Mathematics for Machine Learning

- Probability \& Distributions (Supplementary):

Gaussian Distribution \& Change of Variables/Inverse Transform

Joseph Chuang-Chieh Lin
Department of Computer Science \& Information Engineering,
Tamkang University

Fall 2023

Credits for the resource

- The slides are based on the textbooks:
- Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong: Mathematics for Machine Learning. Cambridge University Press. 2020.
- Howard Anton, Chris Rorres, Anton Kaul: Elementary Linear Algebra. Wiley. 2019.
- We could partially refer to the monograph:

Francesco Orabona: A Modern Introduction to Online Learning. https://arxiv.org/abs/1912.13213

Outline

(1) Gaussian Distribution

- Marginals and Conditionals of Gaussians
- Sums and Linear Transformations
(2) Change of Variables
- Distribution Function Technique
- Change of Variables

Outline

(1) Gaussian Distribution

- Marginals and Conditionals of Gaussians - Sums and Linear Transformations

(2) Change of Variables

- Distribution Function Technique
- Change of Variables

Introduction

- The Gaussian distribution (a.k.s. normal distribution) is the most well-studied probability distribution for continuous-valued random variables.
- Widely used in statistics and machine learning.

Gaussian Distributions Overlaid with Samples

Univariate \& Multivariate Gaussian

The probability density functions.

Univariate

$$
p\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{2 \pi \sigma^{2}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

$$
\boldsymbol{\Sigma}=\mathbb{V}_{X}[\mathbf{x}]=\operatorname{Cov}_{X}[\mathbf{x}, \mathbf{x}] .
$$

Multivariate

$$
p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=(2 \pi)^{-\frac{D}{2}} \operatorname{det}(\boldsymbol{\Sigma})^{-\frac{1}{2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
$$

for $x \in \mathbb{R}^{D}$.
We write $p(\mathbf{x})=\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$ or $X \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

Gaussian distribution of two random variables x_{1}, x_{2}.

Outline

(1) Gaussian Distribution

- Marginals and Conditionals of Gaussians
- Sums and Linear Transformations
(2) Change of Variables
- Distribution Function Technique
- Change of Variables

Marginals and Conditionals of Gaussians

- Let X, Y be two multivariate random variables.
- Concatenate their states to be $\left[\mathbf{x}^{\top}, \mathbf{y}^{\top}\right]$.

$$
p(\mathbf{x}, \mathbf{y})=\mathcal{N}\left(\left[\begin{array}{l}
\boldsymbol{\mu}_{x} \\
\boldsymbol{\mu}_{y}
\end{array}\right],\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{x x} & \boldsymbol{\Sigma}_{x y} \\
\boldsymbol{\Sigma}_{y x} & \boldsymbol{\Sigma}_{y y}
\end{array}\right]\right)
$$

where $\boldsymbol{\Sigma}_{x x}=\operatorname{Cov}[\mathbf{x}, \mathbf{x}], \boldsymbol{\Sigma}_{y y}=\operatorname{Cov}[\mathbf{y}, \mathbf{y}], \boldsymbol{\Sigma}_{x y}=\operatorname{Cov}[\mathbf{x}, \mathbf{y}]$.

- By [Bishop 2006], the conditional distribution $p(\mathbf{x} \mid \mathbf{y})$ is also Gaussian.

$$
\begin{aligned}
& p(\mathbf{x} \mid \mathbf{y})=\mathcal{N}\left(\boldsymbol{\mu}_{x \mid y}, \boldsymbol{\Sigma}_{x \mid y}\right) \\
& \boldsymbol{\mu}_{x \mid y}=\boldsymbol{\mu}_{x}+\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1}\left(\mathbf{y}-\boldsymbol{\mu}_{y}\right) \\
& \boldsymbol{\Sigma}_{x \mid y}=\boldsymbol{\Sigma}_{x x}-\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1} \boldsymbol{\Sigma}_{y x} \\
& p(\mathbf{x})=\int p(\mathbf{x}, \mathbf{y}) \mathrm{d} \mathbf{y}=\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{x}, \boldsymbol{\Sigma}_{x x}\right)
\end{aligned}
$$

Example

Consider

$$
p\left(x_{1}, x_{2}\right)=\mathcal{N}\left(\left[\begin{array}{l}
0 \\
2
\end{array}\right],\left[\begin{array}{cc}
0.3 & -1 \\
-1 & 5
\end{array}\right]\right) .
$$

Example

Consider

$$
p\left(x_{1}, x_{2}\right)=\mathcal{N}\left(\left[\begin{array}{l}
0 \\
2
\end{array}\right],\left[\begin{array}{cc}
0.3 & -1 \\
-1 & 5
\end{array}\right]\right) .
$$

Conditioned on $x_{2}=-1, \mu_{x_{1} \mid x_{2}=-1}=0+(-1) \cdot 0.2 \cdot(-1-2)=0.6$

Example

Consider

$$
p\left(x_{1}, x_{2}\right)=\mathcal{N}\left(\left[\begin{array}{l}
0 \\
2
\end{array}\right],\left[\begin{array}{cc}
0.3 & -1 \\
-1 & 5
\end{array}\right]\right) .
$$

Conditioned on $x_{2}=-1, \mu_{x_{1} \mid x_{2}=-1}=0+(-1) \cdot 0.2 \cdot(-1-2)=0.6$ and $\sigma_{x_{1} \mid x_{2}=-1}^{2}=$

Gaussian Distribution

Marginals and Conditionals of Gaussians

Example

Consider

$$
p\left(x_{1}, x_{2}\right)=\mathcal{N}\left(\left[\begin{array}{l}
0 \\
2
\end{array}\right],\left[\begin{array}{cc}
0.3 & -1 \\
-1 & 5
\end{array}\right]\right) .
$$

Conditioned on $x_{2}=-1, \mu_{x_{1} \mid x_{2}=-1}=0+(-1) \cdot 0.2 \cdot(-1-2)=0.6$ and $\sigma_{x_{1} \mid x_{2}=-1}^{2}=0.3-(-1) \cdot 0.2 \cdot(-1)=0.1$.
Thus, $p\left(x_{1} \mid x_{2}=-1\right)=$

Gaussian Distribution

Marginals and Conditionals of Gaussians

Example

Consider

$$
p\left(x_{1}, x_{2}\right)=\mathcal{N}\left(\left[\begin{array}{l}
0 \\
2
\end{array}\right],\left[\begin{array}{cc}
0.3 & -1 \\
-1 & 5
\end{array}\right]\right) .
$$

