Mathematics for Machine Learning

- Probability \& Distributions (Supplementary):

Sum Rule, Product Rule, Bayes' Theorem \& Summary Statistics

Joseph Chuang-Chieh Lin
Department of Computer Science \& Information Engineering,
Tamkang University

Fall 2023

Credits for the resource

- The slides are based on the textbooks:
- Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong: Mathematics for Machine Learning. Cambridge University Press. 2020.
- Howard Anton, Chris Rorres, Anton Kaul: Elementary Linear Algebra. Wiley. 2019.
- We could partially refer to the monograph:

Francesco Orabona: A Modern Introduction to Online Learning. https://arxiv.org/abs/1912.13213

Outline

(1) Sum \& Product Rule
(2) Bayes' Theorem
(3) Means \& Covariances
4. Sums \& Transformations of Random Variables
(5) Statistical Independence

Outline

(1) Sum \& Product Rule

(2) Bayes' Theorem

(3) Means \& Covariances

4 Sums \& Transformations of Random Variables
(5) Statistical Independence

Sum Rule (1/2)

- \mathbf{x}, \mathbf{y} : random variables (vectors).
- $p(\mathbf{x}, \mathbf{y})$: joint distribution of \mathbf{x}, \mathbf{y}.
- $p(\mathbf{y} \mid \mathbf{x})$: conditional probability of \mathbf{y} given \mathbf{x}.

Sum Rule

$$
p(\mathbf{x})= \begin{cases}\sum_{\mathbf{y} \in \mathcal{Y}} p(\mathbf{x}, \mathbf{y}) & \text { if } \mathbf{y} \text { is discrete } \\ \int_{\mathcal{Y}} p(\mathbf{x}, \mathbf{y}) \mathrm{d} \mathbf{y} & \text { if } \mathbf{y} \text { is continuous }\end{cases}
$$

where \mathcal{Y} stands for the states of the target space of random variable Y.

- Marginalization property.

Sum Rule (2/2)

For $\mathbf{x}=\left[x_{1}, \ldots, x_{D}\right]^{\top}$, the marginal

$$
p\left(x_{i}\right)=\int p\left(x_{1}, \ldots, x_{D}\right) \mathrm{d} \mathbf{x}_{-i}
$$

, where " $-i$ " means all except i.

Product Rule

Product Rule

$$
p(\mathbf{x}, \mathbf{y})=p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x})
$$

Outline

(1) Sum \& Product Rule

(2) Bayes' Theorem

(3) Means \& Covariances

4 Sums \& Transformations of Random Variables
(5) Statistical Independence

Bayes' Theorem

Bayes' Theorem

$$
\underbrace{p(\mathbf{x} \mid \mathbf{y})}_{\text {posterior }}=\overbrace{\overbrace{\text { evidence }}^{\text {likelihood } \mid \mathbf{x})} \overbrace{p(\mathbf{x})}^{\text {prior }}}^{\underbrace{p(\mathbf{y})}_{\text {evid }}} \text {. }
$$

- Prior: subjective prior knowledge (before observing data).
- Likelihood $p(\mathbf{y} \mid \mathbf{x})$: the probability of \mathbf{y} if we were to know the latent variable \mathbf{x}.
- We call it "the likelihood of x ".
- Posterior $p(\mathbf{x} \mid \mathbf{y})$: the quantity that we know about \mathbf{x} after having observed \mathbf{y}.

Marginal Likelihood/Evidence

$$
\begin{gathered}
p(\mathbf{y}):=\sum_{\mathbf{x} \in \mathcal{X}} p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x})=\mathbb{E}_{X}[p(\mathbf{y} \mid \mathbf{x})] \\
p(\mathbf{y}):=\int_{\mathbf{x} \in \mathcal{X}} p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x}) \mathrm{d} \mathbf{x}=\mathbb{E}_{X}[p(\mathbf{y} \mid \mathbf{x})] .
\end{gathered}
$$

Outline

(1) Sum \& Product Rule

(2) Bayes' Theorem

(3) Means \& Covariances

4 Sums \& Transformations of Random Variables

Expected Value

Expected value

The expected value of a function $g: \mathbb{R} \mapsto \mathbb{R}$ of a random variable $X \sim p(x)$ is

$$
\mathbb{E}_{X}[g(x)]=\int_{\mathcal{X}} g(x) p(x) \mathrm{d} x
$$

or

$$
\mathbb{E}_{X}[g(x)]=\sum_{x \in \mathcal{X}} g(x) p(x) .
$$

Expected Value

Expected value

The expected value of a function $g: \mathbb{R} \mapsto \mathbb{R}$ of a random variable $X \sim p(x)$ is

$$
\mathbb{E}_{X}[g(x)]=\int_{\mathcal{X}} g(x) p(x) \mathrm{d} x
$$

or

$$
\mathbb{E}_{X}[g(x)]=\sum_{x \in \mathcal{X}} g(x) p(x) .
$$

Multivariate $X=\left[X_{1}, \ldots, X_{D}\right]^{\top}$

$$
\mathbb{E}_{X}[g(\mathrm{x})]=\left[\begin{array}{c}
\mathbb{E}_{X_{1}}\left[g\left(x_{1}\right)\right] \\
\vdots \\
\mathbb{E}_{X_{D}}\left[g\left(x_{D}\right)\right]
\end{array}\right] \in \mathbb{R}^{D}
$$

where $\mathbb{E}_{X_{d}}$: taking the expectation w.r.t. the x_{d}.

