Final Exam of MML

09:10-12:00, 26 December 2023; Room E416
Note: Cell phones and any calculator are forbidden.

Part I: True (T) or False (F) (50\%; each for 5\%)

1. For any $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{A}^{\top} \mathbf{A}$ is invertible.
2. The shape of $\frac{d}{d \mathbf{x}}\left(\mathbf{x}^{\top} \mathbf{x}\right) \mathbf{x}$ is $\mathbb{R}^{1 \times n}$ for $\mathbf{x} \in \mathbb{R}^{n}$.
3. Every positive definite matrix $M \in \mathbb{R}^{n \times n}$ is invertible.
4. For any objective convex function $f: \mathbb{R}^{d} \mapsto \mathbb{R}$, gradient descent with a fixed learning rate $\gamma \geq 0$ always converges to the global minimum of f.
5. $f: \mathbb{R}^{2} \mapsto \mathbb{R} ; f(\mathbf{x})=\|\mathbf{x}\|_{2}^{2}$ is a convex function.
6. For any function ψ with arguments \mathbf{x}, \mathbf{y}, we have $\min _{\mathbf{y}} \max _{\mathbf{x}} \psi(\mathbf{x}, \mathbf{y}) \leq \max _{\mathbf{x}} \min _{\mathbf{y}} \psi(\mathbf{x}, \mathbf{y})$.
7. Given a set of N samples $\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{N}, y_{N}\right)$ and probability densities $p(\mathbf{x} \mid \theta)$ parameterized by θ, the negative log-likelihood of the data is $-\prod_{i=1}^{N} \log p\left(y_{i} \mid \mathbf{x}_{i}, \theta\right)$.
8. Compared with the maximum a posteriori estimation (MAP), maximum likelihood estimation (MLE) suffers less overfitting issues.
9. Given a sampler of $\mathcal{N}(\mathbf{0}, \mathbf{I})$, we can generate a sample $\mathbf{y} \sim \mathcal{N}(\mu, \mathbf{I})$ by transforming $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ to $\mathbf{y}=\mathbf{x}+\mu$.
10. For $\mathbf{x} \sim \mathcal{N}\left(\mu_{x}, \Sigma_{x}\right)$ and $\mathbf{y} \sim \mathcal{N}\left(\mu_{y}, \Sigma_{y}\right)$, the distribution of $a \mathbf{x}+b \mathbf{y}$ for $a, b \in \mathbb{R}$ is given as $\mathcal{N}\left(a \mu_{x}+b \mu_{y}, a \Sigma_{x}+b \Sigma_{y}\right)$.

Part II: Calculations. (70\%; each for 5\%; ONLY THE ANSWERS ARE REQUIRED)

1. (5\%) Compute $\frac{d}{d \mathbf{x}}\left(\mathbf{x}^{\top} \mathbf{x}\right) \mathbf{x}$.
2. (5\%) For $\mu, \sigma \in \mathbb{R}$, compute the derivative $f^{\prime}(x)$ of the function $f: \mathbb{R} \mapsto \mathbb{R}$;

$$
f(x)=\exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)
$$

3. (5\%) Let X be a continuous random variable with pdf $f_{X}:[0,1] \mapsto[0,1]: f_{X}(x)=4 x^{3}$. compute the pdf of $Y=X^{2}$.
4. (5\%) Given $\mathbf{x}, \mathbf{y}, \mathbf{b} \in \mathbb{R}^{n}, \mathbf{A} \in \mathbb{R}^{n \times n}$, if \mathbf{x}, \mathbf{y} are random vectors such that $\mathbf{y}=2 \mathbf{A x}-\mathbf{b}$ and $\mathbb{V}[\mathbf{x}]=\sigma$, then compute the variance $\mathbb{V}[\mathbf{y}]$. (Hint: $\mathbb{V}[\mathbf{x}]=\mathbb{E}\left[\mathbf{x} \mathbf{x}^{\top}\right]-\mathbb{E}[\mathbf{x}] \mathbb{E}[\mathbf{x}]^{\top}$)
5. (10\%) Consider the problem:

$$
\begin{aligned}
& \min _{\mathbf{x} \in \mathbb{R}^{d}} \mathbf{c}^{\top} \mathbf{x} \\
& \text { subject to } \mathbf{A x} \preceq \mathbf{b} \text {, for } \mathbf{A} \in \mathbb{R}^{m \times d}, \mathbf{b} \in \mathbb{R}^{m} \text { and } \mathbf{c} \in \mathbb{R}^{d} .
\end{aligned}
$$

a. (5\%) Please provide its Lagrangian function $\mathcal{L}(\mathbf{x}, \lambda)$.
b. (5\%) Please list the dual problem.
6. (5\%) Given $f: \mathbb{R}^{+} \mapsto \mathbb{R} ; f(x)=x \ln x$. Compute $f(t)+\left(\nabla_{x} f\right)(t)^{\top}(z-t)$ for $t=e^{2}, z=e^{3}$.
7. (10\%) Given Billingsley's Theorem: Let $f_{X}(\mathbf{x})$ be the pdf of the multivariate continuous random variable X. If the function $\mathbf{y}=U(\mathbf{x})$ is differentiable and invertible for all values within the domain of \mathbf{x}, then for corresponding values of \mathbf{y}, the pdf of $Y=U(X)$ is given by

$$
f(\mathbf{y})=f_{\mathbf{x}}\left(U^{-1}(\mathbf{y})\right) \cdot\left|\operatorname{det}\left(\frac{\partial}{\partial \mathbf{y}} U^{-1}(\mathbf{y})\right)\right| .
$$

Consider a bivariate random variable X with states $\mathbf{x}=\left[x_{1} x_{2}\right]^{\top}$, the pdf $f(\mathbf{x})=\frac{1}{2 \pi} \exp \left(-\frac{1}{2} \mathbf{x}^{\top} \mathbf{x}\right)$ and a matrix $\mathbf{A}=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$. Find the pdf of the random variable $\mathbf{y}=\mathbf{A x}$.
8. (10\%) Consider $f: \mathbb{R}^{2} \mapsto \mathbb{R} ; f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{\top}\left[\begin{array}{ll}2 & 1 \\ 1 & 4\end{array}\right] \mathbf{x}-\left[\begin{array}{l}2 \\ 3\end{array}\right]^{\top} \mathbf{x}+\left[\begin{array}{ll}1 & 0\end{array}\right]^{\top}$.
a. (5\%) Compute $\nabla f(\mathbf{x})$.
b. (5\%) Set the step size $\gamma=0.1$ and initial $\mathbf{x}_{0}=\left[\begin{array}{ll}0 & 0\end{array}\right]^{\top}$, compute the iterative solution \mathbf{x}_{2} given by the gradient descent algorithm.
9. (5\%) Given the function $f(x, y)=x^{2}+2 x y$ for $x, y \in \mathbb{R}$, please compute the Hessian matrix of f.
10. (10\%) Consider the following workflow

According to the automatic differentiation rule of the reverse mode (backpropagation), please write down how we can compute $\frac{\partial f}{\partial a}$ and $\frac{\partial f}{\partial x}$.
(Hint: $\frac{\partial f}{\partial b}=\frac{\partial f}{\partial c}=\frac{\partial f}{\partial d}=1$)