Conditioned on $x_{2}=-1, \mu_{x_{1} \mid x_{2}=-1}=0+(-1) \cdot 0.2 \cdot(-1-2)=0.6$ and $\sigma_{x_{1} \mid x_{2}=-1}^{2}=0.3-(-1) \cdot 0.2 \cdot(-1)=0.1$.
Thus, $p\left(x_{1} \mid x_{2}=-1\right)=\mathcal{N}(0.6,0.1)$,

Gaussian Distribution

Marginals and Conditionals of Gaussians

Example

Consider

$$
p\left(x_{1}, x_{2}\right)=\mathcal{N}\left(\left[\begin{array}{l}
0 \\
2
\end{array}\right],\left[\begin{array}{cc}
0.3 & -1 \\
-1 & 5
\end{array}\right]\right) .
$$

Conditioned on $x_{2}=-1, \mu_{x_{1} \mid x_{2}=-1}=0+(-1) \cdot 0.2 \cdot(-1-2)=0.6$ and $\sigma_{x_{1} \mid x_{2}=-1}^{2}=0.3-(-1) \cdot 0.2 \cdot(-1)=0.1$.
Thus, $p\left(x_{1} \mid x_{2}=-1\right)=\mathcal{N}(0.6,0.1), \quad p\left(x_{1}\right)=$

Gaussian Distribution

Marginals and Conditionals of Gaussians

Example

Consider

$$
p\left(x_{1}, x_{2}\right)=\mathcal{N}\left(\left[\begin{array}{l}
0 \\
2
\end{array}\right],\left[\begin{array}{cc}
0.3 & -1 \\
-1 & 5
\end{array}\right]\right) .
$$

Conditioned on $x_{2}=-1, \mu_{x_{1} \mid x_{2}=-1}=0+(-1) \cdot 0.2 \cdot(-1-2)=0.6$ and $\sigma_{x_{1} \mid x_{2}=-1}^{2}=0.3-(-1) \cdot 0.2 \cdot(-1)=0.1$.
Thus, $p\left(x_{1} \mid x_{2}=-1\right)=\mathcal{N}(0.6,0.1), \quad p\left(x_{1}\right)=\mathcal{N}(0,0.3)$.

Outline

(1) Gaussian Distribution

- Marginals and Conditionals of Gaussians
- Sums and Linear Transformations
(2) Change of Variables
- Distribution Function Technique
- Change of Variables

Sum of Gaussians

Say X, Y are two independent Gaussian random variables with

$$
X \sim \mathcal{N}\left(\boldsymbol{\mu}_{x}, \boldsymbol{\Sigma}_{x}\right) \text { and } Y \sim \mathcal{N}\left(\boldsymbol{\mu}_{y}, \boldsymbol{\Sigma}_{y}\right) .
$$

Sum of Gaussians

Say X, Y are two independent Gaussian random variables with

$$
X \sim \mathcal{N}\left(\boldsymbol{\mu}_{x}, \boldsymbol{\Sigma}_{x}\right) \text { and } Y \sim \mathcal{N}\left(\boldsymbol{\mu}_{y}, \boldsymbol{\Sigma}_{y}\right) .
$$

- independency: $p(\mathbf{x}, \mathbf{y})=p(\mathbf{x}) p(\mathbf{y})$.

Sum of Gaussians

Say X, Y are two independent Gaussian random variables with

$$
X \sim \mathcal{N}\left(\boldsymbol{\mu}_{x}, \boldsymbol{\Sigma}_{x}\right) \text { and } Y \sim \mathcal{N}\left(\boldsymbol{\mu}_{y}, \boldsymbol{\Sigma}_{y}\right) .
$$

- independency: $p(\mathbf{x}, \mathbf{y})=p(\mathbf{x}) p(\mathbf{y})$.

Then $X+Y$ is also a Gaussian distribution with

$$
X+Y \sim \mathcal{N}\left(\mu_{x}+\boldsymbol{\mu}_{y}, \boldsymbol{\Sigma}_{x}+\boldsymbol{\Sigma}_{y}\right)
$$

Sum of Gaussians

Say X, Y are two independent Gaussian random variables with

$$
X \sim \mathcal{N}\left(\boldsymbol{\mu}_{x}, \boldsymbol{\Sigma}_{x}\right) \text { and } Y \sim \mathcal{N}\left(\boldsymbol{\mu}_{y}, \boldsymbol{\Sigma}_{y}\right) .
$$

- independency: $p(\mathbf{x}, \mathbf{y})=p(\mathbf{x}) p(\mathbf{y})$.

Then $X+Y$ is also a Gaussian distribution with

$$
X+Y \sim \mathcal{N}\left(\mu_{x}+\boldsymbol{\mu}_{y}, \boldsymbol{\Sigma}_{x}+\boldsymbol{\Sigma}_{y}\right)
$$

Please recall $\mathbb{E}[\mathbf{x}+\mathbf{y}]$ and $\mathbb{V}[\mathbf{x}+\mathbf{y}]$.

ML Math - Probability \& Distributions

Gaussian Distribution

Sums and Linear Transformations

Example

Linear Combination of Gaussians

$$
p(a \mathbf{x}+b \mathbf{y})=
$$

Gaussian Distribution

Sums and Linear Transformations

Example

Linear Combination of Gaussians

$$
p(a \mathbf{x}+b \mathbf{y})=\mathcal{N}\left(a \boldsymbol{\mu}_{x}+b \boldsymbol{\mu}_{y},\right.
$$

Gaussian Distribution

Sums and Linear Transformations

Example

Linear Combination of Gaussians

$$
p(a \mathbf{x}+b \mathbf{y})=\mathcal{N}\left(a \boldsymbol{\mu}_{x}+b \boldsymbol{\mu}_{y}, a^{2} \boldsymbol{\Sigma}_{x}+b^{2} \boldsymbol{\Sigma}_{y}\right) .
$$

Example

Linear Combination of Gaussians

$$
p(a \mathbf{x}+b \mathbf{y})=\mathcal{N}\left(a \boldsymbol{\mu}_{x}+b \boldsymbol{\mu}_{y}, a^{2} \boldsymbol{\Sigma}_{x}+b^{2} \boldsymbol{\Sigma}_{y}\right)
$$

Theorem [Mixture of Two Univariate Gaussian Densities]

Consider a mixture of two univariate Gaussian densities

$$
p(x)=\alpha p_{1}(x)+(1-\alpha) p_{2}(x)
$$

for the mixture weight $0<\alpha<1$ and $\left(\mu_{1}, \sigma_{1}^{2}\right) \neq\left(\mu_{2}, \sigma_{2}^{2}\right)$. Then,

$$
\begin{aligned}
\mathbb{E}[x]= & \alpha \mu_{1}+(1-\alpha) \mu_{2} \\
\mathbb{V}[x]= & {\left[\alpha \sigma_{1}^{2}+(1-\alpha) \sigma_{2}^{2}\right] } \\
& +\left(\left[\alpha \mu_{1}^{2}+(1-\alpha) \mu_{2}^{2}\right]-\left[\alpha \mu_{1}+(1-\alpha) \mu_{2}\right]^{2}\right) .
\end{aligned}
$$