Expected Value (contd.)

Mean

For $\mathbf{x} \in \mathbb{R}^{D}$,

$$
\mathbb{E}_{X}[\mathbf{x}]=\left[\begin{array}{c}
\mathbb{E}_{X_{1}}\left[x_{1}\right] \\
\vdots \\
\mathbb{E}_{X_{D}}\left[x_{D}\right]
\end{array}\right] \in \mathbb{R}^{D}
$$

where

- $\mathbb{E}_{X_{d}}\left[x_{d}\right]=\int_{\mathcal{X}} x_{d} p\left(x_{d}\right) \mathrm{d} x_{d}$ if X is continuous ;
- $\mathbb{E}_{X_{d}}\left[x_{d}\right]=\sum_{x_{i} \in \mathcal{X}} x_{i} p\left(x_{d}=x_{i}\right) \mathrm{d} x_{d}$ if X is discrete.

Linearity of Expectation

Let $f(\mathbf{x})=a g(\mathbf{x})+b h(\mathbf{x})$ for $a, b \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^{D}$.

$$
\begin{aligned}
\mathbb{E}_{X}[f(\mathbf{x})] & =\int f(\mathbf{x}) p(\mathbf{x}) \mathrm{d} x \\
& =\int[a g(\mathbf{x})+b h(\mathbf{x})] \mathrm{d} x \\
& =a \int g(\mathbf{x}) p(\mathbf{x}) \mathrm{d} x+b \int h(\mathbf{x}) p(\mathbf{x}) \mathrm{d} x \\
& =a \mathbb{E}_{X}[g(\mathbf{x})]+b \mathbb{E}_{X}[h(\mathbf{x})] .
\end{aligned}
$$

Linearity of Expectation (Discrete Case)

Let $f(\mathbf{x})=a g(\mathbf{x})+b h(\mathbf{x})$ for $a, b \in \mathbb{R}$ and $\mathbf{x} \in \mathcal{X}$.

$$
\begin{aligned}
\mathbb{E}_{X}[f(\mathbf{x})] & =\sum_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) p(\mathbf{x}) \\
& =\sum_{\mathbf{x} \in \mathcal{X}}[a g(\mathbf{x})+b h(\mathbf{x})] p(\mathbf{x}) \\
& =a \sum_{\mathbf{x} \in \mathcal{X}} g(\mathbf{x}) p(\mathbf{x})+b \sum_{\mathbf{x} \in \mathcal{X}} h(\mathbf{x}) p(\mathbf{x}) \\
& =a \mathbb{E}_{X}[g(\mathbf{x})]+b \mathbb{E}_{X}[h(\mathbf{x})] .
\end{aligned}
$$

Covariance

The (univariate) covariance between two univariate random variables $X, Y \in \mathbb{R}$ is

$$
\operatorname{Cov}_{X, Y}[x, y]:=\mathbb{E}_{X, Y}\left[\left(x-\mathbb{E}_{X}[x]\right)\left(y-\mathbb{E}_{Y}[y]\right)\right]
$$

Omit the subscript.

$$
\operatorname{Cov}[x, y]:=\mathbb{E}[x y]-\mathbb{E}[x] \mathbb{E}[y]
$$

Covariance

The (univariate) covariance between two univariate random variables $X, Y \in \mathbb{R}$ is

$$
\operatorname{Cov}_{X, Y}[x, y]:=\mathbb{E}_{X, Y}\left[\left(x-\mathbb{E}_{X}[x]\right)\left(y-\mathbb{E}_{Y}[y]\right)\right]
$$

Omit the subscript.

$$
\operatorname{Cov}[x, y]:=\mathbb{E}[x y]-\mathbb{E}[x] \mathbb{E}[y]
$$

Note that

$$
\operatorname{Cov}[x, x]:=\mathbb{E}\left[x^{2}\right]-(\mathbb{E}[x])^{2}
$$

is the variance and denoted by $\mathbb{V}_{X}[x]$ and $\sqrt{\operatorname{Cov}[x, x]}$ denoted by $\sigma(x)$ is called the standard deviation.

