(αx2p1(x) + (1− α)x2p2(x))dx

= α(µ2
1 + σ2

1) + (1− α)(µ2
2 + σ2

2).

Recall: VX [x ] = EX [x
2]− (EX [x ])

2.

Using 1○ & 2○ we can prove the theorem.
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Gaussian Distribution

Sums and Linear Transformations

Linear Transformation by a Matrix (1/2)

X ∼ N (µ,Σ) and y = Ax

The expectation: E[y] = E[Ax] =

AE[x] = Aµ.

The variance: V[y] = V[Ax] = AV[x]A⊤ = AΣA⊤.

Thus, we have
Y ∼ N (Aµ,AΣA⊤).
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Gaussian Distribution

Sums and Linear Transformations

Linear Transformation by a Matrix (2/2)

Let’s consider the reverse transformation.

Y ∼ N (µy ,Σ), y = Ax for x, y ∈ RM , a full rank A ∈ RM×N , M ≥ N

p(y) = N (y | Ax,Σ).

Note: A might not be invertible.

y = Ax ⇐⇒ A⊤y = A⊤Ax ⇐⇒ (A⊤A)−1A⊤y = x.

This works even for non-invertible A!.

The variance: V[x] = V[(A⊤A)−1A⊤y] = (A⊤A)−1A⊤ΣA(A⊤A)−1.

Thus, we have

X ∼ N ((A⊤A)−1A⊤µy , (A⊤A)−1A⊤ΣA(A⊤A)−1).
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Gaussian Distribution

Sums and Linear Transformations

Exercise

Another example of reverse transformation.

Y ∼ N (µy ,Σ) and y = Ax for x, y ∈ RM , and A is invertible

p(y) = N (y | Ax,Σ).

Compute E[x].

Compute V[x].

Derive X ∼ N (?, ?).
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ML Math - Probability & Distributions

Gaussian Distribution

Sums and Linear Transformations

A Sampling Approach

We want to obtain samples from a multivariate N (µ,Σ).

However, we only have a sampler of N (0, I ) at hand.

Assume that we have x ∼ N (0, I ).
Then, define y = Ax+ µ, where AIA⊤ = AA⊤ = Σ.

To derive A: Use Cholesky decomposition of the covariance matrix Σ.

A will be triangular and efficient for computation.
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ML Math - Probability & Distributions

Change of Variables

Outline

1 Gaussian Distribution
Marginals and Conditionals of Gaussians
Sums and Linear Transformations

2 Change of Variables
Distribution Function Technique
Change of Variables
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ML Math - Probability & Distributions

Change of Variables

Motivation

Consider the following examples.

Assuming that X is a random variable distributed according to some
well-known distribution, then what is the distribution of X 2?

Assuming that X1,X2 are two univariate standard normal
distributions, then what is the distribution of 1

2(X1 + X2)?

What if the transformation is nonlinear?

Closed-form expressions are not readily available.
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ML Math - Probability & Distributions

Change of Variables

Straightforward for Discrete Random Variables

Example: Univariate Random Variables

Given

A discrete random variable X with pmf Pr[X = x ].

An invertible function U(x).

Consider the transformed random variable Y := U(X ) with pmf
Pr[Y = y ]. Then

Pr[Y = y ] = Pr[U(X ) = y ] (transformation of interest)

= Pr[X = U−1(y)] (inverse)

where we can observe x = U−1(y).
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ML Math - Probability & Distributions

Change of Variables

Two Approaches

So far we considered the discrete case (e.g., Pr[X = x ]).

For continuous distributions, we will consider the two approaches:
1 Cumulative distribution (Distribution Function Technique).
2 Change-of-variable.
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Distribution Function Technique

Outline

1 Gaussian Distribution
Marginals and Conditionals of Gaussians
Sums and Linear Transformations

2 Change of Variables
Distribution Function Technique
Change of Variables
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ML Math - Probability & Distributions

Change of Variables

Distribution Function Technique

Distribution Function Technique

Note: a cdf of X : FX (x) = Pr[X ≤ x ].

Goal: Find the cdf of the random variable Y := U(X )

1 Find the cdf
FY (y) = Pr[Y ≤ y ].

2 Differentiating FY (y) to get the pdf fY (y):

fY (y) =
d

dy
FY (y).

Note: The domain of the random variable may have changed!

Joseph C. C. Lin (CSIE, TKU, TW) ML Math - Probability & Distributions Fall 2023 25 / 37



ML Math - Probability & Distributions

Change of Variables

Distribution Function Technique

Distribution Function Technique

Note: a cdf of X : FX (x) = Pr[X ≤ x ].

Goal: Find the cdf of the random variable Y := U(X )

1 Find the cdf
FY (y) = Pr[Y ≤ y ].

2 Differentiating FY (y) to get the pdf fY (y):

fY (y) =
d

dy
FY (y).

Note: The domain of the random variable may have changed!

Joseph C. C. Lin (CSIE, TKU, TW) ML Math - Probability & Distributions Fall 2023 25 / 37



ML Math - Probability & Distributions

Change of Variables

Distribution Function Technique

Example

Example

Let X be a continuous random variable with pdf fX : [0, 1] 7→ [0, 1]:

fX (x) = 3x2.