Proof of the Theorem

Sketch:

(1) $\mathbb{E}[x]=\int_{-\infty}^{\infty} x p(x) \mathrm{d} x=\int_{-\infty}^{\infty}\left(\alpha x p_{1}(x)+(1-\alpha) x p_{2}(x)\right) \mathrm{d} x$

$$
=\alpha \mu_{1}+(1-\alpha) \mu_{2} .
$$

(2) $\mathbb{E}\left[x^{2}\right]=$

Proof of the Theorem

Sketch:

(1) $\mathbb{E}[x]=\int_{-\infty}^{\infty} x p(x) \mathrm{d} x=\int_{-\infty}^{\infty}\left(\alpha x p_{1}(x)+(1-\alpha) x p_{2}(x)\right) \mathrm{d} x$

$$
=\alpha \mu_{1}+(1-\alpha) \mu_{2} .
$$

(2) $\mathbb{E}\left[x^{2}\right]=\int_{-\infty}^{\infty} x^{2} p(x) \mathrm{d} x=\int_{-\infty}^{\infty}\left(\alpha x^{2} p_{1}(x)+(1-\alpha) x^{2} p_{2}(x)\right) \mathrm{d} x$

$$
=\alpha\left(\mu_{1}^{2}+\sigma_{1}^{2}\right)+(1-\alpha)\left(\mu_{2}^{2}+\sigma_{2}^{2}\right)
$$

Proof of the Theorem

Sketch:
(1) $\mathbb{E}[x]=\int_{-\infty}^{\infty} x p(x) \mathrm{d} x=\int_{-\infty}^{\infty}\left(\alpha x p_{1}(x)+(1-\alpha) x p_{2}(x)\right) \mathrm{d} x$

$$
=\alpha \mu_{1}+(1-\alpha) \mu_{2} .
$$

(2) $\mathbb{E}\left[x^{2}\right]=\int_{-\infty}^{\infty} x^{2} p(x) \mathrm{d} x=\int_{-\infty}^{\infty}\left(\alpha x^{2} p_{1}(x)+(1-\alpha) x^{2} p_{2}(x)\right) \mathrm{d} x$

$$
=\alpha\left(\mu_{1}^{2}+\sigma_{1}^{2}\right)+(1-\alpha)\left(\mu_{2}^{2}+\sigma_{2}^{2}\right)
$$

- Recall: $\mathbb{V}_{X}[x]=\mathbb{E}_{X}\left[x^{2}\right]-\left(\mathbb{E}_{X}[x]\right)^{2}$.

Proof of the Theorem

Sketch:
(1) $\mathbb{E}[x]=\int_{-\infty}^{\infty} x p(x) \mathrm{d} x=\int_{-\infty}^{\infty}\left(\alpha x p_{1}(x)+(1-\alpha) x p_{2}(x)\right) \mathrm{d} x$

$$
=\alpha \mu_{1}+(1-\alpha) \mu_{2} .
$$

(2) $\mathbb{E}\left[x^{2}\right]=\int_{-\infty}^{\infty} x^{2} p(x) \mathrm{d} x=\int_{-\infty}^{\infty}\left(\alpha x^{2} p_{1}(x)+(1-\alpha) x^{2} p_{2}(x)\right) \mathrm{d} x$

$$
=\alpha\left(\mu_{1}^{2}+\sigma_{1}^{2}\right)+(1-\alpha)\left(\mu_{2}^{2}+\sigma_{2}^{2}\right)
$$

- Recall: $\mathbb{V}_{X}[x]=\mathbb{E}_{X}\left[x^{2}\right]-\left(\mathbb{E}_{X}[x]\right)^{2}$.

Using (1) \& (2) we can prove the theorem.

Gaussian Distribution

Sums and Linear Transformations

Linear Transformation by a Matrix (1/2)

$X \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $\mathbf{y}=\mathbf{A x}$

- The expectation: $\mathbb{E}[\mathbf{y}]=\mathbb{E}[\boldsymbol{A} \mathbf{x}]=$

Gaussian Distribution

Sums and Linear Transformations
Linear Transformation by a Matrix (1/2)
$X \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $\mathbf{y}=\boldsymbol{A x}$

- The expectation: $\mathbb{E}[\mathbf{y}]=\mathbb{E}[\boldsymbol{A} \mathbf{x}]=\boldsymbol{A} \mathbb{E}[\mathbf{x}]=\boldsymbol{A} \boldsymbol{\mu}$.
- The expectation: $\mathbb{E}[\mathbf{y}]=\mathbb{E}[\boldsymbol{A} \mathbf{x}]=\boldsymbol{A} \mathbb{E}[\mathbf{x}]=\boldsymbol{A} \boldsymbol{\mu}$.
- The variance: $\mathbb{V}[\mathbf{y}]=\mathbb{V}[\boldsymbol{A} \mathbf{x}]=$

Linear Transformation by a Matrix (1/2)
$X \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $\mathbf{y}=\boldsymbol{A x}$

- The expectation: $\mathbb{E}[\mathbf{y}]=\mathbb{E}[\boldsymbol{A} \mathbf{x}]=\boldsymbol{A} \mathbb{E}[\mathbf{x}]=\boldsymbol{A} \boldsymbol{\mu}$.
- The variance: $\mathbb{V}[\mathbf{y}]=\mathbb{V}[\boldsymbol{A} \mathbf{x}]=\boldsymbol{A} \mathbb{V}[\mathbf{x}] \boldsymbol{A}^{\top}=\boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}^{\top}$.