Covariance of Multivariate R.V.'s

Covariance (Multivariate)

Consider random variables X and Y with states $\mathbf{x} \in \mathbb{R}^{D}$ and $\mathbf{y} \in \mathbb{R}^{E}$. The covariance between X and Y :
$\operatorname{Cov}[\mathbf{x}, \mathbf{y}]=$

Covariance of Multivariate R.V.'s

Covariance (Multivariate)

Consider random variables X and Y with states $\mathbf{x} \in \mathbb{R}^{D}$ and $\mathbf{y} \in \mathbb{R}^{E}$. The covariance between X and Y :

$$
\operatorname{Cov}[\mathbf{x}, \mathbf{y}]=\mathbb{E}\left[\mathbf{x} \mathbf{y}^{\top}\right]-\mathbb{E}[\mathbf{x}] \mathbb{E}[\mathbf{y}]^{\top}
$$

Covariance of Multivariate R.V.'s

Covariance (Multivariate)

Consider random variables X and Y with states $\mathbf{x} \in \mathbb{R}^{D}$ and $\mathbf{y} \in \mathbb{R}^{E}$. The covariance between X and Y :

$$
\operatorname{Cov}[\mathbf{x}, \mathbf{y}]=\mathbb{E}\left[\mathbf{x} \mathbf{y}^{\top}\right]-\mathbb{E}[\mathbf{x}] \mathbb{E}[\mathbf{y}]^{\top}=\operatorname{Cov}[\mathbf{y}, \mathbf{x}]^{\top} \in \mathbb{R}^{D \times E}
$$

Variance (Multivariate)

Variance (Multivariate)

The variance of a random variables X with states $\mathbf{x} \in \mathbb{R}^{D}$ and mean $\boldsymbol{\mu} \in \mathbb{R}^{D}$ is
$\mathbb{V}_{X}[\mathbf{x}]=\operatorname{Cov}_{X}[\mathbf{x}, \mathbf{x}]=\mathbb{E}_{X}\left[(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{\top}\right]$

Variance (Multivariate)

Variance (Multivariate)

The variance of a random variables X with states $\mathbf{x} \in \mathbb{R}^{D}$ and mean $\boldsymbol{\mu} \in \mathbb{R}^{D}$ is
$\mathbb{V}_{X}[\mathbf{x}]=\operatorname{Cov}_{X}[\mathbf{x}, \mathbf{x}]=\mathbb{E}_{X}\left[(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{\top}\right]=\mathbb{E}_{X}\left[\mathbf{x} \mathbf{x}^{\top}\right]-\mathbb{E}_{X}[\mathbf{x}] \mathbb{E}_{X}[\mathbf{x}]^{\top}$

Variance (Multivariate)

Variance (Multivariate)

The variance of a random variables X with states $\mathbf{x} \in \mathbb{R}^{D}$ and mean $\boldsymbol{\mu} \in \mathbb{R}^{D}$ is

$$
\begin{aligned}
\mathbb{V}_{X}[\mathbf{x}] & =\operatorname{Cov}_{X}[\mathbf{x}, \mathbf{x}]=\mathbb{E}_{X}\left[(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{\top}\right]=\mathbb{E}_{X}\left[\mathbf{x} \mathbf{x}^{\top}\right]-\mathbb{E}_{X}[\mathbf{x}] \mathbb{E}_{X}[\mathbf{x}]^{\top} \\
& =\left[\begin{array}{cccc}
\operatorname{Cov}\left[x_{1}, x_{1}\right] & \operatorname{Cov}\left[x_{1}, x_{2}\right] & \cdots & \operatorname{Cov}\left[x_{1}, x_{D}\right] \\
\operatorname{Cov}\left[x_{2}, x_{1}\right] & \operatorname{Cov}\left[x_{2}, x_{2}\right] & \cdots & \operatorname{Cov}\left[x_{2}, x_{D}\right] \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{Cov}\left[x_{D}, x_{1}\right] & \operatorname{Cov}\left[x_{D}, x_{2}\right] & \cdots & \operatorname{Cov}\left[x_{D}, x_{D}\right]
\end{array}\right] .
\end{aligned}
$$

Variance (Multivariate)

Variance (Multivariate)

The variance of a random variables X with states $\mathbf{x} \in \mathbb{R}^{D}$ and mean $\boldsymbol{\mu} \in \mathbb{R}^{D}$ is

$$
\begin{aligned}
\mathbb{V}_{X}[\mathbf{x}] & =\operatorname{Cov}_{X}[\mathbf{x}, \mathbf{x}]=\mathbb{E}_{X}\left[(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{\top}\right]=\mathbb{E}_{X}\left[\mathbf{x x}{ }^{\top}\right]-\mathbb{E}_{X}[\mathbf{x}] \mathbb{E}_{X}[\mathbf{x}]^{\top} \\
& =\left[\begin{array}{cccc}
\operatorname{Cov}\left[x_{1}, x_{1}\right] & \operatorname{Cov}\left[x_{1}, x_{2}\right] & \cdots & \operatorname{Cov}\left[x_{1}, x_{D}\right] \\
\operatorname{Cov}\left[x_{2}, x_{1}\right] & \operatorname{Cov}\left[x_{2}, x_{2}\right] & \cdots & \operatorname{Cov}\left[x_{2}, x_{D}\right] \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{Cov}\left[x_{D}, x_{1}\right] & \operatorname{Cov}\left[x_{D}, x_{2}\right] & \cdots & \operatorname{Cov}\left[x_{D}, x_{D}\right]
\end{array}\right] .
\end{aligned}
$$

- The covariance matrix of the multivariate X.