Goal: Find the pdf of Y = X 2.

FY (y) = Pr[Y ≤ y ]

= Pr[X 2 ≤ y ]

= Pr[X ≤ y
1
2 ]

= FX (y
1
2 ) =

∫ y
1
2

0
3t2dt

= [t3]y
1
2

0 = y
3
2 , 0 ≤ y ≤ 1.

Thus,

fY (y) =
d

dy
FY (y) =

3

2
y

1
2

for 0 ≤ y ≤ 1.
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ML Math - Probability & Distributions

Change of Variables

Distribution Function Technique

Exercise

Theorem [Casella & Berger (2002)]

Let X be a continuous random variable with a strictly monotone
cumulative distribution function FX (x). Then, the random variable Y
defined as

Y := FX (X )

has a uniform distribution.

Exercise

Consider fX (x) = 3x2 in the previous example. Show that Y := FX (X )
attains a uniform distribution.
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ML Math - Probability & Distributions

Change of Variables

Distribution Function Technique

Remark

The first approach relies on the following facts:

We can transform the cdf of Y into an expression that is a cdf of X .

We can differentiate the cdf to obtain the pdf.
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Outline

1 Gaussian Distribution
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Sums and Linear Transformations

2 Change of Variables
Distribution Function Technique
Change of Variables

Joseph C. C. Lin (CSIE, TKU, TW) ML Math - Probability & Distributions Fall 2023 29 / 37



ML Math - Probability & Distributions

Change of Variables

Change of Variables

What We have Learnt From the Calculus Course

∫
f (g(x))g ′(x)dx =

∫
f (u)du, where u = g(x).

Intuitively, considering du ≈ ∆u = g ′(x)∆x as the “small changes”.
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ML Math - Probability & Distributions

Change of Variables

Change of Variables

The Roadmap (1/2)

Consider a univariate random variable X and an invertible function U
such that Y := U(X ).

Assume that X has states x ∈ [a, b].

By the definition of a cdf, we have

FY (y) = Pr[Y ≤ y ] = Pr[U(X ) ≤ y ]

If U is strictly increasing, then so is its inverse U−1.

Pr[U(X ) ≤ y ] = Pr[U−1(U(X )) ≤ U−1(y)] = Pr[X ≤ U−1(y)].

Then, FY (y) = Pr[X ≤ U−1(y)] =

∫ U−1(y)

a
fX (x)dx
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ML Math - Probability & Distributions

Change of Variables

Change of Variables

The Roadmap (2/2)

To obtain the pdf, we differentiate FY (y) w.r.t. y :

fY (y) =
d

dy
FY (y) =

d

dy

∫ U−1(y)

a
fX (x)dx .

The integral on the right-hand side is w.r.t. x , but we need an integral
w.r.t. y (∵ we are differentiating w.r.t. y ...)
Change-of-variable comes to the rescue!∫

fX (U
−1(y))U−1′(y)dy =

∫
fX (x)dx , where x = U−1(y).

Thus,
fY (y) =

d

dy

∫ U−1(y)

a
fX (U

−1(y))U−1′(y)dy

= fX (U
−1(y)) ·

(
d

dy
U−1(y)

)
.
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ML Math - Probability & Distributions

Change of Variables

Change of Variables

Remark

For decreasing functions,

fY (y) = −fX (U
−1(y)) ·

(
d

dy
U−1(y)

)
.

So for both increasing and decreasing U,

fY (y) = fX (U
−1(y)) ·

∣∣∣∣ ddy U−1(y)

∣∣∣∣ .
The term

∣∣∣ d
dyU

−1(y)
∣∣∣ measures how much a unit volume changes

when applying U.
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ML Math - Probability & Distributions

Change of Variables

Change of Variables

The Main Theorem

Theorem [Billingsley (1995)]

Let fX (x) be the pdf of the multivariate continuous random variable X . If
the vector-valued function y = U(x) is differentiable and invertible for all
values within the domain of x, then for corresponding values of y, the pdf
of Y = U(X ) is given by

f (y) = fx(U
−1(y)) ·

∣∣∣∣det( ∂

∂y
U−1(y)

)∣∣∣∣ .
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Change of Variables

Example

Example

Consider a bivariate random variable X with states x =

[
x1
x2

]
and pdf

f

([
x1
x2

])
=

1

2π
exp

(
−1

2

[
x1
x2

]⊤ [
x1
x2

])
.

Then, consider a matrix A ∈ R2×2 defined as

A =

[
a b
c d

]
.

Goal: Find the pdf of the random variable Y with states y = Ax.
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Change of Variables

y = Ax

=⇒ x = A−1y.[
x1
x2

]
= A−1

[
y1
y2

]
=

1

ad − bc

[
d −b
−c a

] [
y1
y2

]
.

The corresponding pdf is given by

f (x) = f (A−1y) =
1

2π
exp

(
−1

2
y⊤(A−1)⊤A−1y

)
∂

∂y
A−1y = A−1. So, det

(
∂

∂y
A−1y

)
= det(A−1) =

1

ad − bc
.

Thus, f (y) =
1

2π
exp

(
−1

2
y⊤(A−1)⊤A−1y

)
·
∣∣∣∣ 1

ad − bc

∣∣∣∣.
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