Linear Transformation by a Matrix (1/2)
$X \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $\mathbf{y}=\boldsymbol{A x}$

- The expectation: $\mathbb{E}[\mathbf{y}]=\mathbb{E}[\boldsymbol{A} \mathbf{x}]=\boldsymbol{A} \mathbb{E}[\mathbf{x}]=\boldsymbol{A} \boldsymbol{\mu}$.
- The variance: $\mathbb{V}[\mathbf{y}]=\mathbb{V}[\boldsymbol{A} \mathbf{x}]=\boldsymbol{A} \mathbb{V}[\mathbf{x}] \boldsymbol{A}^{\top}=\boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}^{\top}$.
- Thus, we have

Linear Transformation by a Matrix (1/2)
$X \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $\mathbf{y}=\boldsymbol{A x}$

- The expectation: $\mathbb{E}[\mathbf{y}]=\mathbb{E}[\boldsymbol{A} \mathbf{x}]=\boldsymbol{A} \mathbb{E}[\mathbf{x}]=\boldsymbol{A} \boldsymbol{\mu}$.
- The variance: $\mathbb{V}[\mathbf{y}]=\mathbb{V}[\boldsymbol{A} \mathbf{x}]=\boldsymbol{A} \mathbb{V}[\mathbf{x}] \boldsymbol{A}^{\top}=\boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}^{\top}$.
- Thus, we have

$$
Y \sim \mathcal{N}\left(\boldsymbol{A} \boldsymbol{\mu}, \boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}^{\top}\right)
$$

Linear Transformation by a Matrix (2/2)

Let's consider the reverse transformation.
$Y \sim \mathcal{N}\left(\boldsymbol{\mu}_{y}, \boldsymbol{\Sigma}\right), \mathbf{y}=\boldsymbol{A} \mathbf{x}$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{M}$, a full rank $\boldsymbol{A} \in \mathbb{R}^{M \times N}, M \geq N$

- $p(\mathbf{y})=\mathcal{N}(\mathbf{y} \mid \boldsymbol{A x}, \boldsymbol{\Sigma})$.
- Note: \boldsymbol{A} might not be invertible.

Linear Transformation by a Matrix (2/2)

Let's consider the reverse transformation.
$Y \sim \mathcal{N}\left(\boldsymbol{\mu}_{\mathbf{y}}, \boldsymbol{\Sigma}\right), \mathbf{y}=\boldsymbol{A} \mathbf{x}$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{M}$, a full rank $\boldsymbol{A} \in \mathbb{R}^{M \times N}, M \geq N$

- $p(\mathbf{y})=\mathcal{N}(\mathbf{y} \mid \boldsymbol{A x}, \boldsymbol{\Sigma})$.
- Note: \boldsymbol{A} might not be invertible.
- $y=A x$

Linear Transformation by a Matrix (2/2)

Let's consider the reverse transformation.
$Y \sim \mathcal{N}\left(\boldsymbol{\mu}_{\mathbf{y}}, \boldsymbol{\Sigma}\right), \mathbf{y}=\boldsymbol{A} \mathbf{x}$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{M}$, a full rank $\boldsymbol{A} \in \mathbb{R}^{M \times N}, M \geq N$

- $p(\mathbf{y})=\mathcal{N}(\mathbf{y} \mid \boldsymbol{A x}, \boldsymbol{\Sigma})$.
- Note: \boldsymbol{A} might not be invertible.
- $\mathbf{y}=\boldsymbol{A} \mathbf{x} \quad \Longleftrightarrow \boldsymbol{A}^{\top} \mathbf{y}=\boldsymbol{A}^{\top} \boldsymbol{A} \mathbf{x}$

Linear Transformation by a Matrix (2/2)

Let's consider the reverse transformation.
$Y \sim \mathcal{N}\left(\boldsymbol{\mu}_{\mathbf{y}}, \boldsymbol{\Sigma}\right), \mathbf{y}=\boldsymbol{A} \mathbf{x}$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{M}$, a full rank $\boldsymbol{A} \in \mathbb{R}^{M \times N}, M \geq N$

- $p(\mathbf{y})=\mathcal{N}(\mathbf{y} \mid \boldsymbol{A x}, \boldsymbol{\Sigma})$.
- Note: \boldsymbol{A} might not be invertible.
$\bullet \mathbf{y}=\boldsymbol{A} \mathbf{x} \Longleftrightarrow \boldsymbol{A}^{\top} \mathbf{y}=\boldsymbol{A}^{\top} \boldsymbol{A} \mathbf{x} \Longleftrightarrow\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top} \mathbf{y}=\mathbf{x}$.

Linear Transformation by a Matrix (2/2)

Let's consider the reverse transformation.
$Y \sim \mathcal{N}\left(\boldsymbol{\mu}_{y}, \boldsymbol{\Sigma}\right), \mathbf{y}=\boldsymbol{A} \mathbf{x}$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{M}$, a full rank $\boldsymbol{A} \in \mathbb{R}^{M \times N}, M \geq N$

- $p(\mathbf{y})=\mathcal{N}(\mathbf{y} \mid \boldsymbol{A x}, \boldsymbol{\Sigma})$.
- Note: \boldsymbol{A} might not be invertible.
$\bullet \mathbf{y}=\boldsymbol{A} \mathbf{x} \Longleftrightarrow \boldsymbol{A}^{\top} \mathbf{y}=\boldsymbol{A}^{\top} \boldsymbol{A} \mathbf{x} \Longleftrightarrow\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top} \mathbf{y}=\mathbf{x}$.
- This works even for non-invertible \boldsymbol{A} !.

Linear Transformation by a Matrix (2/2)

Let's consider the reverse transformation.
$Y \sim \mathcal{N}\left(\boldsymbol{\mu}_{y}, \boldsymbol{\Sigma}\right), \mathbf{y}=\boldsymbol{A} \mathbf{x}$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{M}$, a full rank $\boldsymbol{A} \in \mathbb{R}^{M \times N}, M \geq N$

- $p(\mathbf{y})=\mathcal{N}(\mathbf{y} \mid \boldsymbol{A x}, \boldsymbol{\Sigma})$.
- Note: \boldsymbol{A} might not be invertible.
- $\mathbf{y}=\boldsymbol{A} \mathbf{x} \Longleftrightarrow \boldsymbol{A}^{\top} \mathbf{y}=\boldsymbol{A}^{\top} \boldsymbol{A} \mathbf{x} \Longleftrightarrow\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top} \mathbf{y}=\mathbf{x}$.
- This works even for non-invertible \boldsymbol{A} !.
- The variance: $\mathbb{V}[\mathbf{x}]=\mathbb{V}\left[\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top} \mathbf{y}\right]=$

Linear Transformation by a Matrix (2/2)

Let's consider the reverse transformation.
$Y \sim \mathcal{N}\left(\boldsymbol{\mu}_{y}, \boldsymbol{\Sigma}\right), \mathbf{y}=\boldsymbol{A} \mathbf{x}$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{M}$, a full rank $\boldsymbol{A} \in \mathbb{R}^{M \times N}, M \geq N$

- $p(\mathbf{y})=\mathcal{N}(\mathbf{y} \mid \boldsymbol{A x}, \boldsymbol{\Sigma})$.
- Note: \boldsymbol{A} might not be invertible.
$\bullet \mathbf{y}=\boldsymbol{A} \mathbf{x} \Longleftrightarrow \boldsymbol{A}^{\top} \mathbf{y}=\boldsymbol{A}^{\top} \boldsymbol{A} \mathbf{x} \Longleftrightarrow\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top} \mathbf{y}=\mathbf{x}$.
- This works even for non-invertible \boldsymbol{A} !.
- The variance: $\mathbb{V}[\mathbf{x}]=\mathbb{V}\left[\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top} \mathbf{y}\right]=\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top} \boldsymbol{\Sigma} \boldsymbol{A}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1}$.