Correlation

Correlation

The correlation between two random variables X, Y is

$$
\operatorname{corr}[x, y]=\frac{\operatorname{Cov}[x, y]}{\sqrt{\mathbb{V}[x] \mathbb{V}[y]}} \in[-1,1] .
$$

Empirical Means \& Covariances

In machine learning, we need to learn from empirical observations of data.

Empirical Mean \& Covariance

The empirical mean vector: arithmetic average of the observations for each variable:

$$
\overline{\mathbf{x}}:=\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i},
$$

for $\mathbf{x}_{i} \in \mathbb{R}^{D}$. The empirical covariance matrix is a $D \times D$ matrix

$$
\boldsymbol{\Sigma}:=\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{\top} .
$$

Empirical Means \& Covariances

In machine learning, we need to learn from empirical observations of data.

Empirical Mean \& Covariance

The empirical mean vector: arithmetic average of the observations for each variable:

$$
\overline{\mathbf{x}}:=\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i}
$$

for $\mathbf{x}_{i} \in \mathbb{R}^{D}$. The empirical covariance matrix is a $D \times D$ matrix

$$
\boldsymbol{\Sigma}:=\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{\top} .
$$

- $\boldsymbol{\Sigma}$ is symmetric, positive semidefinite.

Computing the Empirical Variance

Approaches:
(1) $\mathbb{V}_{X}[x]:=\mathbb{E}_{X}\left[(x-\mu)^{2}\right]$.
(2) $\mathbb{V}_{X}[x]=\mathbb{E}_{X}\left[x^{2}\right]-\left(\mathbb{E}_{X}[x]\right)^{2}$.

- One-pass; more efficient
(3) Averaging pairwise differences between all pairs of observations.

$$
\frac{1}{N^{2}} \sum_{i, j=1}^{N}\left(x_{i}-x_{j}\right)^{2}=2\left[\frac{1}{N} \sum_{i=1}^{N} x_{i}^{2}-\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}\right)^{2}\right]
$$

Computing the Empirical Variance

Approaches:
(1) $\mathbb{V}_{X}[x]:=\mathbb{E}_{X}\left[(x-\mu)^{2}\right]$.
(2) $\mathbb{V}_{X}[x]=\mathbb{E}_{X}\left[x^{2}\right]-\left(\mathbb{E}_{X}[x]\right)^{2}$.

- One-pass; more efficient
(3) Averaging pairwise differences between all pairs of observations.

$$
\frac{1}{N^{2}} \sum_{i, j=1}^{N}\left(x_{i}-x_{j}\right)^{2}=2\left[\frac{1}{N} \sum_{i=1}^{N} x_{i}^{2}-\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}\right)^{2}\right]
$$

- Twice of the 2nd approach.
- Interesting perspective to compute the left-hand side target.

Outline

(1) Sum \& Product Rule

(2) Bayes' Theorem
(3) Means \& Covariances

4 Sums \& Transformations of Random Variables
(5) Statistical Independence

Basic Rules

Simple Rules \& Exercise

Consider two random variables X, Y with states $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{D}$. Then,

$$
\begin{aligned}
\mathbb{E}[\mathbf{x} \pm \mathbf{y}] & =\mathbb{E}[\mathbf{x}] \pm \mathbb{E}[\mathbf{y}] \\
\mathbb{V}[\mathbf{x} \pm \mathbf{y}] & =\mathbb{V}[\mathbf{x}]+\mathbb{V}[\mathbf{y}] \pm \operatorname{Cov}[\mathbf{x}, \mathbf{y}] \pm \operatorname{Cov}[\mathbf{y}, \mathbf{x}] \quad \text { (Exercise). }
\end{aligned}
$$

- Note: For a constant vector $\mathbf{b} \in \mathbb{R}^{D}, \mathbb{V}(\mathbf{x} \pm \mathbf{b})=\mathbb{V}[\mathbf{x}]$ because $\mathbb{V}[\mathbf{b}]=\mathbb{E}\left[\mathbf{b} \mathbf{b}^{\top}\right]-\mathbb{E}[\mathbf{b}] \mathbb{E}[\mathbf{b}]^{\top}=\mathbf{b b}^{\top}-\mathbf{b} \mathbf{b}^{\top}=\mathbf{0}$ and
$\operatorname{Cov}(\mathbf{x}, \mathbf{b})$

