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ML Math - Probability & Distributions

Credits for the resource

The slides are based on the textbooks:

Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong:
Mathematics for Machine Learning. Cambridge University Press.
2020.
Howard Anton, Chris Rorres, Anton Kaul: Elementary Linear
Algebra. Wiley. 2019.

We could partially refer to the monograph:
Francesco Orabona: A Modern Introduction to Online Learning.
https://arxiv.org/abs/1912.13213
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ML Math - Probability & Distributions

Sum & Product Rule

Sum Rule (1/2)

x, y: random variables (vectors).

p(x, y): joint distribution of x, y.

p(y | x): conditional probability of y given x.

Sum Rule

p(x) =


∑
y∈Y

p(x, y) if y is discrete

∫
Y
p(x, y)dy if y is continuous

where Y stands for the states of the target space of random variable Y .

Marginalization property.
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ML Math - Probability & Distributions

Sum & Product Rule

Sum Rule (2/2)

For x = [x1, . . . , xD ]
⊤, the marginal

p(xi ) =

∫
p(x1, . . . , xD)dx−i

, where “−i” means all except i .
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ML Math - Probability & Distributions

Sum & Product Rule

Product Rule

Product Rule

p(x, y) = p(y | x)p(x)
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ML Math - Probability & Distributions

Bayes’ Theorem

Bayes’ Theorem

Bayes’ Theorem

p(x | y)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(y | x)

prior︷︸︸︷
p(x)

p(y)︸︷︷︸
evidence

.

Prior: subjective prior knowledge (before observing data).

Likelihood p(y | x): the probability of y if we were to know the latent
variable x.

We call it “the likelihood of x”.

Posterior p(x | y): the quantity that we know about x after having
observed y.
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ML Math - Probability & Distributions

Bayes’ Theorem

Marginal Likelihood/Evidence

p(y) :=
∑
x∈X

p(y | x)p(x) = EX [p(y | x)]

p(y) :=

∫
x∈X

p(y | x)p(x)dx = EX [p(y | x)].
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ML Math - Probability & Distributions

Means & Covariances

Expected Value

Expected value

The expected value of a function g : R 7→ R of a random variable
X ∼ p(x) is

EX [g(x)] =

∫
X
g(x)p(x)dx ,

or
EX [g(x)] =

∑
x∈X

g(x)p(x).

Multivariate X = [X1, . . . ,XD ]
⊤

EX [g(x)] =

 EX1 [g(x1)]
...

EXD
[g(xD)]

 ∈ RD ,

where EXd
: taking the expectation w.r.t. the xd .
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ML Math - Probability & Distributions

Means & Covariances

Expected Value (contd.)

Mean

For x ∈ RD ,

EX [x] =

 EX1 [x1]
...

EXD
[xD ]

 ∈ RD ,

where

EXd
[xd ] =

∫
X
xdp(xd)dxd if X is continuous ;

EXd
[xd ] =

∑
xi∈X

xip(xd = xi )dxd if X is discrete.
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ML Math - Probability & Distributions

Means & Covariances

Linearity of Expectation

Let f (x) = ag(x) + bh(x) for a, b ∈ R and x ∈ RD .

EX [f (x)] =

∫
f (x)p(x)dx

=

∫
[ag(x) + bh(x)]dx

= a

∫
g(x)p(x)dx + b

∫
h(x)p(x)dx

= aEX [g(x)] + bEX [h(x)].
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ML Math - Probability & Distributions

Means & Covariances

Linearity of Expectation (Discrete Case)

Let f (x) = ag(x) + bh(x) for a, b ∈ R and x ∈ X .

EX [f (x)] =
∑
x∈X

f (x)p(x)

=
∑
x∈X

[ag(x) + bh(x)]p(x)

= a
∑
x∈X

g(x)p(x) + b
∑
x∈X

h(x)p(x)

= aEX [g(x)] + bEX [h(x)].
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ML Math - Probability & Distributions

Means & Covariances

Covariance

The (univariate) covariance between two univariate random variables
X ,Y ∈ R is

CovX ,Y [x , y ] := EX ,Y [(x − EX [x ])(y − EY [y ])].

Omit the subscript.

Cov[x , y ] := E[xy ]− E[x ]E[y ].

Note that
Cov[x , x ] := E[x2]− (E[x ])2

is the variance and denoted by VX [x ] and
√
Cov[x , x ] denoted by σ(x) is

called the standard deviation.
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ML Math - Probability & Distributions

Means & Covariances

Covariance of Multivariate R.V.’s

Covariance (Multivariate)

Consider random variables X and Y with states x ∈ RD and y ∈ RE . The
covariance between X and Y :

Cov[x, y] =

E[xy⊤]− E[x]E[y]⊤ = Cov[y, x]⊤ ∈ RD×E .
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ML Math - Probability & Distributions

Means & Covariances

Variance (Multivariate)

Variance (Multivariate)

The variance of a random variables X with states x ∈ RD and mean
µ ∈ RD is

VX [x] = CovX [x, x] = EX [(x− µ)(x− µ)⊤]

= EX [xx
⊤]− EX [x]EX [x]

⊤

=


Cov[x1, x1] Cov[x1, x2] · · · Cov[x1, xD ]
Cov[x2, x1] Cov[x2, x2] · · · Cov[x2, xD ]

...
...