Linear Transformation by a Matrix (2/2)

Let's consider the reverse transformation.
$Y \sim \mathcal{N}\left(\boldsymbol{\mu}_{y}, \boldsymbol{\Sigma}\right), \mathbf{y}=\boldsymbol{A} \mathbf{x}$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{M}$, a full rank $\boldsymbol{A} \in \mathbb{R}^{M \times N}, M \geq N$

- $p(\mathbf{y})=\mathcal{N}(\mathbf{y} \mid \boldsymbol{A x}, \boldsymbol{\Sigma})$.
- Note: \boldsymbol{A} might not be invertible.
- $\mathbf{y}=\boldsymbol{A} \mathbf{x} \Longleftrightarrow \boldsymbol{A}^{\top} \mathbf{y}=\boldsymbol{A}^{\top} \boldsymbol{A} \mathbf{x} \Longleftrightarrow\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top} \mathbf{y}=\mathbf{x}$.
- This works even for non-invertible \boldsymbol{A} !.
- The variance: $\mathbb{V}[\mathbf{x}]=\mathbb{V}\left[\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top} \mathbf{y}\right]=\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top} \boldsymbol{\Sigma} \boldsymbol{A}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1}$.
- Thus, we have

Linear Transformation by a Matrix (2/2)

Let's consider the reverse transformation.
$Y \sim \mathcal{N}\left(\boldsymbol{\mu}_{y}, \boldsymbol{\Sigma}\right), \mathbf{y}=\boldsymbol{A} \mathbf{x}$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{M}$, a full rank $\boldsymbol{A} \in \mathbb{R}^{M \times N}, M \geq N$

- $p(\mathbf{y})=\mathcal{N}(\mathbf{y} \mid \boldsymbol{A x}, \boldsymbol{\Sigma})$.
- Note: \boldsymbol{A} might not be invertible.
- $\mathbf{y}=\boldsymbol{A} \mathbf{x} \Longleftrightarrow \boldsymbol{A}^{\top} \mathbf{y}=\boldsymbol{A}^{\top} \boldsymbol{A} \mathbf{x} \Longleftrightarrow\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top} \mathbf{y}=\mathbf{x}$.
- This works even for non-invertible \boldsymbol{A} !.
- The variance: $\mathbb{V}[\mathbf{x}]=\mathbb{V}\left[\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top} \mathbf{y}\right]=\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top} \boldsymbol{\Sigma} \boldsymbol{A}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1}$.
- Thus, we have

$$
X \sim \mathcal{N}\left(\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top} \boldsymbol{\mu}_{y},\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top} \boldsymbol{\Sigma} \boldsymbol{A}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1}\right)
$$

Exercise

Another example of reverse transformation.
$Y \sim \mathcal{N}\left(\boldsymbol{\mu}_{\mathbf{y}}, \boldsymbol{\Sigma}\right)$ and $\mathbf{y}=\boldsymbol{A} \mathbf{x}$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{M}$, and \boldsymbol{A} is invertible

- $p(\mathbf{y})=\mathcal{N}(\mathbf{y} \mid \boldsymbol{A} \mathbf{x}, \boldsymbol{\Sigma})$.
- Compute $\mathbb{E}[\mathbf{x}]$.
- Compute $\mathbb{V}[\mathbf{x}]$.
- Derive $X \sim \mathcal{N}(?$, ?).

A Sampling Approach

We want to obtain samples from a multivariate $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

- However, we only have a sampler of $\mathcal{N}(\mathbf{0}, \boldsymbol{I})$ at hand.

Gaussian Distribution

A Sampling Approach

We want to obtain samples from a multivariate $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

- However, we only have a sampler of $\mathcal{N}(\mathbf{0}, \boldsymbol{I})$ at hand.
- Assume that we have $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})$.
- Then, define $\mathbf{y}=\boldsymbol{A} \mathbf{x}+\boldsymbol{\mu}$, where $\boldsymbol{A I} \boldsymbol{A}^{\top}=\boldsymbol{A A}^{\top}=\boldsymbol{\Sigma}$.

Gaussian Distribution

A Sampling Approach

We want to obtain samples from a multivariate $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

- However, we only have a sampler of $\mathcal{N}(\mathbf{0}, \boldsymbol{I})$ at hand.
- Assume that we have $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})$.
- Then, define $\mathbf{y}=\boldsymbol{A} \mathbf{x}+\boldsymbol{\mu}$, where $\boldsymbol{A I} \boldsymbol{A}^{\top}=\boldsymbol{A A}^{\top}=\boldsymbol{\Sigma}$.
- To derive \boldsymbol{A} :

Gaussian Distribution

A Sampling Approach

We want to obtain samples from a multivariate $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

- However, we only have a sampler of $\mathcal{N}(\mathbf{0}, \boldsymbol{I})$ at hand.
- Assume that we have $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})$.
- Then, define $\mathbf{y}=\boldsymbol{A} \mathbf{x}+\boldsymbol{\mu}$, where $\boldsymbol{A I} \boldsymbol{A}^{\top}=\boldsymbol{A A}^{\top}=\boldsymbol{\Sigma}$.
- To derive \boldsymbol{A} : Use Cholesky decomposition of the covariance matrix $\boldsymbol{\Sigma}$.
- A will be triangular and efficient for computation.

Outline

(1) Gaussian Distribution

- Marginals and Conditionals of Gaussians
- Sums and Linear Transformations

(2) Change of Variables

- Distribution Function Technique
- Change of Variables

Motivation

Consider the following examples.

- Assuming that X is a random variable distributed according to some well-known distribution, then what is the distribution of X^{2} ?
- Assuming that X_{1}, X_{2} are two univariate standard normal distributions, then what is the distribution of $\frac{1}{2}\left(X_{1}+X_{2}\right)$?

Motivation

Consider the following examples.

- Assuming that X is a random variable distributed according to some well-known distribution, then what is the distribution of X^{2} ?
- Assuming that X_{1}, X_{2} are two univariate standard normal distributions, then what is the distribution of $\frac{1}{2}\left(X_{1}+X_{2}\right)$?
- What if the transformation is nonlinear?

Motivation

Consider the following examples.