Basic Rules

Simple Rules \& Exercise

Consider two random variables X, Y with states $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{D}$. Then,

$$
\begin{aligned}
\mathbb{E}[\mathbf{x} \pm \mathbf{y}] & =\mathbb{E}[\mathbf{x}] \pm \mathbb{E}[\mathbf{y}] \\
\mathbb{V}[\mathbf{x} \pm \mathbf{y}] & =\mathbb{V}[\mathbf{x}]+\mathbb{V}[\mathbf{y}] \pm \operatorname{Cov}[\mathbf{x}, \mathbf{y}] \pm \operatorname{Cov}[\mathbf{y}, \mathbf{x}] \quad \text { (Exercise). }
\end{aligned}
$$

- Note: For a constant vector $\mathbf{b} \in \mathbb{R}^{D}, \mathbb{V}(\mathbf{x} \pm \mathbf{b})=\mathbb{V}[\mathbf{x}]$ because $\mathbb{V}[\mathbf{b}]=\mathbb{E}\left[\mathbf{b} \mathbf{b}^{\top}\right]-\mathbb{E}[\mathbf{b}] \mathbb{E}[\mathbf{b}]^{\top}=\mathbf{b b}^{\top}-\mathbf{b} \mathbf{b}^{\top}=\mathbf{0}$ and

$$
\operatorname{Cov}(\mathbf{x}, \mathbf{b})=\mathbb{E}\left[\mathbf{x b}^{\top}\right]-\mathbb{E}[\mathbf{x}] \mathbb{E}[\mathbf{b}]^{\top}
$$

Basic Rules

Simple Rules \& Exercise

Consider two random variables X, Y with states $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{D}$. Then,

$$
\begin{aligned}
\mathbb{E}[\mathbf{x} \pm \mathbf{y}] & =\mathbb{E}[\mathbf{x}] \pm \mathbb{E}[\mathbf{y}] \\
\mathbb{V}[\mathbf{x} \pm \mathbf{y}] & =\mathbb{V}[\mathbf{x}]+\mathbb{V}[\mathbf{y}] \pm \operatorname{Cov}[\mathbf{x}, \mathbf{y}] \pm \operatorname{Cov}[\mathbf{y}, \mathbf{x}] \quad \text { (Exercise). }
\end{aligned}
$$

- Note: For a constant vector $\mathbf{b} \in \mathbb{R}^{D}, \mathbb{V}(\mathbf{x} \pm \mathbf{b})=\mathbb{V}[\mathbf{x}]$ because $\mathbb{V}[\mathbf{b}]=\mathbb{E}\left[\mathbf{b} \mathbf{b}^{\top}\right]-\mathbb{E}[\mathbf{b}] \mathbb{E}[\mathbf{b}]^{\top}=\mathbf{b b}^{\top}-\mathbf{b} \mathbf{b}^{\top}=\mathbf{0}$ and

$$
\operatorname{Cov}(\mathbf{x}, \mathbf{b})=\mathbb{E}\left[\mathbf{x} \mathbf{b}^{\top}\right]-\mathbb{E}[\mathbf{x}] \mathbb{E}[\mathbf{b}]^{\top}=\mathbb{E}[\mathbf{x}] \mathbf{b}^{\top}-\mathbb{E}[\mathbf{x}] \mathbf{b}^{\top}=\mathbf{0} .
$$

- Question: Why does the second equality hold?

Affine Transformation of r.v.'s (1/2)

Consider $\mathbf{y}=\boldsymbol{A x}+\mathbf{b}$ and let $\boldsymbol{\Sigma}:=\mathbb{V}_{X}[\mathbf{x}]$.

$$
\begin{aligned}
\mathbb{E}_{Y}[\mathbf{y}] & =\mathbb{E}_{X}[\boldsymbol{A} \mathbf{x}+\mathbf{b}]=\boldsymbol{A} \mathbb{E}_{X}[\mathbf{x}]+\mathbf{b} \\
\mathbb{V}_{Y}[\mathbf{y}] & =\mathbb{V}_{X}[\boldsymbol{A} \mathbf{x}+\mathbf{b}]=\mathbb{V}_{X}[\boldsymbol{A} \mathbf{x}]=\boldsymbol{A} \mathbb{V}_{X}[\mathbf{x}] \boldsymbol{A}^{\top}=\boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}^{\top}
\end{aligned}
$$

$$
\mathbb{V}_{X}[\boldsymbol{A} \mathbf{x}]=\mathbb{E}_{X}\left[(\boldsymbol{A} \mathbf{x})(\boldsymbol{A} \mathbf{x})^{\top}\right]-\mathbb{E}_{X}[\boldsymbol{A} \mathbf{x}]\left(\mathbb{E}_{X}[\boldsymbol{A} \mathbf{x}]\right)^{\top}
$$