. . .
...

Cov[xD , x1] Cov[xD , x2] · · · Cov[xD , xD ]

 .

The covariance matrix of the multivariate X .
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ML Math - Probability & Distributions

Means & Covariances

Correlation

Correlation

The correlation between two random variables X ,Y is

corr[x , y ] =
Cov[x , y ]√
V[x ]V[y ]

∈ [−1, 1].
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ML Math - Probability & Distributions

Means & Covariances

Empirical Means & Covariances

In machine learning, we need to learn from empirical observations of data.

Empirical Mean & Covariance

The empirical mean vector: arithmetic average of the observations for
each variable:

x̄ :=
1

N

N∑
i=1

xi ,

for xi ∈ RD . The empirical covariance matrix is a D × D matrix

Σ :=
1

N

N∑
i=1

(xi − x̄)(xi − x̄)⊤.

Σ is symmetric, positive semidefinite.
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ML Math - Probability & Distributions

Means & Covariances

Computing the Empirical Variance

Approaches:

1 VX [x ] := EX [(x − µ)2].

2 VX [x ] = EX [x
2]− (EX [x ])

2.

One-pass; more efficient

3 Averaging pairwise differences between all pairs of observations.

1

N2

N∑
i ,j=1

(xi − xj)
2 = 2

 1

N

N∑
i=1

x2i −

(
1

N

N∑
i=1

xi

)2
 .

Twice of the 2nd approach.
Interesting perspective to compute the left-hand side target.
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ML Math - Probability & Distributions

Sums & Transformations of Random Variables

Basic Rules

Simple Rules & Exercise

Consider two random variables X ,Y with states x, y ∈ RD . Then,

E[x± y] = E[x]± E[y]
V[x± y] = V[x] + V[y]± Cov[x, y]± Cov[y, x] (Exercise).

Note: For a constant vector b ∈ RD , V(x± b) = V[x] because
V[b] = E[bb⊤]− E[b]E[b]⊤ = bb⊤ − bb⊤ = 0 and

Cov(x,b)

= E[xb⊤]− E[x]E[b]⊤ = E[x]b⊤ − E[x]b⊤ = 0.

Question: Why does the second equality hold?
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ML Math - Probability & Distributions

Sums & Transformations of Random Variables

Affine Transformation of r.v.’s (1/2)

Consider y = Ax+ b and let Σ := VX [x].

EY [y] = EX [Ax+ b] = AEX [x] + b

VY [y] = VX [Ax+ b] = VX [Ax] = AVX [x]A⊤ = AΣA⊤.
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ML Math - Probability & Distributions

Sums & Transformations of Random Variables

VX [Ax] = EX [(Ax)(Ax)⊤]− EX [Ax](EX [Ax])⊤

= EX [Axx⊤A⊤]− AEX [x]EX [x]
⊤A⊤

= AEX [xx
⊤A⊤]− AEX [x]EX [x]

⊤A⊤

= A(EX [Axx⊤])⊤ − AEX [x]EX [x]
⊤A⊤

= A(AEX [xx
⊤])⊤ − AEX [x]EX [x]

⊤A⊤

= AEX [xx
⊤]A⊤ − AEX [x]EX [x]

⊤A⊤

= AVX [x]A⊤.
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ML Math - Probability & Distributions

Sums & Transformations of Random Variables

Affine Transformation of r.v.’s (2/2)

Furthermore, let µ := EX [x] and Σ := VX [x].

Cov[x, y] = E[x(Ax+ b)⊤]− E[x]E[Ax+ b]⊤

= µb⊤ + E[xx⊤]A⊤ − µb⊤ − µµ⊤A⊤

= (E[xx⊤]− µµ⊤)A⊤

= ΣA⊤.
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Statistical Independence

(Statistically) Independent

Two random variables X ,Y are statistically independent if and only if

p(x, y) = p(x)p(y).

If X ,Y are independent, then

p(y | x) = p(y).

p(x | y) = p(x).

VX ,Y [x+ y] = VX [x] + VY [y].

CovX ,Y (x, y) = 0.
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Statistical Independence

Remark

Note that CovX ,Y (x, y) = 0 does NOT necessarily imply that X and Y are
independent.

Consider a random variable X with EX [x ] = 0 and also EX [x
3] = 0.

Let y = x2. Hence, Y is dependent on X .

Cov[x , y ] = E[xy ]− E[x ]E[y ] = E[x3] = 0.
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Statistical Independence

Conditional Independence

Two random variables X ,Y are conditionally independent given Z if and
only if

p(x, y | z) = p(x | z)p(y | z).

for all z ∈ Z.

By the product rule, we can have

p(x, y | z) = p(x | y, z)p(y | z).

Thus,
p(x | y, z) = p(x | z).
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Statistical Independence

Heads Up

If X ,Y are independent, then VX ,Y [x+ y] = VX [x] + VY [y].

∵ CovX ,Y (x, y) = 0
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Discussions
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