- Assuming that X is a random variable distributed according to some well-known distribution, then what is the distribution of X^{2} ?
- Assuming that X_{1}, X_{2} are two univariate standard normal distributions, then what is the distribution of $\frac{1}{2}\left(X_{1}+X_{2}\right)$?
- What if the transformation is nonlinear?
- Closed-form expressions are not readily available.

Straightforward for Discrete Random Variables

Example: Univariate Random Variables

Given

- A discrete random variable X with $\operatorname{pmf} \operatorname{Pr}[X=x]$.
- An invertible function $U(x)$.

Consider the transformed random variable $Y:=U(X)$ with pmf $\operatorname{Pr}[Y=y]$. Then

$$
\begin{aligned}
\operatorname{Pr}[Y=y] & =\operatorname{Pr}[U(X)=y] & & \text { (transformation of interest) } \\
& =\operatorname{Pr}\left[X=U^{-1}(y)\right] & & \text { (inverse) }
\end{aligned}
$$

where we can observe $x=U^{-1}(y)$.

Two Approaches

- So far we considered the discrete case (e.g., $\operatorname{Pr}[X=x]$).
- For continuous distributions, we will consider the two approaches:
(1) Cumulative distribution (Distribution Function Technique).
(2) Change-of-variable.

Outline

(1) Gaussian Distribution

- Marginals and Conditionals of Gaussians
- Sums and Linear Transformations
(2) Change of Variables
- Distribution Function Technique
- Change of Variables

Distribution Function Technique

Note: a cdf of $X: \quad F_{X}(x)=\operatorname{Pr}[X \leq x]$.

Goal: Find the cdf of the random variable $Y:=U(X)$

(1) Find the cdf

$$
F_{Y}(y)=\operatorname{Pr}[Y \leq y] .
$$

(2) Differentiating $F_{Y}(y)$ to get the $\operatorname{pdf} f_{Y}(y)$:

$$
f_{Y}(y)=\frac{\mathrm{d}}{\mathrm{~d} y} F_{Y}(y) .
$$

Distribution Function Technique

Note: a cdf of $X: \quad F_{X}(x)=\operatorname{Pr}[X \leq x]$.

Goal: Find the cdf of the random variable $Y:=U(X)$

(1) Find the cdf

$$
F_{Y}(y)=\operatorname{Pr}[Y \leq y] .
$$

(2) Differentiating $F_{Y}(y)$ to get the pdf $f_{Y}(y)$:

$$
f_{Y}(y)=\frac{\mathrm{d}}{\mathrm{~d} y} F_{Y}(y) .
$$

Note: The domain of the random variable may have changed!

Example

Example

Let X be a continuous random variable with pdf $f_{X}:[0,1] \mapsto[0,1]$:

$$
f_{X}(x)=3 x^{2} .
$$

Goal: Find the pdf of $Y=X^{2}$.

$$
F_{Y}(y)=\operatorname{Pr}[Y \leq y]
$$

Example

Example

Let X be a continuous random variable with pdf $f_{X}:[0,1] \mapsto[0,1]$:

$$
f_{X}(x)=3 x^{2} .
$$

Goal: Find the pdf of $Y=X^{2}$.

$$
\begin{aligned}
F_{Y}(y) & =\operatorname{Pr}[Y \leq y]=\operatorname{Pr}\left[X^{2} \leq y\right] \\
& =\operatorname{Pr}\left[X \leq y^{\frac{1}{2}}\right] \\
& =F_{X}\left(y^{\frac{1}{2}}\right)
\end{aligned}
$$

Example

Example

Let X be a continuous random variable with pdf $f_{X}:[0,1] \mapsto[0,1]$:

$$
f_{X}(x)=3 x^{2}
$$

Goal: Find the pdf of $Y=X^{2}$.

$$
\begin{aligned}
F_{Y}(y) & =\operatorname{Pr}[Y \leq y]=\operatorname{Pr}\left[X^{2} \leq y\right] \\
& =\operatorname{Pr}\left[X \leq y^{\frac{1}{2}}\right] \\
& =F_{X}\left(y^{\frac{1}{2}}\right)=\int_{0}^{y^{\frac{1}{2}}} 3 t^{2} \mathrm{~d} t \\
& =\left[t^{3}\right]_{0}^{y^{\frac{1}{2}}}=y^{\frac{3}{2}}, \quad 0 \leq y \leq 1 .
\end{aligned}
$$

Example

Example

Let X be a continuous random variable with pdf $f_{X}:[0,1] \mapsto[0,1]$:

$$
f_{X}(x)=3 x^{2}
$$

Goal: Find the pdf of $Y=X^{2}$.

$$
\begin{aligned}
F_{Y}(y) & =\operatorname{Pr}[Y \leq y]=\operatorname{Pr}\left[X^{2} \leq y\right] \quad \text { Thus, } \\
& =\operatorname{Pr}\left[X \leq y^{\frac{1}{2}}\right] \\
& =F_{X}\left(y^{\frac{1}{2}}\right)=\int_{0}^{y^{\frac{1}{2}}} 3 t^{2} \mathrm{~d} t \quad \text { for } 0 \leq y \leq 1 \\
& =\left[t^{3}\right]_{0}^{y^{\frac{1}{2}}}=y^{\frac{3}{2}}, \quad 0 \leq y \leq 1
\end{aligned}
$$

Exercise

Theorem [Casella \& Berger (2002)]

Let X be a continuous random variable with a strictly monotone cumulative distribution function $F_{X}(x)$. Then, the random variable Y defined as

$$
Y:=F_{X}(X)
$$

has a uniform distribution.

Exercise

Consider $f_{X}(x)=3 x^{2}$ in the previous example. Show that $Y:=F_{X}(X)$ attains a uniform distribution.

Remark

The first approach relies on the following facts:

- We can transform the cdf of Y into an expression that is a cdf of X.
- We can differentiate the cdf to obtain the pdf.

Outline

1) Gaussian Distribution

- Marginals and Conditionals of Gaussians
- Sums and Linear Transformations

(2) Change of Variables

- Distribution Function Technique
- Change of Variables

What We have Learnt From the Calculus Course

$$
\int f(g(x)) g^{\prime}(x) \mathrm{d} x=\int f(u) \mathrm{d} u, \text { where } u=g(x) .
$$

What We have Learnt From the Calculus Course

$$
\int f(g(x)) g^{\prime}(x) \mathrm{d} x=\int f(u) \mathrm{d} u, \text { where } u=g(x) .
$$

- Intuitively, considering $\mathrm{d} u \approx \Delta u=g^{\prime}(x) \Delta x$ as the "small changes".