$$
\begin{aligned}
\mathbb{V}_{X}[\boldsymbol{A} \mathbf{x}] & =\mathbb{E}_{X}\left[(\boldsymbol{A} \mathbf{x})(\boldsymbol{A} \mathbf{x})^{\top}\right]-\mathbb{E}_{X}[\boldsymbol{A} \mathbf{x}]\left(\mathbb{E}_{X}[\boldsymbol{A} \mathbf{x}]\right)^{\top} \\
& =\mathbb{E}_{X}\left[\boldsymbol{A} \mathbf{x x ^ { \top }} \boldsymbol{A}^{\top}\right]-\boldsymbol{A} \mathbb{E}_{X}[\mathbf{x}] \mathbb{E}_{X}[\mathbf{x}]^{\top} \boldsymbol{A}^{\top}
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{V}_{X}[\boldsymbol{A} \mathbf{x}] & =\mathbb{E}_{X}\left[(\boldsymbol{A} \mathbf{x})(\boldsymbol{A} \mathbf{x})^{\top}\right]-\mathbb{E}_{X}[\boldsymbol{A} \mathbf{x}]\left(\mathbb{E}_{X}[\boldsymbol{A} \mathbf{x}]\right)^{\top} \\
& =\mathbb{E}_{X}\left[\boldsymbol{A} \mathbf{x} \mathbf{x}^{\top} \boldsymbol{A}^{\top}\right]-\boldsymbol{A} \mathbb{E}_{X}[\mathbf{x}] \mathbb{E}_{X}[\mathbf{x}]^{\top} \boldsymbol{A}^{\top} \\
& =\boldsymbol{E _ { E }}\left[\mathbf{x} \mathbf{x x}^{\top} \boldsymbol{A}^{\top}\right]-\boldsymbol{A} \mathbb{E}_{X}[\mathbf{x}] \mathbb{E}_{X}[\mathbf{x}]^{\top} \boldsymbol{A}^{\top}
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{V}_{X}[\boldsymbol{A} \mathbf{x}] & =\mathbb{E}_{X}\left[(\boldsymbol{A} \mathbf{x})(\boldsymbol{A} \mathbf{x})^{\top}\right]-\mathbb{E}_{X}[\boldsymbol{A} \mathbf{x}]\left(\mathbb{E}_{X}[\boldsymbol{A} \mathbf{x}]\right)^{\top} \\
& =\mathbb{E}_{X}\left[\boldsymbol{A} \mathbf{x} x^{\top} \boldsymbol{A}^{\top}\right]-\boldsymbol{A} \mathbb{E}_{X}[\mathbf{x}] \mathbb{E}_{X}[\mathbf{x}]^{\top} \boldsymbol{A}^{\top} \\
& =\boldsymbol{A} \mathbb{E}_{X}\left[\mathbf{x} \mathbf{x}^{\top} \boldsymbol{A}^{\top}\right]-\boldsymbol{A} \mathbb{E}_{X}[\mathbf{x}] \mathbb{E}_{X}[\mathbf{x}]^{\top} \boldsymbol{A}^{\top} \\
& =\boldsymbol{A}\left(\mathbb{E}_{X}\left[\boldsymbol{A} \mathbf{x} \mathbf{x}^{\top}\right]\right)^{\top}-\boldsymbol{A} \mathbb{E}_{X}[\mathbf{x}] \mathbb{E}_{X}[\mathbf{x}]^{\top} \boldsymbol{A}^{\top}
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{V}_{X}[\boldsymbol{A} \mathbf{x}] & =\mathbb{E}_{X}\left[(\boldsymbol{A} \mathbf{x})(\boldsymbol{A} \mathbf{x})^{\top}\right]-\mathbb{E}_{X}[\boldsymbol{A} \mathbf{x}]\left(\mathbb{E}_{X}[\boldsymbol{A} \mathbf{x}]\right)^{\top} \\
& =\mathbb{E}_{X}\left[\boldsymbol{A} \mathbf{x} x^{\top} \boldsymbol{A}^{\top}\right]-\boldsymbol{A} \mathbb{E}_{X}[\mathbf{x}] \mathbb{E}_{X}[\mathbf{x}]^{\top} \boldsymbol{A}^{\top} \\
& =\boldsymbol{A} \mathbb{E}_{X}\left[\mathbf{x} \mathbf{x}^{\top} \boldsymbol{A}^{\top}\right]-\boldsymbol{A} \mathbb{E}_{X}[\mathbf{x}] \mathbb{E}_{X}[\mathbf{x}]^{\top} \boldsymbol{A}^{\top} \\
& =\boldsymbol{A}\left(\mathbb{E}_{X}\left[\boldsymbol{A} \mathbf{x} \mathbf{x}^{\top}\right]\right)^{\top}-\boldsymbol{A} \mathbb{E}_{X}[\mathbf{x}] \mathbb{E}_{X}[\mathbf{x}]^{\top} \boldsymbol{A}^{\top} \\