Change of Variables

Change of Variables
The Roadmap (1/2)

- Consider a univariate random variable X and an invertible function U such that $Y:=U(X)$.
- Assume that X has states $x \in[a, b]$.
- By the definition of a cdf, we have

The Roadmap (1/2)

- Consider a univariate random variable X and an invertible function U such that $Y:=U(X)$.
- Assume that X has states $x \in[a, b]$.
- By the definition of a cdf, we have

$$
F_{Y}(y)=\operatorname{Pr}[Y \leq y]
$$

The Roadmap (1/2)

- Consider a univariate random variable X and an invertible function U such that $Y:=U(X)$.
- Assume that X has states $x \in[a, b]$.
- By the definition of a cdf, we have

$$
F_{Y}(y)=\operatorname{Pr}[Y \leq y]=\operatorname{Pr}[U(X) \leq y]
$$

The Roadmap (1/2)

- Consider a univariate random variable X and an invertible function U such that $Y:=U(X)$.
- Assume that X has states $x \in[a, b]$.
- By the definition of a cdf, we have

$$
F_{Y}(y)=\operatorname{Pr}[Y \leq y]=\operatorname{Pr}[U(X) \leq y]
$$

If U is strictly increasing, then so is its inverse U^{-1}.

$$
\operatorname{Pr}[U(X) \leq y]=\operatorname{Pr}\left[U^{-1}(U(X)) \leq U^{-1}(y)\right]
$$

The Roadmap (1/2)

- Consider a univariate random variable X and an invertible function U such that $Y:=U(X)$.
- Assume that X has states $x \in[a, b]$.
- By the definition of a cdf, we have

$$
F_{Y}(y)=\operatorname{Pr}[Y \leq y]=\operatorname{Pr}[U(X) \leq y]
$$

If U is strictly increasing, then so is its inverse U^{-1}.

$$
\operatorname{Pr}[U(X) \leq y]=\operatorname{Pr}\left[U^{-1}(U(X)) \leq U^{-1}(y)\right]=\operatorname{Pr}\left[X \leq U^{-1}(y)\right]
$$

Then, $\quad F_{Y}(y)=\operatorname{Pr}\left[X \leq U^{-1}(y)\right]=\int_{a}^{U^{-1}(y)} f_{X}(x) \mathrm{d} x$

Change of Variables

Change of Variables

The Roadmap (2/2)

- To obtain the pdf, we differentiate $F_{Y}(y)$ w.r.t. y :

$$
f_{Y}(y)=\frac{\mathrm{d}}{\mathrm{~d} y} F_{Y}(y)=\frac{\mathrm{d}}{\mathrm{~d} y} \int_{a}^{U^{-1}(y)} f_{X}(x) \mathrm{d} x .
$$

Change of Variables

Change of Variables

The Roadmap (2/2)

- To obtain the pdf, we differentiate $F_{Y}(y)$ w.r.t. y :

$$
f_{Y}(y)=\frac{\mathrm{d}}{\mathrm{~d} y} F_{Y}(y)=\frac{\mathrm{d}}{\mathrm{~d} y} \int_{a}^{U^{-1}(y)} f_{X}(x) \mathrm{d} x
$$

- The integral on the right-hand side is w.r.t. x, but we need an integral w.r.t. y (\because we are differentiating w.r.t. $y . .$.
- Change-of-variable comes to the rescue!

Change of Variables

Change of Variables

The Roadmap (2/2)

- To obtain the pdf, we differentiate $F_{Y}(y)$ w.r.t. y :

$$
f_{Y}(y)=\frac{\mathrm{d}}{\mathrm{~d} y} F_{Y}(y)=\frac{\mathrm{d}}{\mathrm{~d} y} \int_{a}^{U^{-1}(y)} f_{X}(x) \mathrm{d} x
$$

- The integral on the right-hand side is w.r.t. x, but we need an integral w.r.t. y (\because we are differentiating w.r.t. y...)
- Change-of-variable comes to the rescue!
- $\int f_{X}\left(U^{-1}(y)\right) U^{-1^{\prime}}(y) \mathrm{d} y=\int f_{X}(x) \mathrm{d} x$, where $x=U^{-1}(y)$.

The Roadmap (2/2)

- To obtain the pdf, we differentiate $F_{Y}(y)$ w.r.t. y :

$$
f_{Y}(y)=\frac{\mathrm{d}}{\mathrm{~d} y} F_{Y}(y)=\frac{\mathrm{d}}{\mathrm{~d} y} \int_{a}^{U^{-1}(y)} f_{X}(x) \mathrm{d} x
$$

- The integral on the right-hand side is w.r.t. x, but we need an integral w.r.t. y (\because we are differentiating w.r.t. $y . .$.
- Change-of-variable comes to the rescue!
- $\int f_{X}\left(U^{-1}(y)\right) U^{-1^{\prime}}(y) \mathrm{d} y=\int f_{X}(x) \mathrm{d} x$, where $x=U^{-1}(y)$.
- Thus,

$$
\begin{aligned}
f_{Y}(y) & =\frac{\mathrm{d}}{\mathrm{~d} y} \int_{a}^{U^{-1}(y)} f_{X}\left(U^{-1}(y)\right) U^{-1^{\prime}}(y) \mathrm{d} y \\
& =f_{X}\left(U^{-1}(y)\right) \cdot\left(\frac{\mathrm{d}}{\mathrm{~d} y} U^{-1}(y)\right)
\end{aligned}
$$

Change of Variables

Change of Variables

Remark

For decreasing functions,

$$
f_{Y}(y)=-f_{X}\left(U^{-1}(y)\right) \cdot\left(\frac{\mathrm{d}}{\mathrm{~d} y} U^{-1}(y)\right) .
$$

Remark

For decreasing functions,

$$
f_{Y}(y)=-f_{X}\left(U^{-1}(y)\right) \cdot\left(\frac{\mathrm{d}}{\mathrm{~d} y} U^{-1}(y)\right) .
$$

So for both increasing and decreasing U,

$$
f_{Y}(y)=f_{X}\left(U^{-1}(y)\right) \cdot\left|\frac{\mathrm{d}}{\mathrm{~d} y} U^{-1}(y)\right| .
$$

Change of Variables

Change of Variables

Remark

For decreasing functions,

$$
f_{Y}(y)=-f_{X}\left(U^{-1}(y)\right) \cdot\left(\frac{\mathrm{d}}{\mathrm{~d} y} U^{-1}(y)\right) .
$$

So for both increasing and decreasing U,

$$
f_{Y}(y)=f_{X}\left(U^{-1}(y)\right) \cdot\left|\frac{\mathrm{d}}{\mathrm{~d} y} U^{-1}(y)\right| .
$$

- The term $\left|\frac{d}{d y} U^{-1}(y)\right|$ measures how much a unit volume changes when applying U.

The Main Theorem

Theorem [Billingsley (1995)]

Let $f_{X}(\mathbf{x})$ be the pdf of the multivariate continuous random variable X. If the vector-valued function $\mathbf{y}=U(\mathbf{x})$ is differentiable and invertible for all values within the domain of \mathbf{x}, then for corresponding values of \mathbf{y}, the pdf of $Y=U(X)$ is given by

$$
f(\mathbf{y})=f_{\mathbf{x}}\left(U^{-1}(\mathbf{y})\right) \cdot\left|\operatorname{det}\left(\frac{\partial}{\partial \mathbf{y}} U^{-1}(\mathbf{y})\right)\right| .
$$

Example

Example

Consider a bivariate random variable X with states $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ and pdf

$$
f\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\frac{1}{2 \pi} \exp \left(-\frac{1}{2}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]^{\top}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)
$$

Then, consider a matrix $\boldsymbol{A} \in \mathbb{R}^{2 \times 2}$ defined as

$$
\boldsymbol{A}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Goal: Find the pdf of the random variable Y with states $\mathbf{y}=\boldsymbol{A} \mathbf{x}$.

ML Math - Probability \& Distributions

Change of Variables

Change of Variables

- $y=A x$

Change of Variables

Change of Variables

- $\mathbf{y}=\boldsymbol{A} \mathbf{x} \quad \mathbf{x}=\boldsymbol{A}^{-1} \mathbf{y}$.

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\boldsymbol{A}^{-1}\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]
$$

Change of Variables

Change of Variables

- $\mathbf{y}=\boldsymbol{A} \mathbf{x} \Longrightarrow \boldsymbol{A}^{-1} \mathbf{y}$.

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\boldsymbol{A}^{-1}\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] .
$$

- $\mathbf{y}=\boldsymbol{A} \quad \Longrightarrow \mathbf{x}=\boldsymbol{A}^{-1} \mathbf{y}$.

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\boldsymbol{A}^{-1}\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] .
$$

- The corresponding pdf is given by

$$
f(\mathbf{x})=f\left(\boldsymbol{A}^{-1} \mathbf{y}\right)=\frac{1}{2 \pi} \exp \left(-\frac{1}{2} \mathbf{y}^{\top}\left(\boldsymbol{A}^{-1}\right)^{\top} \boldsymbol{A}^{-1} \mathbf{y}\right)
$$

- $\mathbf{y}=\boldsymbol{A} \quad \Longrightarrow \mathbf{x}=\boldsymbol{A}^{-1} \mathbf{y}$.

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\boldsymbol{A}^{-1}\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] .
$$

- The corresponding pdf is given by

$$
f(\mathbf{x})=f\left(\boldsymbol{A}^{-1} \mathbf{y}\right)=\frac{1}{2 \pi} \exp \left(-\frac{1}{2} \mathbf{y}^{\top}\left(\boldsymbol{A}^{-1}\right)^{\top} \boldsymbol{A}^{-1} \mathbf{y}\right)
$$

- $\frac{\partial}{\partial \mathbf{y}} \boldsymbol{A}^{-1} \mathbf{y}=$
- $\mathbf{y}=\boldsymbol{A} \mathbf{x} \quad \mathbf{x}=\boldsymbol{A}^{-1} \mathbf{y}$.

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\boldsymbol{A}^{-1}\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] .
$$

- The corresponding pdf is given by

$$
f(\mathbf{x})=f\left(\boldsymbol{A}^{-1} \mathbf{y}\right)=\frac{1}{2 \pi} \exp \left(-\frac{1}{2} \mathbf{y}^{\top}\left(\boldsymbol{A}^{-1}\right)^{\top} \boldsymbol{A}^{-1} \mathbf{y}\right)
$$

- $\frac{\partial}{\partial \mathbf{y}} \boldsymbol{A}^{-1} \mathbf{y}=\boldsymbol{A}^{-1}$. So, $\operatorname{det}\left(\frac{\partial}{\partial \mathbf{y}} \boldsymbol{A}^{-1} \mathbf{y}\right)=\operatorname{det}\left(\boldsymbol{A}^{-1}\right)=$
- $\mathbf{y}=\boldsymbol{A} \mathbf{x} \quad \mathbf{x}=\boldsymbol{A}^{-1} \mathbf{y}$.

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\boldsymbol{A}^{-1}\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] .
$$

- The corresponding pdf is given by

$$
f(\mathbf{x})=f\left(\boldsymbol{A}^{-1} \mathbf{y}\right)=\frac{1}{2 \pi} \exp \left(-\frac{1}{2} \mathbf{y}^{\top}\left(\boldsymbol{A}^{-1}\right)^{\top} \boldsymbol{A}^{-1} \mathbf{y}\right)
$$

- $\frac{\partial}{\partial \mathbf{y}} \boldsymbol{A}^{-1} \mathbf{y}=\boldsymbol{A}^{-1}$. So, $\operatorname{det}\left(\frac{\partial}{\partial \mathbf{y}} \boldsymbol{A}^{-1} \mathbf{y}\right)=\operatorname{det}\left(\boldsymbol{A}^{-1}\right)=\frac{1}{a d-b c}$.
- $\mathbf{y}=\boldsymbol{A} \mathbf{x} \quad \mathbf{x}=\boldsymbol{A}^{-1} \mathbf{y}$.

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\boldsymbol{A}^{-1}\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] .
$$

- The corresponding pdf is given by

$$
f(\mathbf{x})=f\left(\boldsymbol{A}^{-1} \mathbf{y}\right)=\frac{1}{2 \pi} \exp \left(-\frac{1}{2} \mathbf{y}^{\top}\left(\boldsymbol{A}^{-1}\right)^{\top} \boldsymbol{A}^{-1} \mathbf{y}\right)
$$

- $\frac{\partial}{\partial \mathbf{y}} \boldsymbol{A}^{-1} \mathbf{y}=\boldsymbol{A}^{-1}$. So, $\operatorname{det}\left(\frac{\partial}{\partial \mathbf{y}} \boldsymbol{A}^{-1} \mathbf{y}\right)=\operatorname{det}\left(\boldsymbol{A}^{-1}\right)=\frac{1}{a d-b c}$.
- Thus, $f(\mathbf{y})=\frac{1}{2 \pi} \exp \left(-\frac{1}{2} \mathbf{y}^{\top}\left(\boldsymbol{A}^{-1}\right)^{\top} \boldsymbol{A}^{-1} \mathbf{y}\right) \cdot\left|\frac{1}{a d-b c}\right|$.

Discussions