& =\boldsymbol{A}\left(\boldsymbol{A} \mathbb{E}_{X}[\mathbf{x x}]\right)^{\top}-\boldsymbol{A} \mathbb{E}_{X}[\mathbf{x}] \mathbb{E}_{X}[\mathbf{x}]^{\top} \boldsymbol{A}^{\top}
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{V}_{X}[\boldsymbol{A} \mathbf{x}] & =\mathbb{E}_{X}\left[(\boldsymbol{A} \mathbf{x})(\boldsymbol{A} \mathbf{A})^{\top}\right]-\mathbb{E}_{X}[\boldsymbol{A} \mathbf{x}]\left(\mathbb{E}_{X}[\boldsymbol{A} \mathbf{x}]\right)^{\top} \\
& =\mathbb{E}_{X}\left[\boldsymbol{A} \mathbf{x} \mathbf{x}^{\top} \boldsymbol{A}^{\top}\right]-\boldsymbol{A} \mathbb{E}_{X}[\mathbf{x}] \mathbb{E}_{X}[\mathbf{x}]^{\top} \boldsymbol{A}^{\top} \\
& =\boldsymbol{A} \mathbb{E}_{X}\left[\mathbf{x x ^ { \top }} \boldsymbol{A}^{\top}\right]-\boldsymbol{A} \mathbb{E}_{X}[\mathbf{x}] \mathbb{E}_{X}[\mathbf{x}]^{\top} \boldsymbol{A}^{\top} \\
& =\boldsymbol{A}\left(\mathbb{E}_{X}\left[\boldsymbol{A} \mathbf{x} \mathbf{x}^{\top}\right]\right)^{\top}-\boldsymbol{A} \mathbb{E}_{X}\left[\mathbf{x} \mathbf{x} \mathbb{E}_{X}[\mathbf{x}]^{\top} \boldsymbol{A}^{\top}\right. \\
& =\boldsymbol{A}\left(\boldsymbol{A} \mathbb{E}_{X}\left[\mathbf{x} \mathbf{x}^{\top}\right]\right)^{\top}-\boldsymbol{A} \mathbb{E}_{X}[\mathbf{x}] \mathbb{E}_{X}[\mathbf{x}]^{\top} \boldsymbol{A}^{\top} \\
& =\boldsymbol{A} \mathbb{E}_{X}\left[\mathbf{x} x^{\top}\right] \boldsymbol{A}^{\top}-\boldsymbol{A} \mathbb{E}_{X}[x] \mathbb{E}_{X}[\mathbf{x}]^{\top} \boldsymbol{A}^{\top}
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{V}_{X}[\boldsymbol{A} \mathbf{x}] & =\mathbb{E}_{X}\left[(\boldsymbol{A} \mathbf{x})(\boldsymbol{A} \mathbf{x})^{\top}\right]-\mathbb{E}_{X}[\boldsymbol{A} \mathbf{x}]\left(\mathbb{E}_{X}[\boldsymbol{A} \mathbf{x}]\right)^{\top} \\
& =\mathbb{E}_{X}\left[\boldsymbol{A} \mathbf{x} \mathbf{x}^{\top} \boldsymbol{A}^{\top}\right]-\boldsymbol{A} \mathbb{E}_{X}[\mathbf{x}] \mathbb{E}_{X}[\mathbf{x}]^{\top} \boldsymbol{A}^{\top} \\
& =\boldsymbol{A} \mathbb{E}_{X}\left[\mathbf{x} x^{\top} \boldsymbol{A}^{\top}\right]-\boldsymbol{A} \mathbb{E}_{X}[\mathbf{x}] \mathbb{E}_{X}[\mathbf{x}]^{\top} \boldsymbol{A}^{\top} \\
& =\boldsymbol{A}\left(\mathbb{E}_{X}[\boldsymbol{A} \mathbf{x x}]\right)^{\top}-\boldsymbol{A} \mathbb{E}_{X}[\mathbf{x}] \mathbb{E}_{X}[\mathbf{x}]^{\top} \boldsymbol{A}^{\top} \\
& =\boldsymbol{A}\left(\boldsymbol{A} \mathbb{E}_{X}\left[\mathbf{x} \mathbf{x}^{\top}\right]\right)^{\top}-\boldsymbol{A} \mathbb{E}_{X}\left[\mathbf{x} \mathbf{x} \mathbb{E}_{X}[\mathbf{x}]^{\top} \boldsymbol{A}^{\top}\right. \\
& =\boldsymbol{A} \mathbb{E}_{X}\left[\mathbf{x} x^{\top}\right] \boldsymbol{A}^{\top}-\boldsymbol{A} \mathbb{E}_{X}[\mathrm{x}] \mathbb{E}_{X}[\mathbf{x}]^{\top} \boldsymbol{A}^{\top} \\
& =\boldsymbol{A} \mathbb{V}_{X}[\mathbf{x}] \boldsymbol{A}^{\top} .
\end{aligned}
$$

Affine Transformation of r.v.'s (2/2)

Furthermore, let $\boldsymbol{\mu}:=\mathbb{E}_{X}[\mathbf{x}]$ and $\boldsymbol{\Sigma}:=\mathbb{V}_{X}[\mathbf{x}]$.

$$
\begin{aligned}
\operatorname{Cov}[\mathbf{x}, \mathbf{y}] & =\mathbb{E}\left[\mathbf{x}(\boldsymbol{A} \mathbf{x}+\mathbf{b})^{\top}\right]-\mathbb{E}[\mathbf{x}] \mathbb{E}[\boldsymbol{A} \mathbf{x}+\mathbf{b}]^{\top} \\
& =\boldsymbol{\mu} \mathbf{b}^{\top}+\mathbb{E}\left[\mathbf{x} \mathbf{x}^{\top}\right] \boldsymbol{A}^{\top}-\boldsymbol{\mu} \mathbf{b}^{\top}-\boldsymbol{\mu} \boldsymbol{\mu}^{\top} \boldsymbol{A}^{\top} \\
& =\left(\mathbb{E}\left[\mathbf{x x ^ { \top }}\right]-\boldsymbol{\mu} \boldsymbol{\mu}^{\top}\right) \boldsymbol{A}^{\top} \\
& =\boldsymbol{\Sigma} \boldsymbol{A}^{\top} .
\end{aligned}
$$

Outline

(1) Sum \& Product Rule
(2) Bayes' Theorem
(3) Means \& Covariances
(4) Sums \& Transformations of Random Variables
(5) Statistical Independence

(Statistically) Independent

Two random variables X, Y are statistically independent if and only if

$$
p(\mathbf{x}, \mathbf{y})=p(\mathbf{x}) p(\mathbf{y})
$$

If X, Y are independent, then

- $p(\mathbf{y} \mid \mathbf{x})=p(\mathbf{y})$.
- $p(\mathbf{x} \mid \mathbf{y})=p(\mathbf{x})$.
- $\mathbb{V}_{X, Y}[\mathbf{x}+\mathbf{y}]=\mathbb{V}_{X}[\mathbf{x}]+\mathbb{V}_{Y}[\mathbf{y}]$.
- $\operatorname{Cov}_{X, Y}(\mathbf{x}, \mathbf{y})=\mathbf{0}$.

Remark

Note that $\operatorname{Cov}_{X, Y}(\mathbf{x}, \mathbf{y})=\mathbf{0}$ does NOT necessarily imply that X and Y are independent.

Remark

Note that $\operatorname{Cov}_{X, Y}(\mathbf{x}, \mathbf{y})=\mathbf{0}$ does NOT necessarily imply that X and Y are independent.

- Consider a random variable X with $\mathbb{E}_{X}[x]=0$ and also $\mathbb{E}_{X}\left[x^{3}\right]=0$.

Remark

Note that $\operatorname{Cov}_{X, Y}(\mathbf{x}, \mathbf{y})=\mathbf{0}$ does NOT necessarily imply that X and Y are independent.

- Consider a random variable X with $\mathbb{E}_{X}[x]=0$ and also $\mathbb{E}_{X}\left[x^{3}\right]=0$.
- Let $y=x^{2}$. Hence, Y is dependent on X.

Remark

Note that $\operatorname{Cov}_{X, Y}(\mathbf{x}, \mathbf{y})=\mathbf{0}$ does NOT necessarily imply that X and Y are independent.

- Consider a random variable X with $\mathbb{E}_{X}[x]=0$ and also $\mathbb{E}_{X}\left[x^{3}\right]=0$.
- Let $y=x^{2}$. Hence, Y is dependent on X.
- $\operatorname{Cov}[x, y]=\mathbb{E}[x y]-\mathbb{E}[x] \mathbb{E}[y]=\mathbb{E}\left[x^{3}\right]=0$.

Conditional Independence

Two random variables X, Y are conditionally independent given Z if and only if

$$
p(\mathbf{x}, \mathbf{y} \mid \mathbf{z})=p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{y} \mid \mathbf{z}) .
$$

for all $z \in \mathcal{Z}$.
By the product rule, we can have

$$
p(\mathbf{x}, \mathbf{y} \mid \mathbf{z})=p(\mathbf{x} \mid \mathbf{y}, \mathbf{z}) p(\mathbf{y} \mid \mathbf{z})
$$

Thus,

$$
p(\mathbf{x} \mid \mathbf{y}, \mathbf{z})=p(\mathbf{x} \mid \mathbf{z})
$$

Heads Up

If X, Y are independent, then $\mathbb{V}_{X, Y}[\mathbf{x}+\mathbf{y}]=\mathbb{V}_{X}[\mathbf{x}]+\mathbb{V}_{Y}[\mathbf{y}]$.

$$
\because \operatorname{Cov}_{X, Y}(\mathbf{x}, \mathbf{y})=\mathbf{0}
$$

Discussions

